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Abstract
Parametric computer-aided design (CAD) enables description of a family of objects, wherein each valid combination of param-
eter values results in a different final form. Although Graphical User Interface (GUI)-based CAD tools are significantly more
popular, GUI operations do not carry a semantic description, and are therefore brittle with respect to changes in parameter
values. Programmatic interfaces, on the other hand, are more robust due to an exact specification of how the operations are
applied. However, programming is unintuitive and has a steep learning curve. In this work, we link the interactivity of GUI with
the robustness of programming. Inspired by programme synthesis by example, our technique synthesizes code representative of
selections made by users in a GUI interface. Through experiments, we demonstrate that our technique can synthesize relevant and
robust sub-programmes in a reasonable amount of time. A user study reveals that our interface offers significant improvements
over a programming-only interface.
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1. Introduction

Parametric computer-aided design (CAD) is a modelling paradigm
where objects are represented by the sequence of operations in their
design, rather than their final forms. This enables users to change
design parameters, which re-executes the sequence of operations,
and produces a new final object fitting a different use case. Since its
introduction in PTC Pro/ENGINEER in 1988 [Yar13], parametric
CAD has become the industry standard for 3D design. Moreover,
due to advances in quality and availability of 3D printing, it is no
longer exorbitantly more expensive to manufacture niche variants
of base objects. Manufacturing is becoming increasingly decentral-
ized, and we can expect people to manufacture different objects fit-
ting specific use cases rather than mass producing the exact same
object. This has re-ignited wide interest in parametricity of designs.

There are two interfaces to parametric design: programming and
GUI. Though most popular CAD tools such as Autodesk Fusion
360, OnShape, SolidWorks, PTC Creo and FreeCAD are GUI-
based, these interfaces are far from perfect. GUI interfaces are inter-
active: users directly select elements they want to modify, and then
apply operations to these. This interactivity, however, is a double-
edged sword. The specification of which elements users select is

‘latent’, i.e. not explicitly known. In GUI, this specification is never
made explicit. For many computer applications, this is an acceptable
compromise. However, for parametric CAD, this is a severe limita-
tion. For instance, what happens when a designer modifies 1 of 18
edges in a design, and then due to a parameter change, there are 36
edges? CAD interfaces need to recompute the design and present
the final object reflecting the ‘design intent’. However, due to the
under-specification of GUI, this is an impossible task. Therefore,
GUI-based CAD interfaces often end up with modifications that do
not match the design intent. This problem is well known and many
heuristics have been proposed in prior work [Che95, CH95, CCH96,
Kri95, AMP00]. In our observations, we find that robustness issues
are still quite ubiquitous.

Before we proceed, let us point out that a (near) perfect solution to
the robustness problem already exists: programming. Programmes
are essentially precise specifications. Programmes clearly identify
which elements need to be modified, for all valid combinations
of parameter values. Depending on the Application Programming
Interface (API), this is done by semantically selecting elements
that possess explicit features, using loops (OpenSCAD [Kin19]
and Open CASCADE [OPE19]), or declarative queries (Cad-
Query [Par19a], FeatureScript [Fea20] and Scadla [Zuf19]).
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Figure 1: We present a technique to bridge GUI and programmatic interfaces for CAD. With the insight that GUI is intuitive but brittle, and
programming is robust but difficult, we link the two by synthesizing programme segments representative of GUI-based operations.

Figure 2: The side bracket design fails to fillet the intended edges
(see black box) after the length of the top edges is increased.

However, writing complicated semantics representative of simple
GUI interactions has proven to be an unfortunate barrier-to-entry.
As a result, programmatic interfaces aremuch less popular than their
GUI-based peers. In this work, we propose bringing the ease of use
of GUI with the robustness of programming, and present a system
that uses GUI interactions to automatically synthesize code.

1.1. Motivation

We now motivate towards the need for a better resolution to GUI-
based CAD’s robustness problem, and why our technique offers a
tangible solution.

Design intent. GUI-based CAD tools often fail in capturing de-
sign intent. This is true even for curated designs on professional-
grade CAD software. We present an example from Project
Egress [Bar19], a large collaborative project for building a replica
of the Apollo 11 space hatch, designed in Autodesk Fusion 360 .
Figure 2 shows a simple perturbation on the capsule side bracket
module. The perturbation causes more edges to appear in the re-
sulting object as before, which, in turn, causes the fillet (rounding)
operation to fail. Clearly, the CAD tool fails to capture design intent
(the top-left edge is not filleted any more).

Different and unknown heuristics. Different tools use different
heuristics to try and resolve ambiguity. Unfortunately, these heuris-

Figure 3: A simple dowel end-cap design and results of changing
dimensions of the base in various popular CAD tools.

tics are usually not known a priori, and designers often observe dif-
ferent unexpected results on different tools. Consider the simple de-
sign in Figure 3 (inspired by a dowel-end cap design [Bri19] on
Thingiverse, an online repository of several CAD projects). We
re-designed this example on CadQuery, a programmatic interface
for a baseline specification of what we want. Using the same steps,
we also designed this on FreeCAD, Autodesk Fusion 360 and
OnShape, all of which are GUI-based. On the initial design, we
change the dimensions of the rectangular base. All tools under test
yield different results. FreeCAD fillets one edge on the right of the
connection between the hollow rod and the base. Autodesk Fusion
360 fillets two opposite sides of the connection. OnShape changes
the shape of the hollow rod. Reducing the width of the rectangular
base leads to there being more edges than before while perform-
ing the fillet operation. FreeCAD does not use complex heuris-
tics. Internally, it uses names for all elements in the design, and
operations are applied to elements by name. So, when the design
changes, the names are re-evaluated and the fillet is applied to the
element(s) with the same name. As is evident, this often does not
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work well. Unfortunately, due to the closed-source nature of Au-
todesk Fusion 360 and OnShape, we cannot be certain of their
ambiguity resolution heuristics.

Programming and GUI. In the context of the two examples pro-
vided above, writing a programmatic specification for each step in
the design process has two advantages:

(i) it makes the design intent explicit, and
(ii) it removes the need for ambiguity resolution heuristics.

Current GUI-based CAD tools already recognize some other ad-
vantages of programming. For example, most tools support Macros,
which encapsulate GUI operations into executable chunks. Addi-
tionally, the popularity of procedural design has introduced dataflow
programming to CAD (examples areGrasshopper3D andDynamo
by Autodesk), where GUI-based designs are connected to dataflow
components. However, most major CAD tools today offer an exclu-
sively GUI-based design interface, backed by opaque heuristics for
capturing design intent and for ambiguity resolution.

