
DOI: 10.1111/cgf.13884 COMPUTER GRAPHICS forum
Volume 39 (2020), number 1 pp. 436–449

Broadmark: A Testing Framework for Broad-Phase Collision
Detection Algorithms

Ygor Rebouças Serpa and Maria Andréia Formico Rodrigues

Programa de Pós-Graduação em Informática Aplicada (PPGIA), Universidade de Fortaleza (UNIFOR), Fortaleza, Brazil
{ygor.reboucas, andreia.formico}@gmail.com

Abstract
Research in the area of collision detection permeates most of the literature on simulations, interaction and agents planning, being
commonly regarded as one of the main bottlenecks for large-scale systems. To this day, despite its importance, most subareas
of collision detection lack a common ground to test and validate solutions, reference implementations and widely accepted
benchmark suites. In this paper, we delve into the broad-phase of collision detection systems, providing both an open-source
framework, named Broadmark, to test, compare and validate algorithms, and an in-deep analysis of the main techniques used
so far to tackle the broad-phase problem. The technical challenges of building this framework from the software and hardware
perspectives are also described. Within our framework, several original and state-of-the-art implementations of CPU and GPU
algorithms are bundled, alongside three benchmark scenes to stress algorithms under several conditions. Furthermore, the
system is designed to be easily extensible. We use our framework to bring out an extensive performance comparison among
assembled solutions, detailing the current CPU and GPU state-of-the-art on a common ground. We believe that Broadmark
encompasses the principal insights and tools to derive and evaluate novel algorithms, thus greatly facilitating discussion about
successful broad-phase collision detection solutions.

Keywords: open-source framework, collision detection, broad phase, state-of-the-art implementations, CPU and GPU
algorithms

ACM CCS: Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [Computing Methodologies]:
Animation–Collision detection

1. Introduction

Collision detection algorithms deal with the relative configuration
of objects within a given space, which cannot penetrate one another
during their simulated motion. These algorithms focus on relevant
relations, such as simple overlaps, intersection of geometries and,
more generally, spatial or proximity relationship between geometric
objects [MCLK17]. Various groups of authors have developed algo-
rithms for collision detection in motion simulation of both rigid and
deformable bodies, clothes, particles and fluids, among others. Es-
sentially, their primary focus has been on developing efficient algo-
rithms for collision detection [Eri04]. However, only a few of these
works have made source code publicly available, employ similar
testing methodologies or even compare against standard solutions
of their respective interest areas. This hinders further advancements
in the collision detection area, making it difficult to assess the rela-

tive effectiveness of algorithms. Moreover, it generates duplication
of effort, insufficient testing, failure to test against state-of-art and
poor choice of parameters.

Collision detection is often broken down into two sequential
phases: broad phase and narrow phase. The former searches for
all bounding volume (BV) overlaps, while the latter queries if the
bounded objects also overlap [Mir97]. Thus, it is basically a coarse-
fine search. While the broad phase prunes the set of all object pairs
to a small set of potential collisions, the narrow phase performs the
actual overlap tests. Without the broad phase, performing the narrow
phase would be intractable, hence its importance. This separation
also favours code reuse, since the broad phase can be employed
unchanged for any set of boundable objects, and, if precision is not
a concern, the narrow phase can be simplified or even absent. In
this work, we focus on the broad phase and, particularly, on using

c© 2019 The Authors Computer Graphics Forum c© 2019 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

436

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-0850-4380
https://orcid.org/0000-0003-1181-2971

Y. R. Serpa & M. A. F. Rodrigues / Broadmark: A Testing Framework for Broad Phase Collision Detection Algorithms 437

axis-aligned bounding box (AABB) as BVs. In other fields in com-
puter science, this task is also called the box intersection checking
problem [KMZ16, LLCC13, FM17].

Main contribution In this paper, we seek to establish a ground
base for future broad-phase collision detection research, providing
a complete testing framework, named Broadmark, and an in-deep
analysis of the main broad-phase techniques. Our testing frame-
work comprises several original and state-of-the-art implementa-
tions of CPU and GPU algorithms and a set of benchmark scenes.
We use our framework to bring out an extensive performance com-
parison among assembled solutions. In addition, we detail the cur-
rent state-of-the-art on a common ground and relate the single,
multi and many threaded solutions. We believe that Broadmark
encompasses the principal insights and tools to derive and evalu-
ate novel algorithms, thus greatly facilitating discussion about suc-
cessful broad-phase collision detection solutions. The Broadmark
source code and detailed documentation are available on GitHub at
https://github.com/ppgia-unifor/Broadmark.

The remainder of this paper is structured as follows: Section 2
surveys the related work on broad-phase collision detection, stress-
ing how many authors validate their respective solutions and what
sort of issues they usually investigate. Section 3 describes the typi-
cal structure of a broad-phase algorithm and delves on the standard
approaches to solve this problem. Section 4 describes the developed
benchmark tool, its built-in scenes and the bundled algorithms. In
Section 5, we present a complete scalability analysis of the imple-
mented algorithms. Finally, Section 6 concludes with a summary
of our main contributions, alongside a discussion about the future
work possibilities arising from these studies and findings.

2. Related Work

Several authors present comparative studies to validate their novel
algorithm’s efficiency. Broadly, these works can be divided on
whether synthetic data [LLCC13, TBW09, CL16a, CL18] or physi-
cal simulations [LCF05, SR17, LHLK10, TB12, WM09] have been
used to perform collision detection tests. Studies using synthetic
data generally consist of constant-speed objects that bounce on the
scene walls. Usually, each object is both initialized with a random
direction and allowed to pass through other objects. These scenes
are considered coherent/predictable, show a very uniform object dis-
tribution and, despite being artificial, they appear quite frequently
in the literature. On the contrary, physically based scenes are much
less predictable, give rise to non-uniform distributions and closely
match real-world usage scenarios. However, they are harder to set-
up and costly to generate, especially in scenarios with a massive
number of objects.

With regard to analysis, the majority of existing works focus on
scalability and include analysis of some other properties relevant
to the developed approach. Algorithms that make use of tempo-
ral techniques commonly analyse performance across the number
of moving objects [LHLK10, SR17, TB12, CL18], showing their
speedups on predictable scenes. Works based on Grid-like spa-
tial subdivisions usually present some form of non-uniformly dis-
tributed objects analysis [LLCC13, AGA12]. On the multi-core and
many-core literature, the number of cores or GPUs and other related

costs have been also covered [LLCC13, AGA12, BMPS09, AGA14,
CL18, FM17]. Some works aim to use multiple application scenar-
ios [ZE00, LHLK10, SR17] or focus on specific problems, such as
the cost of adding/removing objects [TBW09], the behaviour under
largely static scenes [TB12], the use of custom hardware [WDM07,
WM17] or specific constraints [CL16b, FM17, She14]

In addition, physics engines, such as Bullet [Cou18] and PhysX
[Nvi19a], are generally not focused on benchmarks, outside their
own algorithms and engine versions. Bullet 2 had a broad-phase
benchmark, which has been used by some authors as state-of-the-
art [LHLK10, LLCC13, TBW09]; however, it is no longer available.
PhysX library developers maintain the Physics Engine Evaluation
Lab (PEEL), which is a suite of tests to evaluate, compare and
benchmark physics engines. Even so, PEEL is actually dedicated
to compare engine features, stability and correctness, but not col-
lision detection performance [Ter17]. In the literature, Woulfe and
Manzke [WM09] present one of the few attempts at a general test-
ing framework: a physically based simulator, a highly configurable
initial state and three broad- phase algorithms from Bullet. How-
ever, although it is a noteworthy effort, it has two major limitations:
the initial state is the sole point of customization and objects are
re-simulated for each test, which is unfeasible for large simulations.

In this work, we propose to the collision detection community
a framework, named Broadmark, for the study and benchmark
of broad-phase algorithms. This addresses the extinction of the
Bullet 2 benchmark, the lack of a Bullet 3 successor and is con-
cerned specifically with this problem, unlike PEEL. Furthermore,
our simulation generator is highly customizable and is fully decou-
pled from the algorithms execution. In more detail, the framework
comprises a set of reference implementations and representative
scenes, which have been developed using the physical simulation
approach. We have designed this system towards investigating the
algorithms behaviour under uniform/non-uniform distributions and
on static/dynamic scenes, as these are the most commonly investi-
gated features. Within the framework, several algorithms from the
literature [ZE00, TBW09, SR17] and industry [Cou08a, Cou08b,
Cou14b, Cou14a, Cou08a], as well as original implementations,
were bundled [Brute force (BF), sweep-and-prune (SAP) and Grid],
being some of these GPU based or multi-core. The complete solu-
tion has been designed to be extensible, allowing new scenes and
algorithms to be added, as well as scoped for addressing the needs
of most authors on designing new solutions.

