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Abstract
To increase diversity and realism, surface bidirectional scattering distribution functions (BSDFs) are often modelled as consisting
of multiple layers, but accurately evaluating layered BSDFs while accounting for all light transport paths is a challenging
problem. Recently, Guo et al. [GHZ18] proposed an accurate and general position-free Monte Carlo method, but this method
introduces variance that leads to longer render time compared to non-stochastic layered models. We improve the previous work
by presenting two new sampling strategies, pair-product sampling and multiple-product sampling. Our new methods better take
advantage of the layered structure and reduce variance compared to the conventional approach of sequentially sampling one
BSDF at a time. Our pair-product sampling strategy importance samples the product of two BSDFs from a pair of adjacent
layers. We further generalize this to multiple-product sampling, which importance samples the product of a chain of three
or more BSDFs. In order to compute these products, we developed a new approximate Gaussian representation of individual
layer BSDFs. This representation incorporates spatially varying material properties as parameters so that our techniques can
support an arbitrary number of textured layers. Compared to previous Monte Carlo layering approaches, our results demonstrate
substantial variance reduction in rendering isotropic layered surfaces.
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1. Introduction

In physically based rendering, materials are most often modelled
using bidirectional scattering distribution functions (BSDFs), which
describe how much light is reflected and/or transmitted and how
the scattered light is distributed. Many BSDF models have been
developed for a variety of surfaces, and single-surface materials,
such as bare metal, can be described well with elementary BSDF
models. But most materials require multiple components to model
their appearance—for instance, a coloured plastic has an interface
at the surface that reflects specularly and a body material below
the surface that reflects diffusely. More complex materials can have
more layers, such as a car finish made by coating a metal surface
with a primer, then a base coat, and then a clear coat.

The common practice in graphics has been to simply add the
BSDFs for multiple layers, as when modelling coloured materials
with the sum of a diffuse component and a specular component.

This approximation can produce reasonable results in simple cases,
but it is inaccurate, and in physically based renderers, there is a
practical problem: adding the layer BSDFs violates energy con-
servation. These problems can be solved by ad hoc corrections
[HVL17, KC17], but the result is still not accurate—and with no
reference to a correct answer, different rendering systems produce
inconsistent results.

The correct way forward is to combine layered BSDFs by accu-
rately solving the equations that describe how light transmits, re-
flects and inter-reflects among layers before it emanates out. Three
approaches to this problem have emerged in recent research. Lay-
erlab [JdJM14] converts BSDFs to a tabulated representation and
computes BSDFs for layer stacks numerically. It is accurate and gen-
eral, but it requires a precomputation that depends on the parameters
of all the layers, so it is unworkable for textured materials. Belcour
[Bel18] proposed a simpler approach for interactive rendering that
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Figure 1: We present a new Monte Carlo method for more efficiently rendering layered materials. This figure compares the bidirectional
method in [GHZ18] and our pair-product sampling method. All the objects in this scene are characterized using Microfacet BSDF layers. We
rendered only direct lighting to avoid the indirect noise that is unrelated to the layered BSDF evaluation. The RMSE of each colour box is
reported. Our method reduces RMSE by 1.6x to 3.3x on the coloured boxes, corresponding to a 2.6x to 10.9x reduction in time.

composes layers by estimating the statistics of the combined BSDF
and representing the result as a sum of GGX lobes. This model
is efficient, but approximate, and is not general enough to be a
complete solution. Most recently, Guo et al. [GHZ18] proposed a
general, accurate and precomputation-free method that uses Monte
Carlo integration to estimate the values of layered BSDFs. This
work serves an important stepping stone to composing layers in
production rendering.

Guo et al.’s core innovation is to apply the same Monte Carlo
sampling strategies that are used in standard scene rendering to the
simpler plane-parallel problem. Although they improve significantly
upon using forward path tracing to estimate layer BSDFs, these
methods still have high variance, increasing render times by 2 − 12
times over single-layer rendering, as reported in their paper. Thus,
we focus on extending their work by developing more efficient
Monte Carlo methods.

In this paper, we propose two new sampling methods for the
plane-parallel layer-to-layer transport problem, which take better
advantage of the layering structure to build lower-variance sampling
strategies for many layer combinations. We will mainly compare
with the bidirectional estimator in [GHZ18] as their unidirectional
estimator is less efficient.

Contributions. In summary, we present the following theoretical
and practical contributions:

� We introduce the pair-product sampling strategy, which can sam-
ple an inner direction according to the product of BSDFs from a
pair of adjacent layers.

� We propose multi-product sampling, which extends pair-product
and samples all inner directions at once according to the product
of a chain of three or more BSDFs.

� We develop a novel and compact parameterized Gaussian repre-
sentation of single-layer BSDFs. The two new sampling strate-
gies are based on this representation. We express the Gaussian
parameters as smooth functions of the BSDF parameters, so that
only a one-time precomputation is required for each type of
BSDF model.

� We demonstrate that these new sampling strategies lead to signif-
icant variance reduction, compared to Guo et al.’s conventional
approach of serially sampling a single BSDF at a time, in ren-
dering isotropic surface scattering layers.

Assumptions. Like previous work on layered materials, we make
several assumptions in order to model a layered material as a BSDF.

� Layers are locally planar and parallel.
� Layers are thin compared to variations in illumination or material

properties. Thus, any horizontal displacement of the exiting point
relative to the incoming point is assumed to be negligible—in
other words, we are modelling a BSDF rather than a BSSDF.

� Each layer’s BSDF is known. That is, it is available in the standard
form of a function of incoming and outgoing directions that can
be evaluated and sampled.

In this paper, we will only discuss isotropic surface scattering lay-
ers, though volume scattering and anisotropic surface layers can also
be handled using the estimators in [GHZ18], as their sampling strate-
gies can be easily integrated. Extending our new sampling strategies
to improve the handling of such layers is left as future work.

2. Related work

This section gives an overview of related work on layered mod-
els, approximating BSDFs using Gaussian distributions, and joint
sampling of multiple scattering events in path space.
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Table 1: Table of symbols.

η index of refraction
α surface roughness
θ polar angle
φ azimuthal angle
ωi incoming direction
ωo outgoing direction
ψk direction ofd light flow within a layer stack
ψ⊥
k ψk projected onto the unit disc
ψ slope space projection of direction ψ
f (ωi, ωo) BSDF of a combined layer stack
fk BSDF for layer k
Fk directional albedo for layer k
fj0···jn BSDF for a path type that visits layer j0 · · · jn
pk importance sampling function associated with fk
wj0···jn BSDF to probability ratio
gj0 ···jn estimator for fj0···jn
gs, t estimator that samples s BSDFs at a time

and takes t steps from ωi

μ mean of Gaussian distribution
� covariance of Gaussian distribution
V inverse of covariance matrix (precision matrix)
L lower triangular matrix in Choleksy factorization
N (x|μ,�) Gaussian distribution with variable x
M Gaussian mixture
s Gaussian product normalization factor
γi parameters of the ith Gaussian in the mixture
Q quadratic polynomial
b degree one coefficient in Q
c constant in Q

P polynomial coefficients in the pameterization
B(t) Bernstein basis

2.1. Layered models

Several layered models have been proposed to solve particular spe-
cialized layer configurations. For example, the work of [DH96]
focuses on modelling ageing of metals; the method presented by
[Sta01] derives a BSDF model specific for skin; and [WWD*06]
introduced a layered model for leaves.