Inspired by recent work on integration of programming and direct
manipulation for vector graphics [CHSA16], we propose bridging
programmatic andGUI-based CAD.We do this by synthesizing pro-
grammatic queries representative of designers’ GUI selections and
operations.We use amodified decision tree algorithm for this, which
prefers short queries that generalize. Moreover, we use techniques
from programme analysis to synthesize queries at the relevant line
number, using the relevant intermediary object, and when applica-
ble, using programme variables and scope. Based on experimental
evidence, we find that our technique synthesizes queries that are ro-
bust, and it does so fairly quickly (taking at most a tenth of a second)
for various samples. A user study reveals that our interface is faster,
more accurate and preferable to a programming-alone interface.

1.2. Our contributions

The main contributions of this work are as follows:

(i) We identify bridging programming and direct manipulation
interfaces as a possible solution to brittleness of GUI-based
interfaces for parametric CAD.

(ii) We propose an algorithm for automatic synthesis of relevant
selection queries from GUI-based interactions.

(iii) We have implemented our algorithm in a prototype built on
top of CadQuery and FreeCAD .

(iv) We validate our approach using various designs, application
scenarios and a user study.

2. Related Work

Robustness of parametric CAD. GUI-based CAD tools initially suf-
fered from a severe robustness challenge of not being able to persis-
tently and uniquely identify geometric entities of a design. This led
to research on heuristics to resolve this, both, during design time
[Che95, CH95, CCH96] and during re-evaluation (under changed
parameter values) [Kri95, AMP00]. Robustness in design has been
explored using geometric constraints [BH11], and explicit user in-
put [Gir01, PPG96]. These works successfully provide persistent
and unique names to geometric entities (termed the ‘naming prob-

lem’). However, ambiguity resolution is done differently on differ-
ent CAD tools, and because this information is usually opaque to
users, interchange of designs between different CAD tools is diffi-
cult [MH05]. Prior work has focussed on providing unique names to
geometric entities, and mapping these names to different geometric
entities when there are parameter changes. To the best of our knowl-
edge, no prior work has looked into linking GUI with programming.

Parametricity in CAD. The importance of parametric CAD, in the
context of the modern design and fabrication landscape, has greatly
increased. There has been work on systematic exploration of large
parametric design spaces [LSL*19, SWG*18, SSM15], using pa-
rameters for quality control [WDRAJ16], and interactive modifica-
tion of designs [OLFB18]. There are extensions to the original idea
of modelling by example [FKS*04] to ensure that the resulting de-
sign is fabricable [SSL*14], and on generation of fabrication con-
straints at design time [LVLR19]. Interestingly, research focussed
on exploring parametricity of designs has either chosen program-
matic back-ends, or highly curated designs. This is also true for the
industry. Thingiverse [Mak19], for example, only supports designs
with a programmatic back-end for its customizable designs section.

CAD synthesis. For modelling based on Constructive Solid Ge-
ometry (CSG), which involves creation of shapes using binary
operators on solids, there has been recent work on synthesizing
the underlying CSG-tree or programmatic representation [DIP*18,
NWP*18]. Although these techniques can synthesize CSG-trees
of various 3D models, CSG representation is less expressive than
Boundary Representation (B-Rep), the representation we and sev-
eral modern CAD tools use. We view these works as complimentary
to ours in that these try to uncover the underlying semantic repre-
sentation of a rendered 3D model, whereas we try to uncover the
semantic representation of user activity during the design process.

Interactive programming. Our work shares the same motivation
as recent work on synthesizing programme repairs from GUI-based
edits on the programme output [CHSA16, Vic12, MKC18]. Prior
works focus primarily on small programme repairs achieved either
through constraint solving, or some well-defined transformation
rules. There is also work on synthesizing simple programmes from
GUI-based target outputs [HC16]. The synthesized programmes,
however, are very simple transformations of GUI operations to a
textual representation.

Programme synthesis. Programme synthesis is already a mature
field, from the first major use cases in data extraction and syn-
thesis of spreadsheet macros [LG14, BGHZ15], to more recent
work such as the synthesis of SQL queries [WCB17]. Our use case
for CAD shares many of the same goals as other synthesis ap-
proaches, i.e. we want to synthesize small programmes and we want
to do this fairly quickly. A unique challenge we tackle, unlike some
other programming-by-example [Gul16] based approaches, is that
we work with only one example (i.e. a user’s direct manipulation
action).

Our underlying synthesis approach needs to be fast enough to be
unobtrusive to the GUI-based interaction. In this context, we bor-
row ideas from syntax-guided synthesis (SyGuS) [SL08, ABJ*13],
as our abstract grammar restricts the syntax of the programmes we
synthesize. In SyGuS terminology, we use a compositional tech-
nique on top of an enumerative approach, i.e. we enumerate small
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programmes and combine them to create more complex pro-
grammes. However, unlike the SyGuS setting, we do not have
a complete specification of what the synthesized programme
should do.

Our synthesis approach is based on a modified decision tree al-
gorithm. Decision trees have already been used in the context of
programme analysis and synthesis. For example, these have been
applied to the learning of programme invariants [GNMR16] and for
tying-together small programmes in a divide-and-conquer synthesis
approach [NSM18, ARU17]

3. Preliminaries and Overview

In Section 1.1, we discussed robustness issues in GUI-based CAD
and proposed bridging GUI with programming to remedy this brit-
tleness. We now provide a quick overview of modern CAD inter-
faces and representations, and how our proposed system addresses
the limitations of both, GUI-based and programmatic CAD.

3.1. CAD representation and operations

B-rep is a versatile and widespread representation that keeps track
of the features in a shape, as well the topology and geometry of
each element. A vertex is described by its x, y and z coordinates in
3D Cartesian space. An edge is a curve bounded by two vertices. A
curve can be a straight line, a circle or even something complicated
like a Bezier curve or B-spline curve. A face is a list of edges with
an enclosed surface. The surface can be planar, conical, toroidal or
even a B-spline surface. Finally, a solid consists of a closed list of
faces. Once an object is roughly built, users can modify sub-parts
of the object by selecting features (edges, faces, etc.) and applying
operations on them. The following is an abstract view of some com-
mon operations available in CAD tools:

The choice of a B-rep implementation fixes the set of primitive
operations which can be used in the language. Most open-source
projects use Open CASCADE, and therefore, support similar oper-
ations.

CadQuery programmatic interface. CadQuery is a flexible and
high-level domain-specific language based on Open CASCADE.
CadQuery is implemented as a shallow embedding in Python, and
therefore, inherits its control structure andmodule system. There are
two types of domain specific operations in CAD:

(i) algebraic and
(ii) query operations.

Figure 4: Some selection predicates supported by CadQuery .