3. Collision Detection Algorithms

At a high level, broad-phase algorithms can be classified by their use
of spatial, temporal and sorting techniques. Spatial techniques seek
to divide-and-conquer the problem using spatial data structures, such
as Grids [LLCC13], BVHs [Cou08b], KD-Trees [SR17], Octrees
and BSP-Trees [LCF05]. On the other hand, temporal techniques ex-
plore the behaviour of the simulation to mitigate the workload. Com-
mon use cases are the reuse of data structures [TBW09, Cou08b],
incremental search methods [LHLK10, SR17, Cou08a] and future
behaviour prediction [DSC05]. Lastly, many algorithms use sorting
to extract relationships of locality/proximity to uncover collisions
[BW92, CL16a, CL18, TBW09, ZE00, LHLK10, AGA10, SR17,
Cou08a].

c© 2019 The Authors Computer Graphics Forum c© 2019 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

https://github.com/ppgia-unifor/Broadmark

438 Y. R. Serpa & M. A. F. Rodrigues / Broadmark: A Testing Framework for Broad Phase Collision Detection Algorithms

Most of the previously mentioned techniques reduce the search
space by pruning pairs, being collectively referred to as pruning
techniques. To reach competitive performance, most works employ
more than one of these strategies. Initially, some form of divide-
and-conquer approach is usually used, followed by a sorting-based
search [ZE00, LHLK10, SR17, TBW09]. In particular, special care
must be given to avoid over-pruning. For small search spaces, the
cost of pruning is commonly higher than simply testing each pair of
objects. With recent CPUs, single instruction, multiple data instruc-
tions (SIMD), and GPUs, this fact is even more pronounced. Similar
issues arise in other areas of computer graphics, for instance, the
cost of rendering a triangle on modern hardware has decreased so
significantly that over-culling is currently a significant issue [SR18].

Within the domain of temporal techniques, the incremental search
deserves special attention. The general idea is to take the set of
collisions from the previous frame, find all new collisions in the
scene and remove all ceased collisions. In other words, the search
is focused on finding the difference, in terms of collisions, between
the previous frame and the current frame. This technique can yield
significant gains in performance when a moderate to high number
of objects is considered static [SR17, LHLK10, TB12].

In the following subsections, we present the main algorithms
and techniques that have been used on the broad-phase collision
detection. More specifically, we discuss these approaches according
to: (1) the algorithms/techniques in their canonical form, (2) how
they have been used so far, from an algorithm design perspective
and (3) their respective relevant state-of-the-art.

3.1. Brute force

Algorithm The BF algorithm is based on exhaustively testing all
possible pairs of a set of objects (Figure 1a). If applied to all objects,
it is named BF broad phase and has a time complexity of O(n2), due
to the

(
n

2

)
tests. If applied to a subset of all objects, it becomes an

operator of the encompassing solution, for instance, to test collisions
for each cell of a Grid subdivision [AGA12, LLCC13]. Finally, for
small sets of objects, this is the fastest known algorithm to enumerate
collisions. It is also worth mentioning that it lends itself nicely to
SIMD vectorization [Eri04], p. 547].

From an algorithm design perspective The BF method is always
used as an operator to conclude the search. Basically, the main
challenge when using it is to avoid under- or over-pruning. For Grid
or tree-based solutions, this boils down to finding the optimal Grid
size or tree height, respectively. Multilevel Grids or unbalanced
trees can also be used to more finely control the pruning. Within the
GPU context, the BF approach is an important design asset due to its
high predictability (which can be exploited to efficiently balance the
workload across threads), and the sheer parallel power, which can
drastically mitigate the quadratic nature of the algorithm [AGA12,
LLCC13].

State-of-the-art Due to its algorithmic complexity, no modern al-
gorithm is based solely on this technique. As shown by Geleri
et al., a highly optimized GPU BF can be efficient for small to
medium-sized scenes, due to the sheer computing power; however,
it does not scale as efficiently as other techniques [GTT13]. As
an operator, it has been used on many GPU algorithms in con-

junction with a Grid subdivision strategy, such as that available in
Bullet’s b3GpuGridBroadphase [Cou14b], and those described by
Avril et al. [AGA12] and Lo et al. [LLCC11, LLCC13].

3.2. Sweep-and-prune

Algorithm The SAP algorithm is based on first performing a one-
dimensional collision detection, outputting all overlapping pairs for
the chosen dimension, followed by testing each of these pairs on
the remaining axes and outputting the subset of pairs that overlap
on all dimensions (Figure 1b). That is, it considers that for two
objects to overlap in 3D, they must overlap along every 1D axis.
Thus, any initial axis will lead to correct results. For efficiency,
the 1D step, or sweep step, is performed by sorting the objects’
minimum and maximum intervals, which are defined by two end
points along the chosen axis, and reporting which objects are within
the minimum/maximum of each other.

With regard to time complexity, for the general case, the SAP al-
gorithm belongs to the class of O(nlog(n) + nk) algorithms, being
nlog(n) the cost of the sorting operation and k the average number
of 1D overlaps per object, which is typically assumed to be a small
constant. Alternatively, if the objects are supposed to be uniformly
distributed, each object will have roughly k = n

2
3 1D overlaps, lead-

ing to the O(n
5
3) class, or simply O(n1.66) [TBW09]. As regards the

space complexity, it can be performed in-place and, thus, belongs
to the O(1) class.

From an algorithm design perspective This technique can be used
as-is for small to medium-sized scenes or used as an operator when
tackling large to massive scenarios. For optimum performance, care-
ful consideration must be given to the choice of sweeping axis. Some
well-known strategies include using the axis of greatest variance
[SR17], approximated principal components analysis [LHLK10]
and context-aware heuristics [CL18]. Regarding the sorting algo-
rithm, usual choices are the Quick sort and Radix sort, being the
latter frequently used on parallel settings.

State-of-the-art Modern algorithms develop on the basic idea by
either subdividing the space into many SAPs or further pruning ob-
ject pairs after the sweep pass. The work of Serpa and Rodrigues
employs the SAP algorithm as an operator of a KD-Tree structure
[SR17], whereas Liu et al. use it on the GPU over a Grid subdivision
[LHLK10]. Alternatively, Zomorodian and Edelsbrunner propose a
combination of range and segment trees to further process the object
pairs on the second and third dimensions [ZE00], while Capannini
and Larsson describe a method to incorporate a second sweep step,
named by the authors as bi-dimensional SAP [CL16a]. The same
aforecited authors also explore optimizations when all objects are
known to be same sized [CL16b]. Within the context of parallel hard-
ware, for multi-core CPUs, the authors Avril et al., as well as Capan-
nini and Larsson, describe a parallelization strategy for the SAP and
bi-dimensional SAP strategies, respectively [AGA10, CL18], while
for GPUs Liu et al., Geleri et al. and Grand describe methodologies
to port the SAP algorithm to the many-core architecture [LHLK10,
GTT13, LG07]. In libraries, the Zomorodian and Edelsbrunner’s
algorithm is packaged with the CGAL library [KMZ16], which was
later used by Batista et al. to develop a simple parallel version of the
algorithm [BMPS09]. In the PhysX library, the multi-box-pruning

c© 2019 The Authors Computer Graphics Forum c© 2019 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

Y. R. Serpa & M. A. F. Rodrigues / Broadmark: A Testing Framework for Broad Phase Collision Detection Algorithms 439

Figure 1: The BF algorithm performs all object-object tests. This is the slowest and simplest broad-phase algorithm.

and automatic-box-pruning algorithm are based on applying SAP to
multiple user defined regions or over an automatic Grid subdivision,
respectively [Nvi19b].

3.3. Incremental sweep-and-prune

Algorithm The rationale behind the incremental sweep-and-prune
(iSAP) is to perform individual 1D passes for each axis, followed by
selecting the object pairs that overlapped on all axes (Figure 1c). As
proposed by Baraff, the main idea behind this algorithm is to keep
three lists of sorted projections, one for each Cartesian axis, and
adding the min and max edges of each projection as two separate
entities [BW92]. During execution, when the AABB of the objects is
updated, each min and max edges is resorted, adding and removing
overlaps according to the following four general rules:

1. a min edge moving down and crossing a max edge is considered
a new overlap,

2. a min edge moving up and crossing a max edge removes an
overlap,

3. a max edge moving down and crossing a min edge removes an
overlap, and

4. a max edge moving up and crossing a min edge is considered a
new overlap.

At the end of the sorting step, all object pairs with three overlaps
are considered colliding. For efficiency, overlaps are usually stored
on a hashed structure with O(1) insertions and removals. With regard
to time complexity, Baraff classifies the algorithm as O(n + s),
being s the number of move (or swap) operations needed [BW92].
For largely static scenes, s is assumed to be proportional to n, and
for dynamic scenes s can easily grow to the order of n2. In terms of
space complexity, the algorithm clearly falls into the �(n) class, as
it needs three n-sized lists.

From an algorithm design perspective The main advantage of
this approach is that it builds upon the previous frame overlaps and
uses a sorting strategy optimized for nearly sorted lists, thus, being
ideal for largely static scenes. However, this approach is about three
times slower than the default SAP algorithm for dynamic scenes,
which only sorts one axis. As a complete solution, this algorithm is

frequently found in libraries, as it tends to perform well in practice
for small to medium-sized scenes, with many static objects. As an
operator, iSAP is hardly used, since managing many instances of
this algorithm is challenging.