A variety of general layered models have also been proposed in
the graphics literature. Layerlab [JdJM14] introduced a numerical
framework to accurately synthesize layered structure. Their work
followed the directional basis idea in [Sta01] but extended the prior
work by handling arbitrarily layered materials. Zeltner et al. [ZJ18]
later extended Layerlab to handle anisotropic materials. However,
both works [JdJM14, ZJ18] require an expensive per-BSDF pre-
computation and as a result are not suitable for spatially varying
materials. Weidlich et al. [WW07] proposed a flexible and simple
layer framework, but this framework does not correctly account
for multiple scattering within the layers. Existing solutions in the
industry [HVL17, KC17] have the same problem due to the approxi-
mations used to simplify light scattering events. Belcour [Bel18] re-
cently presented a real time layering model that makes use of lower-
order moments to approximate the overall BSDF as a sum of GGX
lobes. Figure 2 compares Belcour’s method and our method with the
ground truth, and shows that unlike Belcour’s method, our method
is unbiased. Our Gaussian representation can similarly be viewed as

tracking low-order moments but Belcour’s statistics are specialized
to GGX distributions, which do not provide easy sampling of prod-
ucts. Moreover, Belcour’s method does not provide direct mapping
between variance and roughness but only a transformation on rough-
ness where multiple bounces behave linearly. So, his GGX special-
ized statistics cannot convert to Gaussians. Since our product sam-
pling requires direct access to the parameters, we need to construct
another parameterization. Very recently, Bati et al. [BPB19] con-
ducted a numerical evaluation of two variants of Belcour’s method
and two variants of Weidlich and Wilkie’s model on layered mate-
rials, and they analysed approximation errors in more detail.

Our approach is most similar to that of [GHZ18], which we will
refer as Guo’s bidirectional method. Both our approach and their
approach perform Monte Carlo estimation on the light scattering
integral, and both achieve a significant speed-up compared to for-
ward path tracing the layer stack (Figure 5). Guo’s bidirectional
method samples each layer BSDF, while our method allows the in-
fluence of multiple BSDFs to be considered simultaneously during
sampling. This is accomplished by constructing local Gaussian ap-
proximations for the BSDFs, and reduces the sampling noise thereby
improving the Monte Carlo efficiency.

2.2. Representing BSDFs with Gaussians

Since Gaussians and Gaussian mixtures are efficient to generate
samples from, flexible in fitting and representing distributions via the
expectation−maximization algorithm, and convenient in calculating
products, they have been proven to be useful in rendering. For
example, they have been used for rendering hair [MJC*03], specular
microstructure [YHMR16, YHW*18] and caustic design [PJJ*11].

Different domains have been adopted for fitting Gaussian dis-
tributions. LEAN mapping [OB10, HKL14] and LEADR mapping
[DHI*13] both represent BSDFs as bivariate Gaussians in the sur-
face slope domain and develop real-time filtering techniques for
bump maps, normal maps and displacement maps. Vorba et al.
[VKv*14] proposed an online learning procedure that trains pro-
gressively from particles to handle scenes with complex lighting.
Their method involves fitting Gaussian distributions in a projected
unit square domain with area preserving mapping of [SC97]. An al-
ternative is to use a disc mapping [HEV*16, HES*18]. Our method
is similar to [HES*18] in the sense that we both define the Gaussian
parameters as smooth functions of BSDF parameters. However, our
method is different in that each 2D BSDF slice is represented using
a bivariate Gaussian in outgoing direction slope domain. Compared
to the other spaces used above, this domain is unbounded so that
it avoids potential error in the Gaussian fitting introduced by the
boundary, while it remains convenient to take the product of two
fitted Gaussians. Also, we express Gaussian parameters as functions
of multi-dimensional polynomials and rational functions instead of
B-splines. Like [JRJ11, VKv*14, HEV*16, HES*18], we adopt
fitted Gaussian distributions for importance sampling.

In addition, spherical Gaussians have also been adopted to solve
various rendering problems. For example, Tsai and Shih [TS06]
presented a precomputed radiance transfer method using spherical
radial basis functions (SRBFs) and for real-time rendering un-
der high-frequency lighting environments. Iwasaki et al. [IFDN12]
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Figure 2: A double layer sphere comparison shows that Belcour’s
is an approximation to the ground truth, while our method converges
exactly to the ground truth.

improved the previous method by introducing the integral spherical
Gaussian and reducing the need for precomputed data. Anisotropic
spherical Gaussians [XSD*13] have also been used to more
faithfully represent anisotropic lightings and BRDFs. Xu et al.
[XMR*11] derived a compact 1D circular Gaussian representation
for hair scattering and enables closed-form integration with SRBF
lights at run time. Spherical Gaussians would be an alternative to
our slope-space Gaussians, but our slope-space approach is a natu-
ral choice for layered surfaces because it is limited naturally to the
hemisphere and stretches out the angles near grazing in a way that
makes the functions easier to fit.

2.3. Importance sampling products of functions

Our pair-product and multiple-product strategies are able to gener-
ate samples according to the product of two or more BSDFs. This
idea of joint sampling scattering events also appears in a somewhat
different setting in [HEV*16, GKH*13]. Gaussian mixtures are used
to represent the illumination and the reflectance factors and perform
product importance sampling in [HEV*16]. However, their work
requires per-material preprocessing. Georgiev et al. [GKH*13] pro-
posed a joint path importance sampling method to efficiently render
participating media. Their method constructs paths that account
for the product of anisotropic phase functions and geometric terms
across sequences of path vertices. They derive analytic expressions
for isotropic scattering and tabulate conditional probability density
functions (PDFs) in the joint distribution for importance sampling
anisotropic scattering. For the layering problem, the analytic joint
distribution is not available, and our multi-product method instead
builds a approximation to the joint distribution based on the param-
eterized Gaussian representation.

Some other works have dealt with joint sampling products of func-
tions using wavelets. Clarberg et al. [CJAMJ05] generalize wavelet
products to higher dimensional spaces and apply them to rendering
measured BRDFs in complex distant lighting environments. Sun
and Mukherjee [SM06] extend wavelet products from double/triple
product integrals to general multi-function product integrals. Both
works use the Haar wavelet basis, and the multi-product formulation
relies on a heavy-weight wavelet tree structure. Moreover, the multi-
product generalization [SM06] cannot handle object rotation, which
is not as general as our parameterized Gaussian representation.