Algebraic operations have an algebraic structure, for example,
affine transformations and boolean operations. These operations
map directly to operators or methods in the underlying language. A
distinct feature of algebraic operations is that these are often total,
i.e. they are well defined for all possible inputs, and are therefore ro-
bust. Query operations, on the other hand, modify specific features
of objects. For example, a chamfer is applied to a specific edge.
Therefore, to apply such operations, there is a need of identifying
features on which the operation applies (recall that GUI-based tools
use name). Programmatic interfaces such as CadQuery (as well
as FeatureScript and Scadla) provide a small query language to
perform such selections. A query on an object first specifies a type,
and then a property. The query returns elements of the specific type
which satisfy the property. Coming back to the dowel end-cap ex-
ample presented in Section 1, the following code segment (in Cad-
Query) generates a design that is robust to parameter changes:

# Make the base

2 base = box(base_l, base_w, base_h)

3 # Make the tube

4 tube = base.faces(’’>Z’’).circle(tube_r).extrude

(tube_h, combine=False)

5 tube = tube.faces(’’>Z’’).shell(tube_shell)

6 # Union the base and the tube

7 result = base.union(tube)

8 # Fillet relevant edge(s)

9 result = result.edges(’’%CIRCLE’’).

edges(’’<Z’’).fillet(fillet_r)

Line 7 performs an algebraic operation, which is robust, even
when done via GUI. Lines 4, 5 and 9 perform query operations,
which cannot be robustly specified via GUI. Line 4 creates a solid
cylinder on the maximal face in the Z-axis of the base. Line 5 trans-
forms the solid cylinder into a shell of thickness tube_shell by
removing the top-most face. Line 9 first selects all circular edges in
the design, and then fillets the minimal edges in the Z-axis.

The selection API in CadQuery includes several selection pred-
icates (see Figure 4 for some examples). These predicates can be
categorized on the basis of whether they depend on intrinsic prop-
erties or relative properties over multiple elements, and whether the
predicates take parameters. For instance, an intrinsic predicate can
select all the edges parallel to the Z-axis (Figure 4a), or, non-circular
edges (see Figure 4b). A relational predicate can select the face(s)
with the maximal Z-coordinate (see Figure 4c). Note that in addition
to the standard axes, the selection predicates can be defined over
any arbitrary vector. Another parametric predicate is a bounding
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Figure 5: Filleting the edge connecting the rectangular base and
the cylindrical tube in FreeCAD. The relevant edge is selected in
the interactive view. Then, the ‘Fillet’ option in the toolbar is cho-
sen. The boxes on the menu on the left show the corresponding edge
reference and the fillet parameter.

Figure 6: Some intermediary steps for designing a bottle in CAD.

box, which selects all the elements within it. Predicates can also be
chained (using .), and combined as boolean formulae (using and,
or, and not).

In addition to the predicates we have already seen, there are
also predicates for parallelism (’’|Z’’), orthogonality (’’#Z’’),
and other special geometry (’’%CYLINDER’’). Common predicates
are written as strings. Predicates can also be objects in the pro-
gramming language. This allows them to take expressions as pa-
rameters. For instance, BoundingBox((0,0,0), (s,s,s)) se-
lects all elements inside a box, whose dimensions depend on the
variable s.

Semantic queries versus direct manipulation. As an alternative
mode of selection, writing queries requires thinking semantically.
While it is usually harder to write a query than select elements in the
GUI, a query carries more meaning. For instance, consider line 9 of
the dowel end-cap code presented before. To do the same operation
in GUI, users need to select the relevant edge, and choose the fillet
operation, as demonstrated in Figure 5. We show FreeCAD here,
but other popular CAD applications also have similar interfaces. The
selection mechanism in GUI is intuitive and quick. However, notice

Figure 7: Using the programme’s structure to synthesize more rel-
evant queries. A programme generates a Braille plate with several
extruded circles that are created together in a collection. Selecting
any one (or more) of these circles would generate a formula for all
the circles in this collection. Therefore, the rounding is applied to
all the extruded circles to get the final design.

that the GUI in Figure 5 uses a name identifier for the selected edge
(Edge10). This is the source of brittleness. If this identifier changes
because the shape is modified, the fillet operation would either fail,
or worse, modify the object in some other way (due to unknown
ambiguity resolution heuristics).

3.2. Towards interactive programming for CAD

Programming languages offer variables for parameter management,
control flow structures, precision, modularity and re-usability. On
the other hand, GUI interfaces shine when it comes to selection
mechanisms and getting immediate feedback on operations. Though
writing selection queries can be a challenging task, due to the im-
plicit structure to most parametric designs, it is clearly meaningful
to do so. We show that a tight integration of direct manipulation and
programming can help designers get the best of both worlds. The
focus of our work is on achieving this by enabling designers to use
GUI interfaces for easy selection, and automatically synthesizing
sub-programmes that represent their actions.

We now present a simple design example to demonstrate the ca-
pabilities of our approach. Suppose we want to design a bottle as in
Figure 6c. Designers start with a blank sketch and programme. They
fill in some environment variables, such as the radius and height of
the bottle:

radius = 5.0

height = 20.0

They then create a cylinder, which serves as the body of the bottle.
This operation can be directly translated to code, and is robust:

cyl1 = circle(radius).extrude(height)

They then need to create another cylinder for the neck of the
bottle. This cylinder is to be created on top of the existing one. In
the GUI, users select the face on top of which they want to create
the new cylinder. Our system automatically synthesizes the relevant
query:

cyl2 = cyl1.faces(’’>Z’’).circle(radius/2).extrude

(height/2, combine=False)
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Figure 8: Modification/debugging of a complicated programme. As we track intermediary states of the design, selecting an element or feature
in the direct manipulation interface takes us to the relevant line of code responsible for it. This aids in local modifications and debugging.

Designers now union the two cylinders together. Again, this op-
eration can be directly translated to code:

bottle = cyl1.union(cyl2)

So far, we have a design as in Figure 6a. Next, the designers want
to smooth the edges at the neck of the bottle (as in Figure 6b). They
perform this operation in GUI, and the relevant selection query is
automatically synthesized:

bottle = bottle.edges(’’%CIRCLE and (not >Z) and

(not <Z)’’).fillet(0.2 * radius)

Finally, they create an empty shell by removing the top most face
of the bottle and specifying a thickness. The query is automatically
synthesized:

bottle = bottle.faces(’’>Z’’).shell(-0.1 * r)

This completes the design process and we have the final design
as in Figure 6c.

Notice that this workflow shields designers from the complex-
ity of the semantics of their GUI selections, and at the same time,
benefits them due to a generalizable underlying programme. Such
workflows are enabled by our system. In addition to such interac-
tive synthesis of queries, we also keep track of environment vari-
ables and the programme structure (loops, if-else blocks, and collec-
tions). This helps us synthesize more relevant queries and support
interactive local modifications and debugging. We now present two
examples based on samples from CadQuery ’s public repository to
demonstrate this.