State-of-the-art Optimized implementations of this algorithm can
be found in the Bullet and PhysX libraries, under the names btAxis-
Sweep3 [Cou08a] and sweep-and-prune [Nvi19b], respectively. As
an operator, Tracy et al. propose a Grid superstructure to host sev-
eral iSAP instances. To manage the issue of moving objects from
one iSAP to another, these authors describe a novel segmented-
interval list structure to efficiently handle the insertions and removals
[TBW09].

3.4. Grid

Algorithm The Grid space subdivision strategy is based on uni-
formly dividing the space into regions (or cells) and adding each
object to all cells where they overlap (Figure 1d). Once the Grid is
constructed, the broad phase is carried out by searching all overlaps
for each cell. This algorithm is considerably simple to implement
and lends itself nicely to parallelization, as well as to the use of
other broad-phase collision detection approaches as operators.

From an algorithm design perspective Grids provide an easy
and intuitive way to subdivide the scene into multiple independent
regions, which can be operated in parallel. At run-time, Grids are
very predictable and, for that reason, they are very popular in the
parallel algorithms literature. When using Grids, two main design
questions must be answered: how many cells will be used and how
to handle large objects, i.e. objects that overlap many cells. For
the first question, most authors target finding a value for objects
per cell [TBW09, LHLK10, AGA12], while some others pose the
problem as a maximization/minimization problem [LLCC13]. For
the second question, the most common approaches so far have been
to allow redundancy or, instead, to use some hierarchical/multilevel
approach [SFC*19]. If objects are known to be same sized, this
problem can be avoided altogether [FM17, WFZ13].

State-of-the-art From the Bullet Library, the
b3GpuGridBroadphase algorithm uses a Grid plus BF approach

c© 2019 The Authors Computer Graphics Forum c© 2019 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

440 Y. R. Serpa & M. A. F. Rodrigues / Broadmark: A Testing Framework for Broad Phase Collision Detection Algorithms

on the GPU. To handle large objects, a second BF step is used to
find large-small and large-large intersections [Cou14b]. Similarly,
the work of Avril et al. uses the same combination, but develops
on the workload balancing issue, introducing a novel GPU
mapping function to map threads to pairs [AGA12]. More broadly
focused, the work of Lo et al. thoughtfully describes an elaborate
GPU Grid construction scheme, a workload balanced BF, an
output-compression strategy and a CPU-GPU pipelined execution
to hide communication latency. In addition, also based on BF as
an operator, Stroobant et al. propose a uniform and multi-level
Grid approach for the GPU collision detection of nanoscale bodies.
Outside of the Grid plus BF scope, several authors have proposed
Grid plus SAP [LHLK10, LG07, Nvi19b] and Grid plus iSAP
[TBW09] algorithms.

3.5. Bounding volume hierarchy

Algorithm The bounding volume hierarchy (BVH) uses BV to
hierarchically bound groups of objects, from one BV per object to a
single BV for the entire scene (Figure 1e). These are usually built as
binary trees, but are not limited to them. To find overlaps, a single
tree-tree test or n object-tree tests are performed. The former is faster
as it performs a minimal number of BV tests, but the latter allows
the algorithm to be incremental, for example performing object-tree
tests for dynamic objects only. A common enhancement is to store
w objects/leaf, being w the system SIMD width. This allows for
object-tree and leaf-leaf tests to be carried using SIMD instructions.

As regards the tree itself, there are three fundamental strategies to
construct a BVH: bottom-up, grouping nodes two-by-two, according
to some proximity criteria; top-down, recursively subdividing the set
of objects into disjoint groups; and incrementally, accommodating
one object at a time. To update a BVH tree, many strategies exist,
each with its sets of pros and cons. Notably, scheduled rebuilds,
tree rotations and objects reinsertions are some of the most common
ideas. To mitigate the number of objects in need of updating, several
authors employ slightly larger BVs than necessary. This provides a
certain threshold to move objects before requiring a repositioning.

From an algorithm design perspective The BVH algorithm is
very popular, fast and easy to construct, and is widely regarded
as the most cost-effective tree to handle dynamic objects. Usually,
the main topics of discussion for BVHs are the algorithms to build
and update the structure, and, to a lesser extent, the memory layout
and optimization techniques performed to the tree-tree test, such
as front-tracking. In the CPU literature, BVHs are usually built
either top-down, searching the median point of objects, or incre-
mentally, followed by some balancing algorithm; whereas in the
GPU literature, the most widely used technique is the algorithm
based on Morton codes, which enables a fully parallel bottom-up
build [LGS*09]. Morton code-based BVHs are widely regarded as
low quality, but the tree building speed more than compensates for
it. As a component, BVHs are too cumbersome to be used as an
operator, and too fine-grained to be used as super-structures, thus,
for these reasons most BVH solutions are pure, in the sense that
they do not employ any other major techniques.

State-of-the-art Within the Bullet Library, the btDBVT algorithm is
a CPU-based single-core BVH broad-phase solution, heavily based

on the reinsertion idea. The tree is built incrementally and features
loose BVs. The tree quality is maintained by reinserting objects
that moved beyond their BVs or by reinserting a random sam-
ple of objects each frame. The algorithm features an incremental
detection option, which considers reinserted objects as dynamic
and uses object-tree tests, and a complete detection one, using
a full tree-tree test [Cou08b]. Also from the Bullet library, the
b3GpuParallelLinearBvh broad phase is a GPU algorithm based
both on the Morton Code algorithm and tree-tree tests. Due to the
speed of the Morton Code-based build, no update algorithm is used
and, therefore, the tree is simply rebuilt every frame [Cou14a].

3.6. Space partitioning trees

Algorithm Space partitioning trees work by recursively subdivid-
ing the world into regions. At each node, Octrees split the world
into eight octants, KD-Trees divide it into two axis-aligned halves
(Figure 1f) and BSP-trees can perform any binary split. In general,
the more flexible a partitioning, the higher the costs to find opti-
mal plane cuts, being the BSP the extreme case. For these trees,
the top-down construction is the most effective, as it allows more
informed plane cuts. Objects mean and median are commonly used
measures to define the position of the split plane. The splitting axis,
if relevant, is usually based on the objects variance.

Unlike BVHs, space partitioning trees do not handle objects di-
rectly, that is they have implementation-dependant characteristics.
Commonly, objects that fit within a leaf node region are stored
therein, whereas objects that cross several regions are either re-
dundantly stored on each leaf or stored on the deepest shared par-
ent. In addition, for consistency, these placements must be updated
every frame. As regards the tree updating schemes, most authors
break down their solutions into operators that merge, split and alter
nodes/subtrees and a core algorithm to decide when to use each
operator. Finally, to find overlaps, each leaf node presents an in-
dependent broad-phase problem, which can be handled by simpler
algorithms, such as the BF. If objects are allowed to reside on in-
ternal nodes, a traversal is necessary to include these objects within
the relevant sub-problems.

From an algorithm design perspective Space partitioning trees
provide a flexible way to partition the space and an intuitive hierar-
chical representation. In comparison to Grids, these structures adapt
to the workload more finely, at the expense of more costly updating
algorithms. As to BVHs, these are much easier to build and main-
tain, but do not prune so well. A major design consideration for such
trees is their height, which should be carefully chosen in order to
avoid under- or over-pruning. In this regard, some authors use the
SAP algorithm as an operator, allowing shallower trees to be used,
while some others use variable-depth trees, generally focusing on
a maximum number of objects per leaf target. It is noteworthy that
these techniques are not mutually exclusive.

State-of-the-art Two major proponents of space partitioning trees
to the broad phase are Luque et al. [LCF05] and Serpa and Ro-
drigues [SR17]. Specifically, Luque et al. use a BSP tree with
five update operators, partial updates, object redundancy and the
SAP algorithm as operator. In addition, to mitigate the prohibitive
cost of a full BSP-tree update, these authors describe a scheduled

c© 2019 The Authors Computer Graphics Forum c© 2019 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

Y. R. Serpa & M. A. F. Rodrigues / Broadmark: A Testing Framework for Broad Phase Collision Detection Algorithms 441

semi-adjusting approach that defers operators to be used over the
course of several frames [LCF05]. Contrastingly, Serpa and Ro-
drigues use a KD-Tree structure, six light operators, full updates
per frame, objects at internal nodes and an SIMD-optimized SAP
algorithm as operator. In addition, these latter authors also highlight
the benefits of the KD-Tree plus SAP approach, its impact on the
performance of the update algorithm and the need for more generic
solutions to the broad-phase problem, capable to cope with both
static and dynamic scenes competitively [SR17].

4. Testing Framework

In this section, we describe the major aims of the open source test-
ing framework we have developed, named Broadmark. It is focused
on providing a common foundation to test and analyse broad-phase
collision algorithms, validate and measure these solutions, as well
as developing test scenarios, test cases and test scenes to be used
as benchmarks. Moreover, Broadmark has been conceived to be
extendable, for example with new algorithms and new scenes. Ba-
sically, our main goal with Broadmark is to foster the research of
new broad-phase algorithms and provide standardized data testing
to be used by other researchers in future work, when performing
new tests with new algorithms.