3. Background and overview

In this section, we review the path integral and Monte Carlo estima-
tor for the layering problem, explain our motivation for improving

Figure 3: The top row and the bottom row illustrate the front-side
reflection fr (ωi, ωo) and transmission ft (ωi, ωo), respectively. Each
of them is a sum of different components and the first two components
are drawn. Except for f0(ωi, ωo), all the other components are
integrals over the red interior directions ψj .

the previous Monte Carlo layering methods and give an outline
of the paper. Please refer to Table 1 for the notation used in this
section.

3.1. Path integral and Monte Carlo estimator

Define single layer BSDF as fk , where layer index k starts from 0.
Our job is to compute the total BSDF of the layer stack, denoted as
f . This BSDF is a sum over all possible paths by which light arriving
from direction ωi can travel through the layers and eventually exit
in direction ωo. We use fj0···jn to denote the BSDF for a particular
path type of length n that visits layer j0 · · · jn sequentially. For ex-
ample, for a single-layer material, f = f0; for a two-layer material,
the front-side reflection fr and transmission ft components of the
material’s BSDF can be written as:

fr (ωi, ωo) = f0(ωi, ωo) + f010(ωi, ωo) + f01010(ωi, ωo) + · · · (1)

ft (ωi, ωo) = f01(ωi, ωo) + f0101(ωi, ωo) + · · · (2)

The back-side reflection and transmission from the back side to the
front side are similar. The key problem in rendering layered sur-
faces is to compute multi-index f’s. For contributions other than
f0, there are many possible paths joining ωi to ωo, which can be
described by the path’s directions inside the layer stack, denoted
as ψk . These interior directions start with index 1 and point in the
direction of light flow. For a path of length n, we further define
the convention that ψ0 = −ωi and ψn+1 = ωo. Figure 3 illustrates
these concepts in the context of a two-layer material. We use the
same position-free formulation as Guo [GHZ18], where the hori-
zontal positions do not matter; only the vertical depth and directions
are relevant to the light transport integral. With the position-free
assumption, contribution to the BSDF due to a path type with more
than one interaction can be computed by integrating over interior
directions:

fj0···jn (ψ0, ψn+1)

=
∫

· · ·
∫
fj0 (−ψ0, ψ1) · · · fjn (−ψn,ψn+1) dψ⊥

1 · · · dψ⊥
n . (3)
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In the above integral, f0, . . . , fn denote individual layer BS-
DFs in a layer stack. dψ⊥

k is the projected solid angle measure
with respect to ψk (so dψ⊥

k = | cosψk| dψk) and the integrals
are over the corresponding hemispheres. In this paper, we will
consistently use projected solid angle measures for the integrals
and probabilities to avoid cluttering the equations with cosine
terms. We will also assume basic radiance conventions [Vea97] to
avoid writing the index of refraction terms with each transmission
event.

Following [GHZ18], we use Monte Carlo integration to estimate
these integrals. In the general case, to estimate a length n component
fj0···jn (ωi, ωo), we generate n internal directions ψ1 · · ·ψn and the
corresponding estimator is:

gj0···jn (ψ1, . . . , ψn|ωi, ωo) = fj0 (ωi, ψ1) · · · fjn (−ψn, ωo)
p(ψ1, . . . , ψn|ωi, ωo) , (4)

where p(ψ1, . . . , ψn|ωi, ωo) is the (joint) probability of generating
the internal directions with the chosen strategy. Choosing the distri-
bution p is the key element of defining an algorithm to evaluate the
BSDF of the multilayer surface. Ideally, one wants this probability
to match the numerator as closely as possible so the estimator will
have low variance. Section 4 will discuss strategies to sample these
interior directions.

3.2. Motivation

Existing Monte Carlo layering approaches all use given impor-
tance sampling functions of individual layers sequentially to gen-
erate the inner directions. In other words, in the previous work,
p(ψ1, . . . , ψn|ωi, ωo) in Equation (4) is always a product of single-
layer importance sampling functions. The problem with this ap-
proach is that the joint probability distribution can account for at
most n of the n+ 1 BSDFs, leaving one extra BSDF in the numer-
ator, and this can introduce high variance. Ideally, we would like
to have a joint distribution that is exactly proportional to the whole
BSDF chain, but we do not have a closed form solution to this
high-dimensional function. Therefore, we turn to combining lower
dimensional local approximations to construct high-dimensional
PDFs that better importance sample the whole BSDF chain. To
this end, we propose pair-product sampling and multiple-product
sampling. Pair-product sampling generates one of the inner direc-
tions using a distribution that accounts for a pair of BSDFs of the
adjacent layers. Multiple-product sampling, on the other hand, gen-
erates several inner directions for a particular path type at once us-
ing a distribution that accounts for a chain of three or more BSDFs.
Both methods introduce new sampling distributions that account
for all the BSDF terms in Equation (4), so they can reduce variance
compared to the previous Monte Carlo approaches. Although Guo
et al.’s bidirectional method performs multiple importance sampling
(MIS) on multiple estimators gj0···jn , there are cases where none of
the estimators have low variance.

3.3. Paper overview

Section 4 discusses four sampling strategies: forward sampling,
Guo’s bidirectional [GHZ18], our pair-product sampling and our
multiple-product sampling, in detail. Sections 5 and 6 describe

the details of the specific methods we use to sample products of
two or more BSDFs. They are based on approximating the indi-
vidual BSDFs by parameterized bivariate Gaussian mixtures in a
one-time preprocess. These separate approximations are then com-
bined into bi- or multivariate distributions that can be sampled
exactly.

Section 7 provides implementation details and Section 8 contains
the rendering results including texturing examples and equal-time
comparisons of Guo et al.’s method to ours in different scenar-
ios. Section 9 discusses limitations and potential extensions of the
current work and concludes the paper.

4. Layer BSDF evaluation

Our work addresses the local problem of integrating over light paths
within a layered material, producing a BSDF that is then used in
the global problem of tracking light flow between surfaces in the
scene. Although both the local and the global problem are expressed
as path integrals and bidirectional methods can be used for either,
we treat the two problems separately. While we will focus mainly
on techniques to evaluate the BSDF of the combined layer stack,
later we will also discuss how to sample its BSDF and provide
heuristic weights for combining BSDF and light sampling in the
global integrator. First, we will discuss the two strategies based on
path tracing and bidirectional path tracing. Then, we will describe
the two new strategies proposed in this paper: pair-product sampling
and multi-product sampling.

These sampling strategies to evaluate layered BSDFs all assume
that each layer’s BSDF fj comes with an associated importance
sampling distribution pj . For example, given ψ , importance sam-
pling can generate ψ ′ with a probability pj (ψ ′|ψ) that closely
matches the BSDF fj (ψ,ψ ′). Define the ratio of BSDF to prob-
ability be

wj (ψ,ψ
′) = fj (ψ,ψ ′)

pj (ψ ′|ψ)
. (5)

A good importance sampling function should have a nearly constant
ratio

wj (ψ,ψ
′) ≈

∫
fj (ψ,ω) dω⊥. (6)

Let Fj (ψ) = ∫
fj (ψ,ω) dω⊥. In this paper, we assume all BSDFs

are reciprocal, so that the same probability distribution serves for
sampling the outgoing direction given the incoming direction or
vice versa, but in implementation it is often useful to keep the two
cases separate.