Using programme structure. Consider the example of making a
plate of Braille text (Figure 7). The following code segment gener-
ates this with cylindrical bumps:

1 # Make the base plate

2 base = box(get_length(), get_width(), height)

3 # Get points of the braille and extrude them from

the base plate

4 braille = base.faces(’’>Z’’).get_points

(uvCoords)

5 .circle(radius)

6 .extrude(bump, combine=False)

Now, let us say we want to round the cylinders created in line 6
so as to resemble hemispheres. In a traditional GUI-based interface,
this would entail selecting each of the extruded edges and rounding
them. In our system, however, selecting any one of these edges helps

us identify the programmatic context in which the edge was created.
In this example, all of these edges were created together in line 6.
Therefore, our system generates a query for all the edges created in
the same context:

result = braille.edges(’’>Z’’).fillet(radius)

3.2.1. Local modifications and debugging

The way designers typically debug and perform local modifications
on their design is by selecting the specific feature of the design in
GUI, and analysing/modifying its attributes. However, this can be
considerably more difficult in a programmatic interface. For exam-
ple, consider a storage box design (Figure 8). The programmatic
representation (48 lines of code) is parametric, and uses a loop and
several if-else blocks. It is difficult to follow the programme logic
due to interdependencies between several operations. Such use cases
can be drastically simplified by our system. As we track how the
design changes in each successive line of code, given a specific fea-
ture in the design, using reflection, we can identify the line of code
responsible for it. Users can then analyse attributes or make mod-
ifications there. Figure 8 shows two examples of user selections in
the GUI and the relevant line of code returned by our system.

In the context of CAD, two important parts we do not cover in this
work are 2D sketching, and algebraic operations and affine trans-
formations. Both of these have been covered in the sketch-n-sketch
framework for vector graphics [HC16, CHSA16], and these tech-
niques can be directly applied to CAD. Our focus is on the syn-
thesis of queries from user selections in direct manipulation inter-
faces. Our implementation is based on the FreeCADGUI and Cad-
Query programmatic back-end.We synthesize selection queries us-
ing a modified decision tree algorithm. Decision trees are quite ef-
ficient at building such formulae. Moreover, due to their white-box
nature, it is easy to understand why the synthesis procedure comes
up with a certain formula rather than another one (in cases where
more than one formula is possible). Our decision tree procedure es-
sentially chooses a predicate to add to the formula in a greedy fash-
ion. Doing so incrementally gives us the complete and correct-by-
construction formula. Although the decision tree procedure cannot
guarantee synthesis of the shortest formula, we find that, in practice,
these formulae are quite small, readable and quickly computed.

4. The Synthesis Framework

Abstractly, our method learns code from examples. Given an ex-
ample (a shape and a direct manipulation operation), the goal is
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to learn code that produces the same result as the direct manipu-
lation when run on the shape. Furthermore, we want the code to
generalize to other shapes obtained by changing parameters of the
design. Since we look at selection, our problem is also a classi-
fication problem, i.e. learning a classifier where the selected el-
ements are the positive instances. However, as we generate code
corresponding to the classifier, we use white-box learning, which
provides models that can be interpreted by humans. Furthermore,
our algorithm needs to be fast and complete (i.e. able to generate a
selector for any direct manipulation operation) for a predictable user
experience. Finally, our method needs to already work on a single
example.

We use decision trees as they satisfy the constraints stated above.
We can generate code by traversing learned trees and we can have
enough predicates for selection so that our method is complete. To
generalize from a single example, we rely on Occam’s razor. We
search for small decision trees and expect them to generalize better.
However, our method can be easily extended to search according to
other cost functions.

The core of our method is a decision tree algorithm modified in
two important ways. Firstly, decision trees usually make decisions
using unary predicates (intrinsic properties of elements). However,
we also include relational predicates that depend on context. For
instance, element(s) with the maximal X-coordinate in a shape may
change if we first filter this shape with another selector. Secondly,
in our case, the set of predicates available to the algorithm is not
fixed in advance. We can also select elements based on values in
the programme. For instance, we can select elements located within
a range, where the values for this range can be constant literals, or
come from variables in scope.

We now describe the general framework of our technique. Given
the programme, we analyse objects at each line of code to decide
which line number and object to synthesize a query for, i.e. for Ō as
the ordered set of objects at each successive line of code, we find:
min({i | Oi ∈ Ō ∧ T ⊆ Oi}), where T is the target set of elements.
If O is the object at this line of code, our objective is to synthesize
a sub-programme that when applied to O gives T .

4.1. Syntax of Synthesized Programmes

The following is the abstract syntax of the programmes we synthe-
size:

A selection query is essentially a combination of primitive predi-
cates selecting elements in a shape (i.e. vertices, edges or faces). We
have two modalities for combining predicates: boolean operations
and sequence (‘.’). Boolean combinations behave as set intersec-
tion, union and complement over sets of elements. The sequence
operation is related to predicates that work on groups of features.
For instance, minimum and maximum fall into this category. Se-
quencing involves re-evaluating these predicates on the current set
of features. Primitive predicates are predicates directly supported by
the underlying language (CadQuery in our case).

Algorithm 1. Modified decision tree algorithm for synthesizing a
query representative of a GUI selection

4.2. Synthesis algorithm

Decision trees are popular in machine learning for solving classi-
fication and regression tasks. Unlike other techniques like neural
networks, decision tree learning is a white-box approach. It is pos-
sible to understand the logic behind decision procedures of these
trees. Moreover, due to their simple design, this logic is also human
readable. We use this feature of decision trees to synthesize code
snippets for selection queries. For the sake of simplicity, we use a
selection predicate and the set of elements it selects interchangeably.

Description of the algorithm. Our synthesis algorithm is based on
the popular ID3 Decision Tree learning algorithm [Qui86]. Given
the relevant top-level object O, we start with all the elements that
can possibly be selected, O = {o1, o2, o3, . . .}. We also have the
set of selected elements we want to derive a selection query for,
T = {t1, t2, t3, . . .} ⊆ O. We maintain the notion of a current set,C,
which is the set we are currently working with in the decision tree
procedure. In the beginning of the procedure, C = O. We then fol-
low the algorithm as in Algorithm 1. Firstly, we check if the cur-
rent set C is a base case. Set C is a base case if C ∩ T = ∅ or if
C ∩ T = C. In either case, we do not need further decision steps,
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as C contains only positive or negative examples. If C is not a base
case, we perform further decision steps until we reach a base case.
At each decision step, we choose the selection predicate with the
highest information gain (and that does not lead to selecting C or
∅). When the rate of progress decreases, we add a new candidate
selection predicate by looking at the programme context. The selec-
tion predicate can either be from a pre-calculated selector set Scurr or
from a newly calculated predicate set Snew. Re-calculating means we
combine the predicate with ‘.’ and using a pre-calculated predicate
means we combine it with ‘∧’. The recursive call of the algorithm
returns a flag to indicate whether to use ‘.’ or ‘∧’ when connecting
the sub-tree to its parent.