The complete system is divided into two main components: the
scenario generator and the broadmark system. The former is re-
sponsible for generating 3D scenes and baking them to disc, while
the latter is responsible for running broad-phase collision detection
algorithms on baked scenes. In the following subsections, we de-
scribe these both components and present implementation details,
as well as their current limitations.

4.1. Simulation generator

The simulation generator tool is developed in the Unity Engine as
an Unity Project, using the C# language, and is aimed at creating 3D
scenes with several thousand dynamic objects to stress the broad-
phase algorithms performance. In the following, we highlight the
main aspects of the system and the rationale behind them.

Physics engine independence The system has a physics en-
gine/body interface that completely separates it from the underlying
engine. Currently, we support the PhysX and Bullet engines, for
physically based simulation; a Viewer engine, used to replay gener-
ated scenes; and a Splitter engine, for creating large simulations out
of smaller ones.

Object types Out-of-the-box, we provide spheres, cubes and as-
sorted objects, being the last a set of shapes, such as bars, planks,
squares and random cubes. These object types can be used to vali-
date/stress the algorithms according to their geometrical complexity.
At start-up, these objects are initialized at random positions within
the scene and with random initial velocities.

Built-in scenes We include three built-in scenes, named Free Fall,
Brownian and Gravity, which, respectively, aim at modeling a
static/predictable scene, a uniformly distributed chaos and a com-
pletely dynamic scene with many collisions. Some of the resulting
frames of the simulations are shown in Figure 2. These scenes have

been shown in our previous work [SR17] to be an effective bench-
mark to investigate the algorithms’ performance and their plausibil-
ity as a general solution. In more detail, the Free Fall scene merely
lets each object follow its path, colliding with other objects and
eventually reaching the scene’s floor. At the end of the simulation,
all objects are static. In contrast, the Brownian scene interferes with
the objects velocities, assigning new ones periodically. Therefore,
no object ever reaches a resting state. Finally, the Gravity scene acts
on the gravity vector, rotating it smoothly over the scene’s duration,
forcing the objects to travel around the scene in a predictable manner
while constantly clashing against each other.

Parametric generation Each scene is fed with a SimulationParam-
eters object that contains data such as the number of objects, number
of frames, time-step size, number of substeps, objects type and den-
sity, among other parameters. This greatly allows customization. In
particular, special attention must be given to the objects density,
as it controls the relative size of the world in relation to the ob-
jects. This mitigates the influence of the number of objects on the
resulting motion. Figure 3 shows, for several number of objects,
the same camera frame of the Gravity scene, demonstrating overall
the same motion/behaviour. Parameters, such as the initial position,
speed and gravity, are also scaled with respect to the objects density,
further mitigating the effects of changing the number of objects on
the generated motion.

Baked results During the execution, scenes are saved to disc in
a simple binary format (.aabbs), which stores the scene’s name,
objects type, number of objects, number of frames and the AABB
of each object for each simulation frame. This fully decouples the
simulation generation from the algorithms execution and allows for
other authors to develop their own simulation generation tools, while
still being able to communicate with the broadmark system. Addi-
tionally, scenes are also recorded in a similar format (.posrot), which
stores the position and rotation of each object instead of its AABBs.
This alternative format can be used to replay the original simulation
within Unity and is useful for debugging and movie recording.

Generation wizard The system comes with a generation wizard
to help users generate baked results for several setups in a batch
manner, for instance baking the Free Fall and Brownian scenes for
1, 2, 4, 8, 16 and 32000 cubes and spheres. For convenience, we
also package a pre-built version of this tool to aid non-Unity users
to bake built-in scenes.

4.2. Broadmark system

The broadmark system is our key component to run and measure
algorithms. It bundles several algorithms (which, in turn, are divided
into algorithm families) and implements the benchmark functional-
ity needed to analyse them. The system uses as input a parameters
file (which defines the algorithm) and a simulation test scene. It
outputs the results obtained after running the entire process in form
of a per-frame summary of the execution, including the time spent
updating objects and structures, as well as finding collisions. For
automation, we have developed a small Python package to batch the
execution of algorithms, parse the results and generate data plots.

Currently, the system bundles the following 13 algorithm fami-
lies: BF, SAP, Grid BF, Grid SAP, AxisSweep, DBVT F, DBVT D,

c© 2019 The Authors Computer Graphics Forum c© 2019 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

442 Y. R. Serpa & M. A. F. Rodrigues / Broadmark: A Testing Framework for Broad Phase Collision Detection Algorithms

Figure 2: From left to right, respectively, the built-in scenes developed to benchmark algorithms: Free-Fall, Brownian and Gravity.

Figure 3: From left to right, respectively, constant object densities on the Gravity scene for 100 – 1000 – 8000 and 32000 objects.

CGAL, Tracy, KD-Tree, GPU Grid, GPU LBVH, and GPU SAP. Of
those, the BF, SAP and Grid families are original implementations,
the AxisSweep and DBVT solutions came from the Bullet 2 library,
the Tracy and KD-Tree implementations were provided by the own
authors, the CGAL algorithm was taken from the CGAL Library
and the remaining three GPU algorithms were taken from the Bullet
3 OpenCL branch.

In the following, we briefly describe each algorithm family, stress-
ing their relationship to the canonical algorithms aforementioned
in Section 3. Table 1 summarizes the key characteristics of each
algorithm.

� BF: A baseline implementation, closely matching the description
in Section 3.1. This algorithm comes in four variants: standard,
SIMD, multi-threaded (MT) and SIMD + MT. For the SIMD
version, we store objects following a structure-of-arrays (SoA)
memory layout and perform up to eight AABB tests in paral-
lel, using AVX instructions. For the MT version, we define to
each thread an individual collision cache and roughly the same
number of AABB tests to perform. The implementation is based
on OpenMP and is compatible with the SIMD implementation,
allowing an SIMD + MT version.

� SAP: A simple, STL-sort based, SAP implementation, as de-
scribed in Section 3.2. As the BF algorithm, this method
also comes in four variants: standard, SIMD, MT, and SIMD
+ MT, using the same optimizations as the BF implementa-
tion with the addition of the STL Parallel Sort, for the MT
variants.

� Grid BF and Grid SAP: A baseline Grid implementation. We
follow the standard approach where each object may occupy
more than one cell, as mentioned in Section 3.4. For the col-
lision detection, we provide BF-based and SAP-based imple-
mentations, both allowing redundant collisions to be found. For
each variant, we also include a parallel version of the algorithm,
exploiting the cell-level independence. As for the previous algo-
rithms, each thread has its own collision cache and the workload
is balanced by assigning each thread a cell range with roughly
the same number of objects.

� AxisSweep and DBVT (F and D): Incremental-SAP and BVH-
based broad-phase algorithms taken from the Bullet 2 library
[Cou18]. The former closely follows the iSAP description de-
scribed in Section 3.3, with the addition of quantized coordinates
to avoid floating-point comparisons, and a hash-map-based col-
lisions cache implementation. The latter uses a BVH tree, which
is incrementally built and optimized via re-insertions. This algo-
rithm detects collisions using either a Forward approach, which
is based on doing object-tree queries for objects that moved
above a certain threshold, or a Deferred one, based on a single
tree-tree query. We refer to both variants as DBVT F and DBVT
D, respectively.

� CGAL: A range-tree, interval-tree and SAP hybrid algorithm
designed to handle massive and dynamic scenes. Originally
proposed by Zomorodian and Edelsbrunner [ZE00] and care-
fully implemented in the Computational Geometry Algorithms
Library’s (CGAL) “Intersecting Sequences of dD Iso-oriented
Boxes” package [KMZ16]. It relates to the SAP algorithm de-
scribed in Section 3.2.

c© 2019 The Authors Computer Graphics Forum c© 2019 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

Y. R. Serpa & M. A. F. Rodrigues / Broadmark: A Testing Framework for Broad Phase Collision Detection Algorithms 443

� Tracy: A Grid and iSAP hybrid algorithm designed to han-
dle most of the static scenes. When updating objects, a custom
segmented-list structure is used to ease the migration of objects
between Grid cells. In this work, we named this algorithm Tracy,
in honour of its author’s name [TBW09].

� KD-Tree: A SIMD-optimized KD-Tree and SAP hybrid algo-
rithm to better handle static scenes, which is based on a novel
memory layout, an efficient two-pass tree update algorithm and
an adaptive incremental collision detection [SR17]. Its focus on
being both scalable and general-purpose.

� GPU Grid, GPU LBVH and GPU SAP: Implementations
taken from the Bullet 3 Library OpenCL branch. These al-
gorithms include a 3D Grid, a Linear-BVH [LGS*09] and
a simple SAP algorithm, similar to the work of Liu et al.
[LHLK10]. Collectively, they have been implemented using the
OpenCL language and feature optimizations commonly found
in GPU algorithms, such as the use of Radix Sort as the sort-
ing algorithm, Morton Codes to extract proximity informa-
tion and parallel primitives, such as map, reduce and prefix-
sum.