4.1. Forward sampling

Forward sampling, Figure 4(a), is a simple but not especially ef-
fective strategy for sampling the interior directions in a layered
material. The ψs are chosen sequentially in order, each sampled
from one layer’s BSDF conditioned on the previous. For instance, if
we apply this method to calculate f010(ωi, ωo), p will be the product
of p0 and p1 and specializing 4 we obtain:
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Figure 4: Sampling strategy illustration for the f010 component.
(a) The forward sampling strategy generates the inner directions by
forward sampling using the given importance sampling functions
of single layer BSDFs, connecting at a point that lies on the same
layer with the outgoing direction. (b) Guo et al.’s bidirectional
method performs MIS on three different connecting strategies, each
of them connecting at a point where two subpaths meet at the same
layer. (c) Pair-product sampling performs MIS on two connecting
strategies; each of them generates one inner direction using the
given importance sampling function and then connects a segment
with either the incoming or the outgoing direction. This connecting
segment is chosen by sampling from a Gaussian distribution that
approximates the product of the BTDF of the top layer and the BRDF
of the bottom layer. (d) Multiple-product sampling connects directly
through multiple segments; this connection is made by sampling
from a multivariate Gaussian distribution that approximates the
product of the full BSDF chain in the integrand of f010.

g010(ψ1, ψ2|ωi, ωo) = f0(ωi, ψ1)f1(−ψ1, ψ2)f0(−ψ2, ωo)

p0(ψ1|ωi)p1(ψ2| − ψ1)
(7)

= w0(ωi, ψ1)w1(−ψ1, ψ2)f0(−ψ2, ωo) (8)

≈ F0(ωi)F1(−ψ1)f0(−ψ2, ωo). (9)

This brute force method can have slow convergence because each
sampled direction takes into account only one BSDF and incident
direction. When the top layer roughness is small, f0(−ψ2, ωo) can
introduce large variance.

4.2. Guo’s bidirectional method

A more robust alternative to forward sampling is Guo et al.’s bidirec-
tional method. Their method makes use of a collection of sequential
sampling strategies similar to forward sampling, but which choose
the inner directions in different sequences. For instance, for the f010

component, with two interior directions ψ1 and ψ2 to be sampled,
there are three strategies (Figure 4b):

0. Choose ψ2 ∼ p0(−ψ2|ωo), then ψ1 ∼ p1(−ψ1|ψ2);
1. Choose ψ1 ∼ p0(ψ1|ωi) and ψ2 ∼ p0(−ψ2|ωo); or
2. Choose ψ1 ∼ p0(ψ1|ωi), then ψ2 ∼ p1(ψ2| − ψ1).

Figure 5: Equal-time comparison of four strategies: (a) forward
sampling, (b) Guo’s bidirectional, (c) pair-product sampling and
(d) multiple-product sampling. The scene contains a double layer
sphere with top layer roughness 0.3 and bottom layer roughness
0.1. We render up to the f010 component for this test. The pair-
product sampling obtains 5.4x and 1.8x reduction in RMSE com-
pared to the forward sampling and the bidirectional, respectively.
These correspond to 29.2x and 3.2x reduction in render time. The
multiple-product sampling obtains 8.2x and 2.8x reduction in RMSE
compared to the forward sampling and the bidirectional method,
corresponding to 67.2x and 7.8x reduction in render time.

Option (2) is the same as forward sampling. In general, when there
are n interior directions to be generated, the mth strategy chooses
ψ1, . . . , ψm sequentially starting from the incident direction and
ψn, . . . , ψm+1 sequentially starting from the outgoing direction.

Any of these sampling strategies can be used as an importance
sampling distribution for the reflection integral, leading to estima-
tors that are similar to the estimator for forward path tracing, but
with different layer BSDFs left in the estimator. For instance, the
three sampling strategies for the f010(ωi, ωo) component lead to the
estimators

g
1,0
010(ψ1, ψ2|ωi, ωo) = f0(ωi, ψ1)w1(−ψ1, ψ2)w0(−ψ2, ωo),

(10)

g
1,1
010(ψ1, ψ2|ωi, ωo) = w0(ωi, ψ1) f1(−ψ1, ψ2)w0(−ψ2, ωo),

(11)

g
1,2
010(ψ1, ψ2|ωi, ωo) = w0(ωi, ψ1)w1(−ψ1, ψ2) f0(−ψ2, ωo),

(12)

where gs,t means the estimator samples s BSDFs at a time and takes
t steps fromωi and here s = 1. Each individual estimator has the po-
tential for high variance due to the unsampled layer BSDF. [GHZ18]
relies on the robustness of the bidirectional method [VG95] to mul-
tiple importance sample these estimators and this works well as long
as there is at least one good connecting strategy for each path type.
But it is entirely possible that all of the individual estimators are
poor and Guo’s bidirectional method will still exhibit high variance.
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4.3. Pair-product sampling

The first of our new sampling strategies, pair-product sampling,
solves this problem by using importance sampling distributions
based on the product of two adjacent layers’ BSDFs. For exam-
ple, for layers j and k, we would like to have a pair sampling
distribution pjk(ψ |ω,ω′) with the ratio wjk

wjk(ω,ψ,ω
′) = fj (ω,ψ) fk(−ψ,ω′)

pjk(ψ |ω,ω′)
(13)

closely matching the normalization factor

wjk(ω,ψ,ω
′) ≈

∫
fj (ω,ψ) fk(−ψ,ω′) dψ⊥ = fjk(ω,ω

′).

To construct a path using pair-product sampling, we use sequential
sampling for m steps from ωi and n−m− 1 steps from ωo, then
chooseψm+1 from a product sampling distribution. In this way, there
are no individual BSDFs left in the estimator. For example, for the
f010 case (n = 2), there are two pair-product strategies, illustrated
in Figure 4(c):

0. Choose ψ2 ∼ p0(−ψ2|ωo), then choose ψ1 ∼ p01(ψ1|ωi, ψ2);
1. Choose ψ1 ∼ p0(ψ1|ωi), then choose ψ2 ∼ p10(ψ2| − ψ1, ωo).

The resulting estimators for the two strategies are:

g
2,0
010(ψ1, ψ2|ωi, ωo) = w01(ωi, ψ2)w0(ωo) ≈ f01(ωi, ψ2)w0(ωo),

g
2,1
010(ψ1, ψ2|ωi, ωo) = w0(ωi)w10(−ψ1, ωo)

≈ w0(ωi)f10(−ψ1, ωo). (14)

Approximately, only the normalization factors from the sampling
probabilities remain in the estimators. Thus, the pair-product estima-
tor effectively combines a pair of BSDFs, replacing the variance of
sampling the individual BSDFs with the variance of sampling their
combination, which is smoother. In many cases, this new strategy
significantly decreases noise where the material does not include
a diffusive layer to provide a low-variance place for the sequential
strategies to connect the incoming and outgoing subpaths. To ensure
robustness, we MIS all the pair-product sampling estimators, e.g.
MIS g2,0

010 and g2,1
010 when computing f010(ωi, ωo). This pair-product

sampling strategy relies on an importance sampling distribution for
individual layers that makes it efficient to compute products. Our
parameterized Gaussian representation, described in Section 5, pro-
vides this.