The formulation of entropy and information gain is the
same as in the standard ID3 Decision Tree algorithm: H(C) =
−∑

x∈X p(x) log2p(x), where H(C) is the entropy of the current set
C. X is the set of classes in C. In our case, X has two classes, ele-
ments that are in the target set (positive examples) and elements that
are not (negative examples). p(x) is the proportion of elements in a
class x to the total number of elements inC. The information gain for
the predicate s when applied to C is IG(C, s) = H(C) − H(C|s) =
H(C) − ∑

k∈{C∩s,C\s} p(k) H(k). The selection predicate s partitions
C into two subsets, one for s and the other for ¬s. p(k) is the pro-
portion of elements in subset k to the total number of elements inC.

4.2.1. Correctness and completeness

Our algorithm is correct-by-construction. On the other hand, com-
pleteness critically relies on the availability of selection predicates,
and the threshold t on the information gain to be low enough for all
nodes in the decision tree to have an information gain larger than t.
Our algorithm is relatively complete (depending on t).

For trivial completeness, we can examine each o ∈ O and gen-
erate a predicate for each one (structural equality). However, this
would slow down the algorithm and likely degrade the quality of the
synthesized queries (over-fitting). Therefore, our algorithm starts
with fewer, more general predicates, and if these are not enough,
it adds more specialized predicates lazily. This process is bound to
complete (given a low enough threshold) as there are finitely many
properties that elements possess, and in each successive decision
step, the size of the current setC reduces monotonically until a base
case is reached.

4.2.2. Practical adjustments for efficiency

The aim of our technique is to provide an interactive programming
environment that can work with arbitrarily complex shapes and GUI
selections. The algorithm already handles intrinsic and relational
predicates differently to avoid needless re-evaluation of intrinsic
predicates. We now suggest some further adjustments to the algo-
rithm.

(i) To re-evaluate selection predicates that depend on the set of
features (like maximum and minimum), we need to create a
temporary object Onew and evaluate the predicates on this to
generate Snew. This is an expensive process, especiallywhen the
set of selection predicates and elements in the object is large.
Therefore, we propose only calculating this if the maximum

information gain from predicates in Scurr is less than a certain
threshold.

(ii) The calculation of Snew can be done in a smart way. Predi-
cates such as largest or smallest in a particular coordinate axis
depend on the elements in our current set C. However, there
are certain predicates which do not need to be explicitly re-
calculated, such as orthogonality and parallelism to a coordi-
nate axis. These can be directly inferred from Scurr.

4.2.3. Generating selection predicates

Selection predicates, typically the intrinsic ones, may depend on pa-
rameters. This enables the generation of new predicates on-the-fly.

4.2.4. Non-parametric predicates

The simplest predicates are non-parametric. There are a finite num-
ber of them and they capture the most common use cases. Our algo-
rithm starts with these predicates. These predicates includemaximal
or minimal elements in each coordinate axis, elements parallel or or-
thogonal to each coordinate axis, types of geometry, etc. Extremal
elements are quite intuitive for humans to understand and use as
there is a direct mapping from these to natural language (‘top-most’,
‘left-most’, etc). This is also the case for parallelism and orthogo-
nality predicates. Predicates based on geometry enable selections
such as round edges, planar faces, etc.

4.2.5. Parametric predicates

The second category of predicates take parameters. By giving differ-
ent values to these parameters, we get different selections. To gen-
erate these selection predicates, we use values from the elements
selected, and variables in scope where the query is to be generated.
We prioritize use of variables as they are more likely to be robust to
programme changes.

We have implemented selection based on bounding boxes. Al-
though the bounds can be generated using constant literals, we try
to fit variables in scope to the constraints so as to have more read-
able and likely-to-generalize queries. If V = {v1, v2, v3 . . .} are en-
vironment variables in the programme, and [a, b] is the bounding
constraint for a particular selection set, we try to find vi ∈ V with
minimum distance to a and vi ≤ a. Similarly, for the upper bound,
we try to find vi with minimum distance to b and vi ≥ b.

However, there are many more parametric selectors which can be
added. For instance, the length of edges, the area of faces or the vol-
ume of solids can be used. Our algorithm is extensible and it is easy
to add more selection predicates. More predicates may lead to syn-
thesis of shorter queries. However, in order to understand what these
queries do, designers would need to know a larger list of predicates.
A decision on which direction is better in this trade-off requires fur-
ther study.

4.3. Querying objects in a loop or collection

Very often, programmes operate on collections of objects. An
obvious example is the map function, which takes as input a collec-
tion of objects and returns a collection with some transformation
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Algorithm 2. Synthesizing queries on collections

applied to each element. In CAD, this is fairly common as well (an
example was presented in Section 3.2). As we maintain a snapshot
of programme state at each line number, given a set of elements
selected using direct manipulation, we check if the selected ele-
ment(s) are part of a collection. If this is the case, we generate a
query fitting the whole collection. Algorithm 2 shows how this
is done.

5. Evaluation

We now present implementation details, and provide experimental
evidence to demonstrate the applicability of our approach to modern
parametric CAD workflows. Section 5.1 provides implementation
details. Section 5.2 provides evidence of our approach working well
in practice. In Section 5.3, we present a user study. In Section 5.4,
we show that even when dealing with complex designs that do not
have a programmatic representation, our technique can synthesize
selection queries fairly quickly.

Wherever we report number of lines of code, we exclude blank
lines and comments. Wherever we report running time, the ex-
periments are done on a machine with an Intel Core i3-8100T
processor, 8GB RAM and an Intel UHD Graphics 630 graphics
card. In the Appendix, we report additional details and more
experiments.

5.1. Implementation

Our implementation is available at https://gitlab.mpi-sws.org/
mathur/ipcad (around 1100 lines of Python code). We build on
top of FreeCAD (version 0.17), a popular open-source GUI-based
CAD application, and CadQuery (version 1.2.0), an open-source
programmatic interface. These two interfaces are bridged together.
Although CadQuery offers a set of tools for integration with
FreeCAD, this is restricted to displaying the programme’s output
on the FreeCAD GUI. There is no interactivity during the design
process and no programming-specific debug features. Our imple-
mentation brings this.