4.3. Extending broadmark

In this section, we highlight three major directions in which the sys-
tem can be easily extended by other authors. In order of importance,
(1) new algorithms could be developed using our framework or be
integrated into it, allowing for comparative studies to be conducted;
(2) new scenes could be included, introducing other behaviour types
or simulating specific applications; and (3) new engines could be
added, such as new or improved physics packages or non-physical
algorithms. In the following, we develop on the specific steps needed
for each of those additions. Figure 4 shows the Broadmark system
architecture and data flow.

New algorithms Within the Broadmark system, the BroadphaseIn-
terface is the basic API for all broad-phase algorithms and is the
interface used by the system to communicate with each solution.
The interface comprises virtual methods, such as Initialize, Update
Objects, Update Structures, Search for Overlaps and GetOverlaps.
The Initialize method is used to pass tuning parameters, simulation
meta-data and initial AABBs to algorithms, the Update Objects
receives a contiguous array with new AABBs and the GetOver-
laps method has to return a valid PairCache pointer, containing
the algorithm’s results. This set of methods is the backbone of any
broad-phase algorithm and mimics the usual setting in which these
algorithms are applied. To integrate a new algorithm, it has to be
registered in the Algorithms.cpp file.

Inheriting the BroadphaseInterface directly is the lowest level al-
ternative available. On top of it, we include a BaseAlgorithm class,
which handles storing and updating objects, as well as storing a Pair-
Cache. This largely reduces the amount of boilerplate code and, for
that reason, is the recommended starting point for adding new so-
lutions. For maximum flexibility, the Object and PairCache classes
are template arguments. In the case of SIMD optimized solutions,
a third option exists, named SoAAlgorithm. This class augments
the BaseAlgorithm class by also storing the Objects’ AABBs in a
Structure-of-Arrays layout, which is convenient for data parallel so-
lutions.

Figure 4: The system flowchart, including its major components
and dataflow. Nodes are colour-coded to indicate the data flow
(blue), engine methods (yellow), Broadmark inputs (orange) and
utilities (green).

New scenes Within the Unity portion of the system, the Simulation
class defines the interface for new scenes. In total, five virtual meth-
ods are defined: Start, Step, Stop, Dispose and OnGUI. The first
three methods are dedicated to handle the life-cycle of the simula-
tion, the fourth is meant for any unmanaged resources disposal and
the last one is Unity specific and allows for custom GUI code to be
added during simulation generation, which can be handy to visualize
internal data or to implement user interactions with the simulation.
It is worth mentioning that every simulated object is an independent
Unity object and, thus, can have specific scripts attached to it at
any moment.

New engines To simulate non-physical applications, implementing
a new engine might be interesting. For instance, an agent planning
or a bird-oid objects (BOIDS) simulator could be implemented on
our system. To do so, two interfaces must be inherited: Physic-
sEngine and PhysicsBody. The former exposes methods to control
the life-cycle of the simulated world and the creation of bodies
and static colliders, while the latter exposes object manipulation

c© 2019 The Authors Computer Graphics Forum c© 2019 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

444 Y. R. Serpa & M. A. F. Rodrigues / Broadmark: A Testing Framework for Broad Phase Collision Detection Algorithms

Table 1: Summary of the bundled algorithms.

IMPLEMENTATION COMPLEXITY

Algorithms Principle Optimizations Incremental Remarks Source Time Space

BF BF SIMD + MT – Naive Original O(n2) O(1)
SAP SAP SIMD + MT – STL Sort Original O(n5/3) O(1)
Grid BF Grid MT – T objects/cell Original O(n2/t) O(nt)
Grid SAP Grid + SAP MT – T objects/cell Original O(n2/t) O(nt)
AxisSweep iSAP – Yes Insertion Sort Bullet 2 O(n + s) O(n)
DBVT F BVH – Yes Persistent Tree Bullet 2 O(nlog(n)) O(n)
DBVT D BVH – – Persistent Tree Bullet 2 O(nlog(n)) O(n)
CGAL Tree + SAP – – Stateless CGAL O(nlog3(n)) O(n)
Tracy Grid + iSAP MT Yes Insertion Sort Authors O(n + s) O(n)
KD-Tree Tree + SAP SIMD Yes Adaptive, Persistent Tree Authors O(nlog(n)) O(n)
GPU Grid Grid GPU – OpenCL Bullet 3 N/A N/A
GPU LBVH BVH GPU – OpenCL Bullet 3 N/A N/A
GPU SAP SAP GPU – OpenCL Bullet 3 N/A N/A

Time complexity was derived considering a uniformly distributed set of boxes.

routines, such as changing its speed, position and activation state.
We highlight that new engines are an effective way to create devel-
opment tools. For instance, our simulation viewer is implemented
as an engine that creates and moves objects according to a baked
simulation data file.

4.4. Limitations

The current version of our simulation generator and Broad-
mark system is feature complete and covers most situations that
arise in practice. However, some use cases are not yet cov-
ered by our framework. Primarily, the simulation generator is
currently limited to a fixed number of objects per simulation
and the Broadmark system supports only AABBs, one of the
most widely used BVs, which are the industry standard [Cou18,
Nvi19a, Hav19]. While support for variable number of objects
and other input shapes could be added in the future, these features
would significantly increase the system complexity, especially the
latter.

Regarding the broad-phase precision, all bundled algorithms are
complete, i.e. they report all colliding AABB pairs. However, some
solutions may also report some non-colliding pairs, namely, the
AxisSweep and KD-Tree algorithms, which use slightly enlarged
AABBs and, thus, over-report pairs. In this context, the Broadmark
system cannot measure the negative impact of over-reporting, as it is
restricted to the broad phase. The system can, however, quantify the
amount of over-reporting, for instance, the aforementioned solutions
detect 5% more pairs, in average. These data can be used, in turn,
as a rough estimate for the extra time that will be spent at the
narrow phase.

Specifically to game-like applications, broad-phase structures are
commonly used to accelerate other tasks, such as ray-casts, boxcasts,
sphere-sweeps and others. However, superior performance can of-
ten be achieved using dedicated acceleration structures to process
such queries [Nvi19a]. Furthermore, decoupling the simulation code
from the scene query system allows both components to run asyn-

chronously, which better exploits modern parallel hardware. For this
reason, we have not included support for scene queries benchmark
in our system.

5. Comparison of Performance and Behaviour of Algorithms

In this section, we present the methods, analyse and discuss the
results of testing the performance and behaviour of the algorithms
described in Section 4.2, on the following benchmark scenarios:
Brownian Scene, Free Fall and Gravity. Under a uniform distribu-
tion, the Brownian Scene illustrates a typical case useful for testing
the overall performance of the algorithms. To examine the algo-
rithms behaviour as the objects stand still, we used the Free Fall
scene. Finally, the Gravity scene was chosen to stress test the al-
gorithms. It is important to note that our system also offers the
possibility of generating simulations with assorted objects (e.g. var-
ied sized boxes and spheres); however, in this work, we opted not
to include these scenarios, since in a previous work [SR17] we
have shown that this addition impacts most algorithms similarly
and, thus, provides little additional insight. In the previous testing
algorithms, the DBVT solution (which is BVH based) was the only
tested solution to show a significantly reduced performance on these
scenes, taking two to three times longer in these cases, while the
other tested solutions, i.e. KD, Tracy and CGAL, took only 0.2 to
0.4 times longer.

To focus on the most competitive solutions, we chose to cap
our analysis to the 0.5 s/frame mark. Any algorithm performing
beyond this point can be safely disregarded as competitive. In
Table 2, we show the results for all algorithms in each scenario,
up to the first configuration that crossed the 0.5 s mark. For com-
pleteness, we present data starting from 1000 objects, despite it
being 0.00 for all algorithms, as it shows that, for practical rea-
sons, all algorithms perform similarly in this range. Out of all al-
gorithms, the GPU SAP was the only one to exhibit problems: it
failed to run for more than 512,000 objects. For that reason, we
have not included it on the performance analysis. However, just

c© 2019 The Authors Computer Graphics Forum c© 2019 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

Y. R. Serpa & M. A. F. Rodrigues / Broadmark: A Testing Framework for Broad Phase Collision Detection Algorithms 445

Figure 5: Scalability results for all algorithms (single-threaded,
multi-threaded and GPU), under the Brownian scene for one million
objects.

for comparative reference, we opted to include it in the plots and
tables.

In all plots shown in Figures 5–7, we assigned a semantic
colour/style scheme to each of the solutions to help identify and
relate algorithms. In short, colours indicate the algorithms source,
marker shapes identify algorithms, unfilled and solid marker shapes
relate to algorithm variants and continuous and dashed lines, re-
spectively, indicate whether the solution is CPU or GPU based.
For instance, the Grid BF and Grid SAP algorithms are origi-
nal implementations (depicted in green), CPU based (displayed as
continuous lines) and share the same square marker shape, with
one being unfilled (Grid BF) and the other solid (Grid SAP). On
the other hand, all three GPU algorithms come from the Bullet
3 OpenCL branch (red coloured), are GPU based (depicted as
dashed lines) and correspond to distinct algorithms, being graphi-
cally represented by three different marker shapes (triangle, square
and circle). The colouring schema used for drawing the line plots
were defined as follows: green represents original implementations,
blue and red, respectively, stand for algorithms available in the
Bullet 2 and 3 libraries and the remaining colours (yellow, laven-
der and black) indicate independently sourced algorithms from the
literature.