4.4. Multiple-product sampling

Although pair-product sampling improves on the performance of
sequential sampling, it does not solve the problem completely. It
removes the unsampled BSDF that is left in the estimator by the
sequential strategies, but it replaces that BSDF with the normal-
ization factor fjk . Even if the pair-product sampling procedure has
low variance with respect to the direction it is choosing, the nor-
malization factor fjk is still a function of other, previously chosen,
random directions in the path. This dependence can produce high
variance. For example, f01(ωi, ψ2) in g2,0

010(ψ1, ψ2) of Equation (14)

can introduce large variance if its value changes rapidly w.r.t. ψ2.
The normalization factor can be recognized as the composition of
two adjacent BSDFs along the path, which means that in essence
the pair-product strategy is simply the sequential strategy applied to
a path one event shorter.

Our second new sampling strategy takes this idea farther, con-
structing sampling distributions for the product of s sequential BS-
DFs rather than just two; an example for s = 3 is:

pjk
(ψa,ψb|ω,ω′) = fj (ω,ψa)fk(−ψa,ψb)f
(−ψb, ω′),
wjk
(ω,ψa, ψb, ω′)

(15)

where

wjk
(ω,ψa, ψb, ω
′) ≈ fjk
(ω,ω

′)

=
∫ ∫

fj (ω,ψa)fk(−ψa,ψb)f
(−ψb, ω′)dψ⊥
a dψ

⊥
b .

With the ability to sample a pair of directions from a product of
three BSDFs, we can construct paths by sampling m directions
starting from ωi and n−m− 2 directions starting from ωo, then
jointly choosing the remaining two from the pjk
 distribution. The
resulting estimator has one fewer term; for instance, the estimator
for f010(ωi, ωo) is simply:

g
3,0
010(ψ1, ψ2|ωi, ωo) = w010(ωi, ψ1, ψ2, ωo) ≈ f010(ωi, ωo).

In this case, the entire path is being sampled in a single opera-
tion, and an ideal importance sampling distribution would lead to
a zero-variance estimator. Although in general it is impossible to
compute f010(ωi, ωo), replacing the chain in the estimator by a single
sampling weightw010(ωi, ψ1, ψ2, ωo) ≈ f010(ωi, ωo) that has lower
variance than the original terms can further reduce variance.

The same approach can be taken to arbitrarily long subpaths, but
in practice as the paths get longer the approximations get poorer,
eventually leading to estimators that do not outperform the simpler
ones. In the present paper, we only demonstrate sampling products
of up to three BSDFs by sampling the first length-three component
using multiple-product sampling. This method almost always out-
performs the other strategies on three-vertex components, such as
the f010(ωi, ωo) component. We discuss future improvements of the
longer paths in Section 8.

5. Layer sampling algorithms

In this section, we describe the sampling scheme for the pair-product
and multi-product sampling strategies described in the previous
section. They rely on an approximate representation of BSDFs in
terms of Gaussians. The details of the fitting will be discussed in
Section 6.

5.1. Gaussian representation

The core idea of this paper is that the simplicity of the layer
reflection integral in the plane-parallel setting allows us to take
better advantage of the structure of the integrand than is possible
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Figure 6: Given an incoming direction, the 2D BSDF slice is ap-
proximated using a bivariate Gaussian in the outgoing direction’s
slope domain, which essentially projects the outgoing direction onto
the plane z = 1. In this domain, the Microfacet model with the Beck-
mann distribution can be well fitted using a single Gaussian.

in general scenes. The mechanism by which we express this struc-
ture is approximating BSDFs with Gaussian distributions and sums
of Gaussians.

Motivation for the representation. Given two layer BSDFs fj
and fk , pair-product sampling requires working with an expression
of the form:

fj (ω,ψ) fk(−ψ,ω′),

with ω and ω′ fixed. This can be seen as a product of two functions
of ψ that are slices of fj and fk with one argument fixed. To
efficiently sample this product, we would like to represent the 2D
BSDF functions fj (ω, ·) and fk(·, ω′) using a type of distribution
that is easy to sample from, is preserved under multiplication and fits
various BSDFs well. With these considerations, we chose bivariate
Gaussian mixtures to approximate these BSDFs. fj (ω, ·) is written
as:

fj (ω,ψ) ≈
n∑
i=1

Nj,i(ψ ; γj,i(η, α, ω)), (16)

where γj,i(η, α, ω) is represented as an explicit function of index
of refraction η, roughness α and incident direction ω. γj,i(η, α, ω)
is a vector of parameters for the ith Gaussian, which includes its
mean, covariance and mixture weight. ψ is the slope space projec-
tion of ψ—that is, a 2D vector with coordinates (ψx/ψz, ψy/ψz)
(Figure 6). We selected slope space for the domain of this represen-
tation because it makes common BSDFs easy to fit: a Microfacet
model with Beckmann slope distribution can be well approximated
using a single Gaussian, and with the GGX slope distribution can
be well approximated using two Gaussians.

Gaussian multiplication and sampling. The product of two Gaus-
sian mixtures is a new Gaussian mixture (see Appendix A). So, the
product can be evaluated and sampled efficiently, which is what is
needed for our product sampling. Ease of sampling is a key motiva-
tion for choosing to use Gaussians. A Gaussian with known mean
and covariance can be sampled using the Box–Muller transform
[BM58].

Figure 7: The top row shows a 2D BTDF slice, a 2D BRDF slice and
their product, all using the slope domain for the outgoing direction.
The bottom row shows the two corresponding slices of the parame-
terized Gaussian fitting and their product. Note that the product of
the two BSDFs can be approximated much better by the product of
the two Gaussians than it is by either of the individual BSDFs. The
single Gaussian in this case does not fit the BRDF slice very well
compared to the BTDF slice fitting because this BRDF slice has
stronger asymmetry, while Gaussian is symmetric. In practice, the
product distribution is close enough to be a very useful sampling
distribution.

5.2. Pair-product sampling

The pair-product sampling operation requires importance sampling
a product of two layer BSDFs with an approximation of the distri-
bution in Equation (13). Given Gaussian fits for the two BRDFs, we
can compute samples by forming the product of the Gaussian ap-
proximations, then sampling it. This results in a three-step process
to sample pjk(ω,ω′):

� Using the fitted model, compute the parameters γj,i for i =
1, . . . , nj and γk,i for i = 1, . . . , nk of the nj and nk Gaussians
that approximate fj (ω, ·) and fk(·, ω′).

� Using Equations (A.1) through (A.4), compute the parameters
γjk,i for i = 1, . . . , njnk for the njnk Gaussians in the product
of the two mixture models.

� Generate a sample ψ from the product mixture, and convert it
from slope space to a direction vector ψ .