GUI interface. The FreeCAD API enables listening to GUI
events. Our implementation listens to events that correspond to
selection of elements in the design and performing of opera-
tions. Once a selection in the GUI is made, we map the selected
elements in the GUI to elements in the design’s programmatic
representation.

Programming interface. The programming interface is unaware
of the GUI interface except for its use as the output device (as is usu-

ally the case). However, we instrument the programme so as to track
intermediate states of the design with the help of Python’s reflec-
tion API (inspect module). Tracking intermediary states helps us
determine which line of code led to a particular selected element be-
ingmodified. This enables interactive local modifications and debug
features. Moreover, tracking intermediate states helps understand-
ing the control structure of the programme, as well as identifying
which elements were created together, for example, in a loop or in a
collection. In addition to tracking the state of the design and control
flow, we also maintain a list of variables in scope. This is done so as
to include these as parameters in the synthesized queries, especially
range-based queries.

5.2. Synthesis robustness and runtime

We now evaluate our technique on several important metrics like
robustness of the synthesized queries and runtime of the algorithm.
The evaluation is based on a wide variety of designs, both simple
and complex, and encompasses a large variety of application areas.
There is a need for ground truth to appropriately assess the qual-
ity of our synthesized queries. Our examples are therefore based
on designs whose source code is also available. Here, we discuss
experiments on CadQuery samples, where we use example pro-
grammes from their public repository [Par19b]. In Appendix E, we
provide additional experiments on Thingiverse samples, where we
use some parametric designs available on Thingiverse ’s customiz-
able section [Mak19].

Experimental procedure and results. There are 22 designs in Cad-
Query ’s repository that use selection queries. We include all of
them (see Figure 9 for a snapshot of the designs) for this experi-
ment. The aim is to evaluate the runtime of our system’s synthesis
procedure, as well as examine whether the synthesized queries are
correct (or, as intended by the original authors of the design). The
experimental procedure is as follows:

(i) For each CadQuery example, we start with a blank pro-
gramme, and copy the example until a selection query occurs.

(ii) We use the FreeCADGUI to display the output until this line.
(iii) In the FreeCAD GUI, we manually select the elements se-

lected by the ground truth query.
(iv) We append the query returned by our automatic synthesis pro-

cedure to the programme, and carry on until the next selection
query, or the end of the design.

In Table 1, we report runtime and query size (number of predi-
cates in the query) for these examples. The number of vertices, edges
and faces in the examples, as well as lines of code (LOC) are also
reported to get a better sense of the complexity of the underlying
designs. To evaluate the correctness of the synthesized queries, we
compare the synthesized queries to the ground truth queries. Two
corresponding queries can either be equal, logically equivalent or
different. Equality and logical equivalence ensure correctness of the
synthesized query. However, if the synthesized query is different
from the ground truth query, it does not necessarily mean that it is in-
correct (existence of multiple semantically equivalent queries). For
synthesized queries that are different from the ground truth query,
we randomly sample over the programmes’ parameter space and
compare the resulting meshes. We sample parameters randomly as
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Figure 9: CadQuery designs (default parameters).

Figure 10: Examples of logically and experimentally equivalent
queries (elements in green are selected).

Table 1: Analysis of query size, synthesis runtime and robustness.

CadQuery examples

Min. Avg. Max.

# LOC 3 23.40 127
# Vertices 8 33.27 172
# Edges 12 51.72 252
# Faces 6 24.81 113
# Queries 1 2.41 13
Query size 1 1.64 7
Time (s.) 0.001 0.008 0.089

Robustness of 55 synthesized queries

# Equal 43
# Logically equivalent 4
# Experimentally equivalent 8

automatically finding ‘intended’ parameter values is known to be
difficult [HK01]. We compare meshes by calculating the Hausdorff
distance [RW09] between them using MeshLab [CCC*08]. If the
resulting meshes are the same over 50 random samples, we mark
these queries as experimentally equivalent. Figure 10 provides a vi-
sual example of the difference between logically and experimentally
equivalent queries. We report the results on our synthesized queries
in Table 1. In Appendix D, Table D1 gives specific details on each
example in the experiment.

On the basis of these results, we find that our technique is useful
in a practical interactive programming setting. The synthesis proce-
dure is quick to synthesize queries. In fact, the longest running time

Table 2: User performance on Programmatic only versus Programmatic
+ GUI (our) interface. We report the percentage of queries attempted and
correctness over all participants.

Programmatic only Programmatic + GUI

Min. Avg. Max. Min. Avg. Max.

% Attempted 48 77.5 100 64 94 100
% Correct 58.3 84.5 95.8 93.8 98.3 100

for these examples is less than a tenth of a second. The synthesized
queries are also successful at capturing design intent.

5.3. User Study

We conducted a user study with six participants, inclusive of begin-
ner, intermediate, and expert CAD users. Each study was approx-
imately 60 min long: 20 min for a short tutorial and feedback, 20
min using a Programmatic system, and 20 min using Programming
+ GUI (our system). Users were asked to write queries for 14 se-
lected designs (total 49 queries), which contained CadQuery ex-
amples after removing redundant designs (designs with only one
query, which occurs in a similar way in other designs), and adding
the dowel-end cap and bottle examples presented earlier in the pa-
per. The designs were partitioned into two groups. Participants in-
terchangeably used the programming only interface for one group,
while using our interface for the other. The aim of the study was to
collect quantifiable user data on efficiency and accuracy of our in-
terface in comparison to baseline (programming alone). Appendix F
provides more details on the user study.

In Table 2, we report how fast and how accurate the participants
were in the two interfaces. Using the GUI to synthesize program-
matic queries yielded significant improvements in speed and accu-
racy of design. There were just two instances when the GUI + Pro-
grammatic interface did not give the correct result: firstly, where the
user gave up because they needed to select several edges, whereas
the query was relatively straightforward, and secondly, where the
user selected the wrong element in a symmetric design.

Participants also filled a post study questionnaire. Table 3 ag-
gregates their answers to questions based on a Likert scale. The
questionnaire also asked which interface the participants preferred.
Everyone preferred the GUI+ Programmatic interface.When asked
why they preferred this interface, the most recurring opinion was

© 2020 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd



418 A. Mathur et al. / Interactive Programming for Parametric CAD

Table 3: A summary of qualitative opinions in the user study, reported on the Likert scale (1—Strongly agree, 5—Strongly disagree).

Opinion Min. Max. Median Avg.

Writing selection queries yourself (without aid from GUI) is difficult. 1 4 3 2.8
Generating selection queries using the GUI simplifies the process of writing selection queries. 1 2 1 1.3
Queries generated by the GUI are what users/programmers would write themselves. 1 3 2 2.0

Figure 11: Some complex designs without a programmatic rep-
resentation. We synthesized queries for the elements coloured in
green.