In Figures 5–7, the single-threaded algorithm with the best per-
formance was included among the parallel ones to ease perfor-
mance comparison.

All results presented in this section were gathered on a Intel
Core i7 7700k machine, with 32GB of RAM and a Nvidia GTX
1060 GPU with 1759 MHz and 1280 threads. For multi-threaded

algorithms, four threads were used, mapped to the four physical
cores of the CPU. With regard to time measurements, all broad-
phase steps were accounted for, such as the time updating objects
and structures, sending/receiving data from the GPU, as well as
searching for collisions and managing the collisions cache. In par-
ticular, no step outside the broad-phase spectrum was measured
or included in the measurements. Finally, to be statistically sig-
nificant, all presented values are the average over 1000 execution
frames.

In the following, we present the per-scene analysis from 1000 to
one million objects. Table 2 shows the numerical data points used
to draw each line plot.

5.1. Brownian tests

Figure 5 shows the scalability of all algorithms for the Brownian
scene divided into serial and parallel solutions. In performance or-
der, on the single-threaded plot, the most basic approaches, i.e.
the BF and SAP algorithms, exhibit the worst performance for this
benchmark. In the multi-threaded plot, we show that these both algo-
rithms perform much better when using AVX instructions and CPU
threads, reaching up to 40 and 12 times the performance of their re-
spective single-threaded implementations. In sequence, the DBVT
F and Tracy algorithms are the third and fourth least performing
algorithms for this benchmark, which is justifiable by their incre-
mental nature, which benefits from static scenes. Appearing next,
the DBVT D and CGAL algorithms, which benefit from dynamic
scenes, are up to three times faster than the previous discussed
incremental algorithms. Out of these, the Tracy implementation,
particularly, has a multi-threaded variant that achieves a speed up of
2.2 times over its serial variant. In sequence, the Grid and Grid SAP
algorithms illustrate the performance gain when using the SAP al-
gorithm as an operator, being the Grid SAP, on average, times faster
than the Grid BF approach. On the multi-threaded plot, both algo-
rithms are two to three times faster due to their parallel execution.
The KD CPU algorithm shows similar results to the single-threaded
Grid SAP solution. Finally, the GPU Grid and the GPU LBVH al-
gorithms reach the best results among all tested algorithms for this
benchmark.

Comparing algorithms by hardware on this benchmark, in
Figure 5 (the bottom plot), we show that the best GPU algo-
rithms (i.e. GPU LBVH and GPU Grid) are only two times faster
than the best multi-threaded algorithm (Grid SAP MT) and only
three times faster than the best single threaded algorithm (KD). In
light of this, we believe that there is still plenty of room for im-
provement on the multi-threaded and GPU algorithms. Assuming
a hypothetical parallel KD implementation with perfect scaling, it
would only take three threads to match the best results obtained
on GPU. In addition, the BF and SAP implementations also pro-
vide further evidence that multi-core optimizations are still far un-
explored. Using four cores and eight AVX lanes, up to 40 and
12 times gains were obtained on the BF and SAP algorithms, respec-
tively. This leads us to conclude that custom tailored algorithms for
SIMD and multi-core parallelization might achieve similar gains.
In contrast, the KD algorithm, which is only partly SIMD opti-
mized, becomes only 0.3 times faster when using such instructions
[SR17].

c© 2019 The Authors Computer Graphics Forum c© 2019 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

446 Y. R. Serpa & M. A. F. Rodrigues / Broadmark: A Testing Framework for Broad Phase Collision Detection Algorithms

Figure 6: Scalability results for all algorithms (single-threaded,
multi-threaded and GPU), under the Free Fall scene for one million
objects.

5.2. Free fall tests

As can be seen in Figure 6, unlike the previous scene, the Free
Fall shows a mostly static behaviour. This greatly favours the al-
gorithms with temporal optimizations (AxisSweep, Tracy, DBVT F
and KD). Moreover, most objects lie densely packed on the scene’s
floor, which undermines the potential of the Grid-based solutions
(Grid BF, Grid SAP and Tracy). Overall, this plot shows signifi-
cantly different results for most algorithms. Some of them thrived
(AxisSweep, Tracy, DBVT F and KD), some were negatively af-
fected (Grid BF, Grid SAP, CGAL and DBVT D) and others did
not deviate significantly (BF, SAP and all three GPU solutions).
When comparing algorithms, we note that the DBVT F and KD
have benefited the most from this scenario. In addition, we ob-
tained an interesting behaviour for some algorithms: the DBVT F
(previously, one of the least performing solutions), in this scene
has reached the one million objects mark; and the KD algorithm
currently outperforms even GPU algorithms, despite being single
threaded.

These findings stress, once more, the importance of exploiting
temporal optimizations on static scenes. Moreover, the Free Fall
simulation highlights some key features regarding the possible ben-
efits of including temporal optimizations in broad-phase algorithms,
although more data are needed to further illuminate this interesting
behaviour. As mentioned by Serpa and Rodrigues, many algorithms
are either fully focused on static scenes (e.g. AxisSweep) or com-
pletely disregard it (e.g. CGAL), being few of them focused on
being applicable to both (e.g. KD and DBVT) [SR17]. This analysis
also sheds some light on the perceived generality by force of some

Figure 7: Scalability results for all algorithms (single-threaded,
multi-threaded and GPU) under the Gravity scene for one million
objects.

algorithms. For instance, both GPU Grid and GPU LBVH are still
very performant on this scene, despite being void of any temporal
optimization. This suggests that their performance comes mostly
from sheer pair-wise testing power than from their pruning strategy.
While this may seem negative, it is, nonetheless, a form of generality
and should be noted as a positive feature. In fact, for hard to prune
scenes, this generality by force might be the sole feasible solution
for an efficient broad phase.

5.3. Gravity tests

The Gravity scene is the hardest benchmark for all algorithms,
posing challenges to all the methods we have tested. SAP-based
algorithms are less effective due to densely packed objects, iSAP
alternatives have no coherence to exploit for sorting performance,
Grids perform poorly under highly clustered settings and, finally,
tree structures have to deal with massive changes to the objects
positions in each frame. Figure 7 shows severely reduced timings
for almost all algorithms, with the exception of the GPU algo-
rithms. Actually, no single or multi-threaded algorithm reached the
one million objects mark. This by itself is a proof that the Gravity
scene is challenging and that it can be effectively used as a prac-
tical upper bound for stress-testing broad-phase collision detection
algorithms. With regard to the GPU-based Grid and LBVH algo-
rithms, this scene further reinforces the generality by force expla-
nation. Numerically, these algorithms perform similarly on all three
benchmarks, despite the many differences (e.g. static, dynamic,
uniform and non-uniform distributions) among the benchmark
scenarios.

c© 2019 The Authors Computer Graphics Forum c© 2019 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

Y. R. Serpa & M. A. F. Rodrigues / Broadmark: A Testing Framework for Broad Phase Collision Detection Algorithms 447

Table 2: Numerical data for all presented plots.

BROWNIAN

BF SAP Grid BF Grid SAP DBVT Tracy GPU

objects ST MT ST MT ST MT ST MT
Axis

Sweep F D ST MT CGAL KD SAP LBVH Grid

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 0.11 0.00 0.01 0.00 0.02 0.01 0.00 0.00 0.02 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00

16 0.42 0.01 0.02 0.00 0.03 0.01 0.00 0.00 0.06 0.01 0.01 0.02 0.01 0.01 0.00 0.00 0.00 0.00
32 1.60 0.04 0.06 0.01 0.04 0.02 0.01 0.00 0.23 0.04 0.02 0.05 0.02 0.03 0.01 0.00 0.00 0.00
64 0.16 0.18 0.02 0.09 0.04 0.02 0.01 1.09 0.09 0.05 0.12 0.05 0.08 0.01 0.01 0.00 0.00

128 0.60 0.57 0.04 0.17 0.07 0.03 0.02 0.25 0.14 0.26 0.11 0.18 0.03 0.02 0.01 0.01
256 0.13 0.36 0.13 0.06 0.03 1.42 0.44 0.70 0.31 0.41 0.06 0.06 0.02 0.01
512 0.34 0.78 0.23 0.14 0.08 1.04 1.19 0.95 0.13 0.19 0.05 0.04
768 0.63 0.32 0.21 0.14 0.20 N/A 0.08 0.07

1,024 0.39 0.28 0.19 0.28 0.10 0.08

FREE FALL

BF SAP Grid BF Grid SAP DBVT Tracy GPU

objects ST MT ST MT ST MT ST MT
Axis

Sweep F D ST MT CGAL KD SAP LBVH Grid

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 0.11 0.00 0.01 0.00 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