� The probability of the sample ψ in the unit hemisphere space
can be calculated using its probability in slope space multiplied
with the Jacobian 1/|ψz|3.

Because this method explicitly computes the probability distri-
bution it is sampling, the PDF of the generated sample is easily
computed, and it is also easy to answer queries about the PDF of
generating a particular direction. The cost of this operation rises
with the product of the two model sizes, but we typically use very
small mixtures with n = 1 or 2. The overhead cost is low com-
pared to the stochastic layer BSDF evaluation, as shown in the
results.
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5.3. Multiple-product sampling

Instead of sampling one direction from a Gaussian that approxi-
mates a BSDF pair, we can leverage the same representation to
generate multiple directions at once, thereby including more of the
integrand in the sampling distribution. We will first describe the
most useful version of this method, which samples two directions
from a product of three BSDFs (Equation (15)) in the case of single-
component Gaussians.

Our approach to this problem mirrors the pair-product sampling
method in that we construct a Gaussian model and then sample
from it, but in this case we construct a 4D Gaussian model and
sample two directions jointly in a single operation. We build the
high-dimensional Gaussian based on the same parameterized 2D
Gaussian distribution that we use for pair-product sampling. There
are two steps. The first step is to build a local 4D approximation to
the middle BSDF function fk(ψa,ψb) around a chosen expansion
point. Then, the second step is to chain this local approximation
together with the two 2D Gaussians that are the approximations to
fj (ω, ·) and f
(·, ω′), for the fixed directions ω and ω′, to get the
final Gaussian distribution.

4D BSDF approximation. Our parameterized representation can
be viewed as a function that maps from a pair of directions to ap-
proximated BSDF values (�×�′ �→ R). Given index of refraction
η and roughness α, γk,i(η, α, ω) maps from an incident direction
ψa on a layer to the parameters of a 2D Gaussian approximation of
fk(ψa, ·). Evaluating the resulting Gaussian for a particular exitant
directionψb gives an approximation of the layer’s BSDF fk(ψa,ψb).
This 4D function is not a Gaussian, though, because the mapping
from incident direction to 2D Gaussian is polynomial based.

We can construct a 4D Gaussian that approximates the 4D BSDF
using the parameterized fit. We compute the first and second deriva-
tives of the parameterized fit, evaluated at the chosen expansion
point and then construct a 4D function of the appropriate form that
matches these derivatives (see Appendix B).

Building the sampling distribution. The desired distribution is an
approximation to the product fjfkf
, which we construct in three
steps:

1. Construct the Gaussians Nj ≈ fj (ω, ·) and N
 ≈ f
(·, ω′).
2. Let ψ∗

a and ψ∗
b be the means (maxima) of Nj and N
, respec-

tively, and compute the 4D Gaussian Nk that approximates fk
around (ψ∗

a , ψ
∗
b ).

3. Compute the parameters of the 4D Gaussian

N4(ψa,ψb) = 1

s
Nj (ψa)Nk(ψa,ψb)N
(ψb),

where s is the normalization factor.
4. Modify the negative eigenvalues of the precision matrix of N4

to a small positive number ε if it is not positive definite.

In this section, we have described how to conduct pair-product
sampling and multiple-product sampling based on a parameterized
Gaussian representation, in order to reduce variance in stochastic
layer BSDF evaluation. These methods depend upon parameterized
Gaussian models, the construction of which we describe next.

6. Fitting the Gaussian model to BSDFs

This section will describe the Gaussian representation and fitting in
detail. The methods of Section 5 are based on an approximation of a
BSDF in terms of a Gaussian mixture that depends on several vari-
ables. In this section, we provide the details of this approximation
and how it is computed. Note that the precomputed representation
encompasses all possible parameter values for a given BSDF model,
so fitting is a one-time, scene-independent precomputation that only
needs to be done once for a given BSDF model.

Algorithm 1. Parameterized 2D fitting

Representation. Consider an isotropic BSDF for a surface with
index of refraction η and roughness α. Let θ be the polar angle of
the incident direction. To incorporate the material properties along
with the incident direction into the fitted representation, we want to
find a mapping

γ : {η} × {α} × {θ} �→ M,

where M is a bivariate Gaussian mixture. In other words, the bivari-
ate Gaussian parameters: meanμ, covariance� and mixture weight
q are represented as explicit functions of the index of refraction, η,
roughness α and incident polar angle θ . For brevity, we omit the
subscripts of γ and M.

There are many ways to construct this parameterization. However,
we would like a compact parameterization that ensures symmetric
positive definiteness (SPD) of the Gaussian covariance. Based on
these considerations, we write the precison matrix of the Gaussian
using its Cholesky decomposition:

V = LLT . (17)

Instead of directly parameterizing the entries of�, we parameterize
the entries of L. By constraining the diagonal entries of L to be
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Figure 8: A double layer teapot scene rendered using Guo et al.’s bidirectional (top row), our pair-product sampling (middle row) and our
multiple-product sampling (bottom row). We rendered global illumination and the full path length through the layer stack. The green box
shows the zoom area. The red box is used to calculate RMSE. Compared to Guo’s bidirectional, the pair- product sampling obtains on average
1.3x reduction in RMSE, which corresponds to 1.7x reduction in render time; the multiple-product sampling obtains on average 1.4x reduction
in RMSE, which corresponds to 2.0x reduction in render time.

Figure 9: A triple layer teapot scene rendered using Guo et al.’s bidirectional (top row) and our pair-product sampling (bottom row). We
rendered global illumination and the full path length through the layer stack. The green box shows the zoom area. The red box is used to
calculate RMSE. The pair-product sampling obtains on average 1.2x reduction in RMSE, which corresponds to 1.4x reduction in render time.

positive, we ensure that the precision matrix V , and therefore the
covariance that is its inverse, is SPD because for any x ∈ R

2,

xT V x = xT LLT x > 0.

To constrain the diagonal entries of L to be positive, we use a
Bézier curve to express L and constrain the control points of the
curve to be positive. Each component of μ and L is represented
using a multidimensional polynomial. Let I, J, K be the orders in
η, α and θ , respectively, and BK

k (θ ) be the kth degree-K Bernstein

polynomal evaluated at θ . The entries of μ and L are represented
as:

μx =
K∑
k=0

J∑
j=0

I∑
i=0

Pxijk η
iαj θk, (18)

L11 =
K∑
k=0

BK
k (θ )∑J

j=0

∑I

i=0 Pl11 ijk η
iαj

. (19)

μy is represented similarly to μx , and L21 and L22 are repre-
sented similarly to L11. To sum up, we need (K+1)(J+1)(I+1)
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coefficients to represent each entry and there are five entries
(μx, μy, L11, L21, L22). So, we need 5(K+1)(J+1)(I+1) numbers
in total.