Table 4: Analysis of query size and synthesis runtime on models without a
programmatic representation.

Model Vertices Edges Faces Query size Time (s.)

Propeller 42 61 27 106 1.130
Glider 136 219 88 54 5.133
Whiffle ball 60 90 26 14 1.355

that using the GUI was faster. The participants especially preferred
GUI when the selections were non-standard (more than one selec-
tion predicate, or when the object was not parallelepiped).

5.4. Synthesis scalability

The queries generated in the previous experiment are usually small
as they utilize the underlying programmatic representation of the de-
sign.We now show that our algorithm can also scale tomore compli-
cated and artistic designs that do not have an underlying program-
matic representation. A typical use case of this is when designers
only have access to the final object, and want to make robust mod-
ifications on these. The models for this case study are taken from
the public repository of FreeCAD ’s official tutorials [BPL16]. The
models we used and the selections for which we synthesize queries
are depicted in Figure 11. The results of the corresponding synthe-
sis procedure are summarized in Table 4. Though it is not surprising
that the query sizes are quite large for these examples, we find that
our algorithm can still cope with this in a reasonable amount of time.

6. Future Work

We are exploring two complementary directions as future work. The
first is extending the system’s capabilities for modifying code. The
second is related to longer term deployment and user studies.

Code modifications. We can already track geometric features
through code. However, our implementation currently only gener-
ates new code snippets and does not modify existing code. For an
even tighter integration of direct manipulation and programming for
CAD, we need to merge our technique with prior work such as value
trace equation solving [CHSA16] and lenses [MKC18].

Richer parametric selectors. Currently, parametric selectors use
programme variables in scope directly. However, existing work
on programme synthesis [ARU17] can be used to generate arith-
metic expressions over programme variables for use in these se-
lectors. This would enable finding parametric selectors with val-
ues not readily stored in variables. For instance, the coordinate of
the side of a cube can be the sum of one corner’s position and the
width.

Tuning the algorithm’s selection. By default, the algorithm uses
information gain to decide which selector to use to expand the
decision tree. However, we could use other heuristics as long as
they avoid non-trivial predicates that do not split the feature set.
In particular, we could modify the information gain to weigh pred-
icates differently. As predicates are not unique, the weight func-
tion can be tailored to users’ preferences. The algorithm can gener-
ate multiple trees by expanding multiple alternatives with roughly
similar information gain and let users select which is best. Se-
lections can be recorded, and over time, one can learn a weight
function.

Effect of the interface choice on design quality. Related to the
previous point, which requires user participation, we would like to
study the impact of interface choice on robustness of designs thus
created. For example, studying programming versus direct manipu-
lation versus a tight integration of the two, and evaluating user pro-
ductivity and quality of resulting designs. Indeed, the question of
productivity and quality of designs in CAD interfaces is quite old
[BJ96], and still very relevant.

7. Conclusion

We identified bridging direct manipulation and programming as a
possible solution to getting the best of both worlds for parametric
CAD, i.e. intuitiveness and ease of use of direct manipulation, and
robustness, generalizability andmodularity of programming. To this
end, we presented a decision-tree-based approach that synthesizes
semantics of selections made in a direct manipulation interface. We
demonstrated how the formulae and sub-programmes thus gener-
ated can be used for interactive programming of CAD and that our
technique scales to complex designs. Our system can also use the
programme structure to generate design specific queries and aid in
programme modifications and debugging.
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Appendix A: Initial Selection Predicates

The choice of initial set of selection predicates is important for
generating quick and human-readable queries. We now present the
set of initial selection predicates we used in our experiments and
that we use as default:

(i) Intrinsic: parallelism and orthogonality to each of the three co-
ordinate axes, centre in the positive or negative direction of
each of the three coordinate axes, line, circle or arc geome-
try for edges, and plane, cylindrical or spherical geometry for
faces.

(ii) Relative: Maximal and minimal elements in each of the three
coordinate axes.

All of these predicates are available in CadQuery, and the
synthesized queries can therefore directly be used in a Cad-

Query programme. The initial set of selection predicates was
kept the same throughout the various case studies. Moreover, the
threshold on the information gain is set to 0 for our case studies.
This is to guarantee synthesis of a selection query for any possible
user selection. However, we see later, in Appendix B how this can
lead to rather long selection queries.

Appendix B: Range Queries

We now provide a specific example where a parametric bounding
box selector would make sense. Consider the model of a Turner’s
cube as in Figure B1. For the sake of this example, let us assume
that this model does not have a programmatic representation. If we
start with the usual selection predicates and 0 threshold on the infor-
mation gain, we get an extremely large selection query with 56 se-
lection predicates. Due to the layered structure of the design, our al-
gorithm has a hard time coming upwith a selector for the inner faces.
It tries to select the inner faces by removing faces from the top-level
object layer-by-layer. A remedy to this can be a concise paramet-
ric selector. For example, if the inner-most cube’s edge length, s is
made available to the algorithm, the synthesized query is:

faces(BoxSelector((0,0,0), (s,s,s)))

This is an example of a range query in which all faces inside the
bounding box defined by the range are selected. Not only is this
query shorter, but it is also synthesized quicker: it takes only 0.05 s
to synthesize, as compared to 23.29 s for the larger query.

Appendix C: Local Design Modifications

In Section 3.2, we discussed how our system can be used to dis-
cover which line of code is responsible for a particular feature in the
design. We now demonstrate a slightly different experiment, based
on the same example, wherein instead of just debugging or changing
of some parameters, we change the design itself. We use the same
example as before, i.e. a storage box. Figure 8 shows our storage
box. Let us remove the fillet from the bottom part of this box. To do
this, we can select any of the rounded faces (or edges) that we wish
to modify (see Figure 8), and ask our system to return the line of
code responsible for this. Our system returns the following line of
code:

oshell = oshell.edges(’’#Z’’).

fillet(topAndBottomRadius)

Figure B1: A Turner’s Cube with the innermost faces selected.
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Table D1: A summary of various CadQuery examples run on our system. We report the complexity of the model, the number of queries in the example, the
number which were equal/experimentally equal, the average size of each synthesized query and the time it took to synthesize it.

Model Vertices Edges Faces # Queries # Equal # Exp. Eq. Avg. size Avg. time (s.)