16 0.42 0.01 0.01 0.00 0.07 0.02 0.01 0.00 0.01 0.00 0.01 0.01 0.00 0.02 0.00 0.00 0.00 0.00
32 1.65 0.05 0.04 0.00 0.15 0.05 0.02 0.01 0.04 0.01 0.03 0.01 0.01 0.05 0.00 0.01 0.00 0.00
64 0.16 0.14 0.01 0.41 0.14 0.05 0.02 0.18 0.02 0.08 0.04 0.02 0.12 0.00 0.01 0.01 0.01

128 0.68 0.41 0.04 1.05 0.37 0.10 0.05 1.09 0.05 0.18 0.09 0.05 0.30 0.01 0.03 0.02 0.01
256 1.30 0.10 0.94 0.24 0.11 0.10 0.42 0.23 0.12 0.65 0.03 0.06 0.04 0.03
512 0.24 0.60 0.22 0.22 1.09 0.57 0.29 0.06 0.16 0.08 0.07
768 0.46 0.35 0.36 0.47 0.08 N/A 0.12 0.10

1,024 0.85 0.51 0.52 0.71 0.11 0.15 0.14

GRAVITY

BF SAP Grid BF Grid SAP DBVT Tracy GPU

objects ST MT ST MT ST MT ST MT
Axis

Sweep F D ST MT CGAL KD SAP LBVH Grid

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 0.13 0.00 0.01 0.00 0.07 0.01 0.01 0.00 0.09 0.02 0.01 0.01 0.08 0.01 0.00 0.00 0.00 0.00

16 0.51 0.01 0.02 0.00 0.14 0.06 0.02 0.01 0.36 0.04 0.02 0.03 0.15 0.02 0.01 0.00 0.00 0.00
32 0.05 0.05 0.01 0.34 0.15 0.03 0.02 0.89 0.15 0.05 0.29 0.52 0.04 0.01 0.01 0.00 0.00
64 0.17 0.16 0.01 0.84 0.36 0.08 0.03 0.57 0.15 2.90 0.09 0.03 0.01 0.01 0.01

128 0.63 0.51 0.04 0.76 0.17 0.06 0.44 0.22 0.06 0.03 0.01 0.01
256 0.11 0.37 0.14 0.99 0.51 0.14 0.06 0.02 0.03
512 0.27 0.82 0.33 0.31 0.17 0.05 0.06
768 0.48 0.51 0.49 N/A 0.09 0.09

1,024 0.72 0.68 0.13 0.12

All measurements are in seconds and the number of objects are in thousands.

6. Conclusion and Future Work

In this work, we present to the collision detection community two
major contributions: (1) a comprehensive summary of the main
techniques for the development of broad-phase collision detection
algorithms, and (2) a benchmark system for the broad-phase colli-
sion detection problem.

Many reasons make us believe that this work can be very use-
ful and especially used as ground base for future research in the
collision detection area: it provides in-depth insights on the usage

of many common and well-known broad-phase collision detection
techniques; it extensively refers to and comments on the relevant
literature; it includes the broadmark system, which assembles many
pre-existing and some original implementations into a single, easy-
to-use, framework; and it presents an extensible and feature-rich
testing environment, which can be reused on future works to help
standardize comparisons.

Through use of the broadmark system, we could evaluate the
current state-of-the-art for single, multi and many threaded algo-
rithms, and compare the implemented solutions among each other.

c© 2019 The Authors Computer Graphics Forum c© 2019 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

448 Y. R. Serpa & M. A. F. Rodrigues / Broadmark: A Testing Framework for Broad Phase Collision Detection Algorithms

Notably, the Brownian scene unveiled that the best GPU implemen-
tations are only two and three times faster than the best parallel
and serial CPU implementations, respectively, which suggests that
there is still plenty of room for improvement on the GPU side. In
addition, it illustrates the performance divide between incremental
and non-incremental algorithms on a dynamic scene, as well as be-
tween the BF and SAP algorithms used as complete solutions and
as operators of a high-level pruning structure. The results obtained
in the benchmark scenarios Free Fall and Gravity clearly show the
available opportunities for improvement from temporal optimiza-
tions on static scenes and the amount of performance degradation
possible when objects are densely packed and move continuously.
These two scenes also provide evidence, which suggests that GPU
algorithms can be general-purpose by force, instead of by design.
This feature should be further investigated as a possible solution
for hard to prune scenes, such as the Gravity one. Altogether, these
scenes demonstrate the plurality of broad-phase collision detection
algorithms and the many variables affecting their performance. We
firmly believe that novel broad-phase algorithms should be designed
with these ideas in mind, being conceptualized with not just one tar-
get application, but multiple contrasting scenarios.

As future work, we plan to develop novel multi-threaded and
GPU algorithms to further advance the field and support even larger
simulations. Moreover, we aim to investigate the effective use of
SIMD and multi-threading on the broad-phase problem, focusing
on achieving scalable results regarding the number of threads and
SIMD lanes. Finally, further research is also required to explore the
mixed use of the CPU and GPU and could prove quite beneficial
to achieve a greater level of generality to algorithms, exploiting
both the generality by design (possible on the CPU) and by force
(possible on the GPU). Regarding our framework, we plan to expand
it in order to support variable number of objects, continuous collision
detection and other use cases related to the broad-phase problem.

Acknowledgements

Ygor Rebouças Serpa and Maria Andréia Formico Rodrigues would
like to thank the Brazilian Agencies CAPES/FUNCAP and CNPq
for their financial support, under grants 88887.176617/2018-00 and
439067/2018-9, respectively. We are also grateful to the refer-
ees for providing insightful comments and suggestions to improve
the manuscript.

References

[AGA10] AVRIL Q., GOURANTON V., ARNALDI B.: A broad phase col-
lision detection algorithm adapted to multi-cores architectures. In
Proceedings of the 2010 Virtual Reality International Conference
(Laval, France, 2010), Laval Virtual, pp. 95–101.

[AGA12] AVRIL Q., GOURANTON V., ARNALDI B.: Fast collision
culling in large-scale environments using GPU mapping function.
In Proceedings of the 2012 Eurographics Symposium (Cagliari,
Italy, 2012), The Eurographics Association, pp. 71–80.

[AGA14] AVRIL Q., GOURANTON V., ARNALDI B.: Collision detection:
Broad phase adaptation from multi-core to multi-GPU architec-

ture. Journal of Virtual Reality and Broadcasting 6, 11 (2014),
1–13.

[BMPS09] BATISTA V. H., MILLMAN D. L., PION S., SINGLER J.: Par-
allel geometric algorithms for multi-core computers. In Proceed-
ings of the 25th Annual Symposium on Computational Geometry
(Aarhus, Denmark, 2009), ACM, pp. 217–226.

[BW92] BARAFF D., WITKIN A.: Dynamic simulation of non-
penetrating flexible bodies. In Proceedings of the 19th Annual
Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH) (Chicago, IL, USA, 1992), ACM, pp. 303–308.

[CL16a] CAPANNINI G., LARSSON T.: Efficient collision culling by
a succinct bi-dimensional Sweep and Prune algorithm. In Pro-
ceedings of 32nd Spring Conference on Computer Graphics
(Smolenice Castle, Slovakia, 2016), ACM, pp. 25–32.

[CL16b] CAPANNINI G., LARSSON T.: Output sensitive collision detec-
tion for unisize boxes. In Proceedings of the 2016 Swedish Chap-
ter of Eurographics (SIGRAD) (Visby, Sweden, 2016), Linköping
University Electronic Press, pp. 22–27.

[CL18] CAPANNINI G., LARSSON T.: Adaptive collision culling for
massive simulations by a parallel and context-aware Sweep and
Prune algorithm. IEEE Transactions on Visualization and Com-
puter Graphics 24, 7 (2018), 2064–2077.

[Cou08a] COUMANS E.: btaxissweep3. github.com/bulletphysics/
bullet3/blob/master/src/BulletCollision/BroadphaseCollision/
btAxisSweep3.h (2008).

[Cou08b] COUMANS E.: btdbvtbroadphase. github.com/bullet
physics/bullet3/blob/master/src/BulletCollision/Broadphase
Collision/btDbvtBroadphase.h (2008).

[Cou14a] COUMANS E.: b3gpuparallellinearbvhbroadphase. github.
com/bulletphysics/bullet3/blob/master/src/Bullet3OpenCL/
BroadphaseCollision/b3GpuParallelLinearBvhBroadphase.h
(2014).

[Cou14b] COUMANS E.: b3gridgpubroadphase. https://github.com/
bulletphysics/bullet3/blob/master/src/Bullet3Collision/Broad
PhaseCollision/b3DynamicBvhBroadphase.h (2014).

[Cou18] COUMANS E.: Bullet Physics library 2.88. github.com/
bulletphysics/bullet3 (2018).

[DSC05] DANIEL S., COMING O. G. S.: Kinetic Sweep and Prune
for collision detection. In Proceedings of the 2nd Workshop in
Virtual Reality Interactions and Physical Simulations (Pisa, Italy,
2005), The Eurographics Association, pp. 1–10.

[Eri04] ERICSON C.: Real-Time Collision Detection. CRC Press,
2004.