In practice, we split the fitting into cases by reflection or refrac-
tion, and by low roughness or high roughness. For reflection, we
observe that leaving out the Fresnel term does not have much influ-
ence on the final result and it saves us one dimension in the fitting
because it is independent of IOR. For low roughness, we observe
that a small fitting error in the mean would introduce a lot more
variance in the samples compared to higher roughness. Thus, we
adopt a modified representation and fitting scheme for roughness
less than 0.1. For these cases, the specular direction serves as a
quite accurate prediction of the mean. The specular direction con-
verted to outgoing slope domain is denoted using μ∗ and we let the
mean of Gaussian be μ = μ∗. L is represented the same as in (19).
Note that the fitting discontinuity at 0.1 does not cause a problem
in Monte Carlo estimation since we only use the fitted distribution
for sampling.

Fitting algorithm. Algorithm 1 implements the parameterized 2D
fitting method that outputs a parameterized representation of BSDF
with respect to material properties and incident direction. This algo-
rithm requires only the ability to evaluate the target BSDF function.
We first collect information from the given BSDF for fitting: for a
set of parameters {η, α, θ}, we evaluate BSDF values on a regular
grid. As we mentioned previously, we split the fitting into cases
by roughness.

When roughness is greater or equal to 0.1, we generate points by
assuming that BSDF value is constant over each grid cell. Then, we
solve a nonlinear optimization problem for the coefficients of the
polynomials. The loss function is defined as minus the sum of log
probability of the fitted Gaussian mixture generating the collected
points:

L1 = −
∑
η

∑
α

∑
θ

∑
m

ln (M ( x = xm |μθαη, �θαη ) ), (20)

where we discretized the range of index of refraction, roughness
and incident angle and η, α and θ are the discretization values; m is
the index of the generated points.

When roughness is less than 0.1, we calculate the covariance
matrix of each BSDF using numerical integration and compute the
desired Cholesky factorization Lijk of the precision matrix. Then,
we solve another nonlinear optimization problem with the loss func-
tion defined as the sum of Frobenius norm of the difference L
matrix:

L2 =
∑
η

∑
α

∑
θ

‖Lθαη − Lθαη‖F . (21)

To solve the nonlinear optimization problems, we use sequential
least squares programming [Kra88]. In terms of initialization, we
use parameterized fitting of a partial set of the variables to acceler-
ate convergence.

Fitting performance. In practice, the representation is compact.
For example, second- or third-order polynomials and one Gaussian

per slice are good enough for fitting Microfacet Beckmann. A com-
plete fitting to Microfacet Beckmann has 18–135 coefficients for
each case. The total running time of the fitting is about 23 min.
Although this preprocessing time seems long, the precomputation
only needs to be conducted once for one kind of BSDF model and
it is independent of scene and material properties. This makes our
work much more practical in handling textured materials compared
to [JRJ11]. Figure 7 visualizes the fitting. The top row shows a 2D
BTDF slice, a 2D BRDF slice and their product. The bottom row
shows the two corresponding slices of the parameterized Gaussian
fitting and their product.

7. Implementation

We implemented our layered BSDF model in the PBRT frame-
work. We mainly focus on layered BSDF evaluation in the pre-
vious sections. The global integrator also requires the ability to
sampling the BSDF (i.e. generate one argument direction given
the other) and to estimate the probability of this sampling. For
these operations, we adopt the sampling and sample probability
estimation methods from [GHZ18], which we summarize here for
completeness.

BSDF sampling. Given incoming direction ωi , we perform for-
ward path tracing inside the layer stack until the path exits the layer
stack with some outgoing direction ωo. Assume this particular path
through the layer stack contains directions ψ0, . . . , ψn+1, where
ψ0 = −ωi and ψn+1 = ωo. The nth corresponding weight for this
sample is:

w(ψ0, . . . , ψn+1) =
∏n

k=0 fjk (−ψk,ψk+1)∏n

k=0 p(ψk+1| − ψk)
. (22)

PDF estimation. To estimate p(ωo|ωi), we would ideally calculate
the following:

p(ωo|ωi) =
∑
�

∫
· · ·

∫
p(ψ1|ωi) · · ·p(ωo|ψn) dψ⊥

1 · · · dψ⊥
n ,

(23)

where� is the space of all path types. However, except for the single
layer PDF, usually these integrals have no closed form solution. PDF
estimation is typically only used to compute multiple-importance
heuristic weights for combining BSDF and light sampling. Thus, for
this purpose, we can return Monte Carlo estimates of this integral
without introducing bias, as long as they are statistically independent
of our BSDF estimates. Please refer to the Supplementary Material
of [GHZ18] for the proof. Since this integral is very similar to the
integral we are estimating for BSDF evaluation, the same meth-
ods can be used to estimate it. As suggested by Guo et al., often
these PDF estimates have lower accuracy requirements and can be
estimated more approximately to reduce costs.

8. Results

In this section, we demonstrate the effectiveness and efficiency
of our new sampling strategy on layered materials with various
combinations of parameters. All renderings are generated using a
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Figure 10: This scene contains a double transmissive layer material (the framed area) with textured albedo and roughness. The scene is
rendered using Guo et al.’s bidirectional (top row) and our pair-product sampling (bottom row). We rendered global illumination and the full
path length through the layer stack. The red box shows the zoom area and is also used to calculate RMSE. The pair-product sampling obtains
1.8x to 5.0x reduction in RMSE, which corresponds to 3.2x to 25.0x reduction in render time.

Figure 11: A double textured layer car scene rendered using our
pair-product sampling strategy. The top layer uses procedural noise
to texture the roughness, and the bottom layer uses image maps
to texture albedo and roughness. We rendered global illumination
and the full path length through the layer stack with 1024 spp. The
running time is 46 min.

C++ implementation in the PBRT framework [PJH16] on an 8 core
i7-6700K machine. The timings are reported using wall-clock time.
For our performance analysis, we compute the per-pixel root mean
square error (RMSE) across four renders of a specific patch of the
image, with respect to a reference image, then take the mean over all
the pixels in the patch. We compute RMSE reduction by calculating

the ratio of RMSE of Guo et al.’s bidirectional method to our meth-
ods. Since Monte Carlo integration converges at a rate of O(

√
N )

withN being the number of samples, we also report effective render
time reduction as the square of RMSE reduction.

Reflective layer. Figure 5 compares forward sampling, Guo’s bidi-
rectional, our pair-product and our multiple-product on a double
layer sphere scene, rendered with global illumination and up to
the f010 component. The pair-product sampling obtains 5.4x and
1.8x reduction in RMSE compared to the forward sampling and the
bidirectional, respectively. These correspond to 29.2x and 3.2x re-
duction in render time. The multiple-product sampling obtains 8.2x
and 2.8x reduction in RMSE compared to the forward sampling and
the bidirectional method, corresponding to 67.2x and 7.8x reduction
in render time.

In Figure 8, we show an equal-time comparison of Guo et al.’s
bidirectional method, our pair-product sampling and our multiple-
product sampling on a double layer teapot scene, with global illumi-
nation and the full path length through the layer stack. We used the
red box to compute RMSE. The pair-product sampling obtains 1.3x
reduction in RMSE compared to Guo’s bidirectional method, which
corresponds to 1.7x reduction in render time; the multiple-product
sampling obtains 1.4x reduction in RMSE compared to the bidirec-
tional method, which corresponds to 2.0x reduction in render time.