[FM17] FRANKLIN W. R., MAGALHÃES S. V.: Parallel intersection
detection in massive sets of cubes. In Proceedings of the 6th

ACM SIGSPATIAL International Workshop on Analytics for Big
Geospatial Data (BigSpatial) (Redondo Beach, CA, USA, 2017),
ACM, pp. 20–26.

c© 2019 The Authors Computer Graphics Forum c© 2019 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

https://github.com/bulletphysics/bullet3/blob/master/src/BulletCollision/BroadphaseCollision/btAxisSweep3.h
https://github.com/bulletphysics/bullet3/blob/master/src/BulletCollision/BroadphaseCollision/btAxisSweep3.h
https://github.com/bulletphysics/bullet3/blob/master/src/BulletCollision/BroadphaseCollision/btAxisSweep3.h
https://github.com/bulletphysics/bullet3/blob/master/src/BulletCollision/BroadphaseCollision/btDbvtBroadphase.h
https://github.com/bulletphysics/bullet3/blob/master/src/BulletCollision/BroadphaseCollision/btDbvtBroadphase.h
https://github.com/bulletphysics/bullet3/blob/master/src/BulletCollision/BroadphaseCollision/btDbvtBroadphase.h
https://github.com/bulletphysics/bullet3/blob/master/src/Bullet3OpenCL/BroadphaseCollision/b3GpuParallelLinearBvhBroadphase.h
https://github.com/bulletphysics/bullet3/blob/master/src/Bullet3OpenCL/BroadphaseCollision/b3GpuParallelLinearBvhBroadphase.h
https://github.com/bulletphysics/bullet3/blob/master/src/Bullet3OpenCL/BroadphaseCollision/b3GpuParallelLinearBvhBroadphase.h
https://github.com/bulletphysics/bullet3/blob/master/src/Bullet3Collision/BroadPhaseCollision/b3DynamicBvhBroadphase.h
https://github.com/bulletphysics/bullet3/blob/master/src/Bullet3Collision/BroadPhaseCollision/b3DynamicBvhBroadphase.h
https://github.com/bulletphysics/bullet3/blob/master/src/Bullet3Collision/BroadPhaseCollision/b3DynamicBvhBroadphase.h
https://github.com/bulletphysics/bullet3
https://github.com/bulletphysics/bullet3

Y. R. Serpa & M. A. F. Rodrigues / Broadmark: A Testing Framework for Broad Phase Collision Detection Algorithms 449

[GTT13] GELERI F., TOSUN O., TOPCUOGLU H.: Parallelizing broad
phase collision detection algorithms for sampling based path
planners. In Proceedings of the 21st Euromicro International
Conference on Parallel, Distributed, and Network-Based Pro-
cessing (PDP) (Pavia, Italy, 2013), IEEE, pp. 384–391.

[Hav19] HAVOK: Havok Physics. havok.com/physics/ (2019).

[KMZ16] KETTNER L., MEYER A., ZOMORODIAN A.: Intersecting
sequences of dD iso-oriented boxes. In CGAL v4.13.1: User and
Reference Manual. CGAL Editorial Board, 2016.

[LCF05] LUQUE R. G., COMBA J. A. L. D., FREITAS C. M. D. S.:
Broad-phase collision detection using semi-adjusting BSP-trees.
In Proceedings of the 2005 Symposium on Interactive 3D Graph-
ics and Games (I3D) (Washington, DC, USA, 2005), ACM,
pp. 179–186.

[LG07] LE GRAND S.: Broad-phase collision detection with CUDA.
In GPU Gems 3. Hubert Nguyen (Ed.). Addison-Wesley Profes-
sional (2007), ch. 32, pp. 697–722.

[LGS*09] LAUTERBACH C., GARLAND M., SENGUPTA S., LUEBKE D.,
MANOCHA D.: Fast BVH construction on GPUs. Computer Graph-
ics Forum 28, 2 (2009), 375–384.

[LHLK10] LIU F., HARADA T., LEE Y., KIM Y. J.: Real-time collision
culling of a million bodies on graphics processing units. ACM
Transactions on Graphics 29, 6 (2010), 1–8.

[LLCC11] LO S.-H., LEE C.-R., CHUNG Y.-C., CHUNG I.-H.: A par-
allel rectangle intersection algorithm on GPU+CPU. In Pro-
ceedings of the 2011 IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid) (Newport Beach,
CA, USA, 2011), IEEE, pp. 43–52.

[LLCC13] LO S.-H., LEE C.-R., CHUNG I.-H., CHUNG Y.-C.: Optimiz-
ing pairwise box intersection checking on GPUs for large-scale
simulations. ACM Transactions on Modeling and Computer Sim-
ulation 23, 3 (2013), 1–22.

[MCLK17] MING C., LIN D. M., KIM Y. J.: Collision and proximity
queries. In Handbook of Discrete and Computational Geometry,
3rd ed. Jacob E. Goodman, Joseph O’Rourke and Csaba D. Tóth
(Eds.). CRC Press (2017), ch. 39, pp. 1029–1056.

[Mir97] MIRTICH B.: Efficient Algorithms for Two-Phase Collision
Detection. Mitsubishi Electric Research Laboratory (MERL),
1997, 1–26.

[Nvi19a] NVIDIA: Physx 4.1. github.com/NVIDIAGameWorks/
PhysX (2019).

[Nvi19b] NVIDIA: Physx 4.1 documentation: Broad phase algo-
rithms. gameworksdocs.nvidia.com/PhysX/4.1/documentation/
physxguide/Manual/RigidBodyCollision.html#broad-phase-
algorithms (2019).

[SFC*19] STROOBANT P., FELICETTI L., COLLE D., TAVERNIER W., FEM-
MINELLA M., REALI G., PICKAVET M.: Parallel algorithms for simu-
lating interacting carriers in nanocommunication. Nano Commu-
nication Networks 20 (2019), 20–30.

[She14] SHELLSHEAR E.: 1D sweep-and-prune self-collision detec-
tion for deforming cables. Visual Computer 30, 5 (2014), 553–
564.

[SR17] SERPA YGOR R., RODRIGUES M. A. F.: Flexible use of tempo-
ral and spatial reasoning for fast and scalable CPU broad-phase
collision detection using KD-Trees. Computer Graphics Forum
38, 1 (2017), 1–14.

[SR18] SERPA, YVENS R., RODRIGUES M. A. F.: A draw call-
oriented approach for visibility of static and dynamic scenes with
large number of triangles. Visual Computer 35, 4 (2018), 549–
563.

[TB12] TRACY D. J., BROWN S.: Accelerating physics in large,
continuous virtual environments. Concurrency and Computation:
Practice & Experience 24, 2 (2012), 125–134.

[TBW09] TRACY D. J., BUSS S. R., WOODS B. M.: Efficient large-
scale Sweep and Prune methods with AABB insertion and re-
moval. In Proceedings of the 2009 IEEE Virtual Reality Confer-
ence (Lafayette, LA, USA, 2009), IEEE, pp. 191–198.

[Ter17] TERDIMAN P.: Physics engine evaluation lab (PEEL).
github.com/Pierre-Terdiman/PEEL (2017).

[WDM07] WOULFE M., DINGLIANA J., MANZKE M.: Hardware accel-
erated broad phase collision detection for realtime simulations. In
Proceedings of the 2007 Workshop in Virtual Reality Interactions
and Physical Simulations (Dublin, Ireland, 2007), J. Dingliana
and F. Ganovelli (Eds.), The Eurographics Association, pp. 1–10.

[WFZ13] WELLER R., FRESE U., ZACHMANN G.: Parallel collision
detection in constant time. In Proceedings of the 2013 Workshop
on Virtual Reality Interaction and Physical Simulations (Lille,
France, 2013), J. Bender , J. Dequidt, C. Duriez, G. Zachmann
(Eds.), The Eurographics Association, pp. 1–10.

[WM09] WOULFE M., MANZKE M.: A framework for benchmarking
interactive collision detection. In Proceedings of the 25th Spring
Conference on Computer Graphics (Budmerice, Slovakia, 2009),
ACM, pp. 205–212.

[WM17] WOULFE M., MANZKE M.: A hybrid fixed-function and
microprocessor solution for high-throughput broad-phase colli-
sion detection. EURASIP Journal on Embedded Systems 2017, 1
(2017), 1–15.

[ZE00] ZOMORODIAN A., EDELSBRUNNER H.: Fast software for box
intersections. In Proceedings of the 16th Annual Symposium on
Computational Geometry (Clear Water Bay, Hong Kong, 2000),
ACM, pp. 129–138.

c© 2019 The Authors Computer Graphics Forum c© 2019 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

https://havok.com/physics/
https://github.com/NVIDIAGameWorks/PhysX
https://github.com/NVIDIAGameWorks/PhysX
https://gameworksdocs.nvidia.com/PhysX/4.1/documentation/physxguide/Manual/RigidBodyCollision.html#broad-phase-algorithms
https://gameworksdocs.nvidia.com/PhysX/4.1/documentation/physxguide/Manual/RigidBodyCollision.html#broad-phase-algorithms
https://gameworksdocs.nvidia.com/PhysX/4.1/documentation/physxguide/Manual/RigidBodyCollision.html#broad-phase-algorithms
https://github.com/Pierre-Terdiman/PEEL