Figure 9 compares Guo et al.’s bidirectional method to our
method on a triple-layer reflective material with equal running
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Figure 12: This scene contains a triple transmissive layer material (the framed area) with textured albedo and roughness. The scene is
rendered using Guo et al.’s bidirectional (top row) and our pair-product sampling (bottom row). We rendered global illumination and the full
path length through the layer stack. The red box shows the zoom area and is also used to calculate RMSE. The pair-product sampling obtains
1.5x to 2.9x reduction in RMSE, which corresponds to 2.3x to 8.4x reduction in render time.

time. We rendered global illumination and the full path length
through the layer stack. Similar to the double layer case, we used
the red box to compute RMSE. The pair- product sampling obtains
1.2x reduction in RMSE, which corresponds to 1.4x reduction in
render time. We observe the improvement in this three layer case is
slightly smaller than that in the double layer case. Our pair-product
sampling can be seen as shortening the path through layer stack by
one and replacing a pair of high variance terms in the estimator with
a single lower variance term. We expect this improvement to be less
obvious when the path length is longer.

Transmissive layer. Figure 10 shows an equal time comparison for
transmission through a two-layer material, with global illumination
and the full path length through the layer stack. The lighting is an
environment map with a distant light source behind the framed area.
Both the layers have textured albedo and textured roughness, with
the butterflies having different colour and roughness from the rest
of the surface. We used the red box to compute RMSE and our pair-
product sampling obtains 2.6x to 5.1x reduction in RMSE, which
corresponds to 6.8x to 26.0x reduction in render time.

Figure 12 shows an equal time comparison for triple transmission
with the settings as the double layer case. Our pair-product sampling
obtains 1.5x to 2.9x reduction in RMSE, which corresponds to 2.3x
to 8.4x reduction in render time.

Textured material. Our layer model is able to handle textured
materials. Each layer can have independent albedo, roughness and
index of refraction maps. Figure 11 showcases a double layer ma-

terial to render a car with scratched surface. The top layer uses
procedural noise to texture the roughness, and the bottom layer has
textured albedo and roughness via image maps. We rendered global
illumination and the full path length through the layer stack.

Figure 1 compares Guo’s bidirectional method and our pair-
product sampling method on a scene with reflective layered mate-
rials, transmissive layered materials and textured layered materials.
We rendered direct lighting only to avoid the indirect illumination
noise that is unrelated to the layered BSDF evaluation. We report
RMSE of each coloured box. Our method reduces RMSE by 1.6x to
3.3x on the coloured boxes, corresponding to 2.6x to 10.9x reduction
in time.

9. Conclusion and future work

In this paper, we improved the previous Monte Carlo layer ap-
proaches by introducing two new more efficient sampling strate-
gies for stochastic layer BSDF evaluation. The two strategies are
pair-product sampling and multiple-product sampling. Pair-product
sampling importance samples the product of two adjacent layers’
BSDFs. Multiple-product sampling method is a generalization to
the pair-product sampling method that can importance sample a
chain of three or more BSDFs. They reduce stochastic layer eval-
uation variance by combining multiple BSDFs together and gener-
ating samples from distributions that are more proportional to the
BSDF chain. Both sampling methods are based on a novel and com-
pact parameterized Gaussian BSDF representation. This represen-
tation expresses 2D BSDF slices as bivariate Gaussians and writes
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Gaussian parameters as smooth functions of BSDF parameters.
Since it incorporates material properties, our layer model can handle
arbitrary numbers of textured layers and only a one-time precom-
putation is required for one type of BSDF. Our results demonstrate
substantial variance reduction compared to previous Monte Carlo
layering approaches in rendering isotropic surface layers.

At the same time, our method has the following limitations, which
leaves plenty of avenues for future work.

Generality. We have only demonstrated our new sampling
strategies on isotropic surface scattering layers. We could easily
integrate the BDPT estimator in [GHZ18], and for anisotropic and
volume layers the system would fall back to the BDPT estimators.
To handle anisotropic materials using our method, another dimen-
sion needs to be introduced into the parameterized representation.
Depending on how anisotropic the material is, we might need to
increase the number of Gaussians in the mixture. In order to han-
dle volume scattering, we would fit a separate volume Gaussian
representation for a given phase function. Specifically, we would
separate the representation to upper and lower hemisphere to fit
in our product sampling framework. Then, tracing the volume and
generating connections from the volume should be added to the
current framework.

Multiple-product sampling for longer paths. The pair-product
sampling strategy works for an arbitrary layer configuration and an
arbitrary path length. The multiple-product sampling method, in
theory, works for an arbitrarily long path. However, in practice,
we observe it only improves convergence when we sample three
BSDFs at a time. The approximation error increases as the chain
grows, especially for larger roughness, making this strategy not
as effective as the simpler ones. One future direction would be
utilizing other approximations instead of Gaussian mixtures in order
to construct joint PDF approximations for the entire paths. They
should more accurately approximate the whole chain of BSDFs as
the chain grows longer, potentially leading to much larger gains
in performance.
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Appendix A: Gaussian product

LetN1(μ1, �1) andN2(μ2, �2) be two Gaussian distributions, s be
the normalization factor andN12(μ, �) be the Gaussian distribution
after normalization:

N12(μ, �) = 1

s
N1(μ1, �1)N2(μ2, �2), (A.1)

where

μ = �
(
�−1

1 μ1 +�−1
2 μ2

)
, (A.2)

� = (
�−1

1 +�−1
2

)−1
, (A.3)

and constant

s = N (μ1|μ2, �1 +�2). (A.4)

The product of two Gaussian mixtures with n and m compo-
nents, respectively, is therefore a new Gaussian mixture with nm
components.

Appendix B: 4D Gaussian approximation to BSDF

The Gaussian distribution can be written as the exponential of a
quadratic polynomial

N (x|μ,V ) = eQ = e− 1
2 (x−μ)T V (x−μ)+c = e− 1

2 x
T V x+bx+c. (B.1)

Here, μ, V and c are the 4D mean, 4 × 4 inverse covariance (preci-
sion) matrix and log normalization constant, and b = μT V . With a
second-order Taylor expansion, we can get a function that matches
the parameterized fit exactly in value and first and second derivatives
at a point. It is sufficient to only consider the quadratic polynomial.
We solve the linear system

dQ

dx
= −V x0 + b,

d2Q

dx2
= −V,

to find a quadratic polynomial Q(x) that matches to second order.
Since in our construction V is symmetric but not necessarily posi-
tive definite (SPD), it is not guaranteed that we will end up with a
distribution that can be sampled. In practice, we find that for most
of the cases, after multiplying the two 2D Gaussians that approxi-
mate fj (ω, ·) and f
(·, ω′), we will end up with a Gaussian whose
covariance is SPD. For the non-SPD cases, we modify the negative
eigenvalues to a small positive number ε.
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