Block with Bored Center Hole 10 15 7 1 1 0 1 0,001
Pillow Block with Counterbored Holes 26 39 19 2 2 0 1 0.001
Creating Workplanes on Faces 10 15 7 1 1 0 1 0.001
Locating a Workplane on a Vertex 10 15 7 1 0 1 3 0.001
Offset Workplanes 10 15 9 1 1 0 1 0.001
Rotated Workplanes 20 30 10 1 1 0 1 0.001
Using Construction Geometry 16 24 10 1 1 0 1 0.001
Shelling to Create Thin Features 8 12 6 1 0 1 1 0.001
Lofts 18 27 12 1 1 0 6 0.049
Counter Sunk Holes 20 32 14 1 1 0 2 0.001
Rounding Corners with Fillets 8 12 6 1 1 0 3 0.001
Splitting an Object 12 18 8 2 2 0 1 0.001
Classic OCC Bottle 14 21 10 2 2 0 3 0.001
Parametric Enclosure Filleting 124 192 90 7 6 1 1 0.089
FreeCAD Solids as CQ Objects 10 15 8 1 1 0 1 0.001
Lego Brick 16 24 11 3 3 0 1 0.001
Remote Enclosure 64 112 51 5 4 1 1 0.001
Numpy 13 22 11 1 1 0 1 0.001
Braille 110 182 108 2 2 0 1 0.001
3D Printer Extruder Support 172 252 113 13 7 5 1 0.014
Shelled Cube Inside Chamfer 16 24 11 2 2 0 2 0.001
Reinforce Junction Using Fillet 25 40 18 3 3 0 1 0.015

Table D2: A summary of various Thingiverse examples run on our system. We report the complexity of the model, the number of queries required to be
synthesized, the average size of each synthesized query, the time it took to synthesize it and error metrics on the meshes generated using random sampling.

Model Vertices Edges Faces # Queries Avg. size Avg. time (s.) Max. error Avg. error

Air Mattress Plug [bel19] 18 27 11 1 1 0.001 0% 0%
Bolt cap [Nat19] 26 43 20 4 1 0.001 3.39% 0.55%
Electronics Bay [dan19b] 50 90 24 2 1 0.001 0% 0%
Eyepiece Holder [jam19] 35 53 19 3 1 0.001 0.32% 0.13%
Funnel [itz18] 11 7 7 2 1 0.001 0% 0%
GoPro Screw [xyt16] 36 54 23 3 1 0.001 2.88% 0.41%
Hose Adapter [dan19a] 8 14 8 3 1 0.001 0% 0%
Lock Shaft [jmc19] 4 6 6 5 1 0.001 1.33% 0.43%
Setup block [Chu19] 234 339 83 3 1 0.001 1.79% 0.01%
Speaker Grill [DiP19] 124 186 52 2 1 0.001 3.78% 1.79%
Turner’s cube [br15] 116 210 42 19 1 0.001 0.01% 0%
Wire End Clamp [Not19] 220 34 14 2 1 0.001 0% 0%

During the process of creating our storage box, we round all edges
that are orthogonal to the Z-axis. We can now delete this operation
and ask our system to generate a selector for only the upper edges.
This gives us the following sub-programme:

oshell = oshell.edges(’’>Z’’).

fillet(topAndBottomRadius)

Replacing this with the previous line of code gives us the requi-
site modification.

Appendix D: Detailed Results on CadQuery examples

In Section 5.2, we evaluated the utility of our technique for an
interactive programming interface for CAD. We provide detailed
results of the CadQuery examples in Table D1.

Appendix E: Experiments on Thingiverse Examples

The experiment presented here is an extension to the one pre-
sented in Section 5.2. The set of ground truth examples we use here
is obtained from Thingiverse ’s section of customizable designs.
We chose 12 customizable designs representative of different appli-
cation areas and of varying complexity. Figure E1 provides a snap-
shot of the chosen designs. The examples in Thingiverse ’s cus-
tomizable section are constructed using OpenSCAD [Kin19] and
have a programmatic representation in CSG. For each example, we
start with a blank programme, and re-construct the design in our sys-
tem. Note that a direct translation of the ground truth programme is
not possible due to a difference in the underlying CAD representa-
tion and available operations. We then use the same procedure as in
Section 5.2, and synthesize a selection query wherever possible.
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Figure E1: Thingiverse designs (default parameters).

Table E1: Analysis of query size and synthesis runtime.

Thingiverse examples

Min. Avg. Max.

# Vertices 4 74 234
# Edges 6 89 339
# Faces 6 26 83
# Queries 1 4 19
Query size 1 1 1
Time (s.) 0.001 0.001 0.001

We report runtimes of the synthesis process along with the com-
plexity of the designs in Table E1. As OpenSCAD does not have
a query language, an analysis of correctness of the synthesized

queries is done using random sampling of the parameter space
of the ground truth design and comparing the resulting mesh to
the one generated using synthesized selectors (50 random sam-
ples). We compare meshes by calculating the Hausdorff distance
between them using MeshLab. As parameter values often change
the size of the overall design, we divide the Hausdorff distance
by the length of the diagonal of the bounding box of the ground
truth model. This is our mesh error metric. We plot errors for each
example in Figure E2. The small error values indicate that the syn-
thesized selectors are robust, and there are no unexpected side ef-
fects. Indeed, most of the errors here are caused due to the dif-
ference in the underlying CAD libraries. This can be confirmed
by visually inspecting the meshes with the most error (>1%) in
Figures E3–E7.

Appendix F: User Study Details

The user studywas done by six participants (all male, 20–35 years
of age). They had varying degrees of experience with CAD, with
some being beginners with less than 1 year of experience, somewith
more than 3 years of experience, and some who fell in-between.
They got 20 min on each, Programmatic and Programmatic + GUI
interface. They were asked to write selection queries to complete
some selected designs. The interface they were presented with is
depicted in Figure F1. Participants were counter-balanced between
doing the Programmatic interface and the Programatic + GUI in-
terface first. All the designs that they had to complete were also
counter-balanced and shuffled randomly. Participants were free to
do the designs in any order or skip some if they did not want to fin-
ish them. Participants were not warned when their selection in the
GUI or the query they wrote was incorrect, but were generally aided
through questions about the interface and any technical queries they
had. In the end, they filled out a post-study questionnaire, where
they were asked questions about their experience on the two in-
terfaces. The results of this questionnaire have been discussed in
Section 5.3.

Figure E2: % Mesh error on the Thingiverse examples (total 51 synthesized queries), enumerated on the X-axis (ordered as in Figure E1).
Black dots represent mesh errors of each random sample. Red dots represent the average mesh error of each example.
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Figure E3: Bolt cap (ground truth on the right). The mesh error is
3.39%.

Figure E4: GoPro Screw (ground truth on the right). The mesh er-
ror is 2.88%.

Figure E5: Lock Shaft (ground truth on the right). The mesh error
is 1.33%.

Figure E6: Setup block (ground truth on the right). The mesh error
is 1.79%.

Figure E7: Speaker Grill (ground truth on the right). The mesh er-
ror is 3.78%.

Figure F1: Participants were presented two or three tabs depend-
ing on whether they were using the Programmatic or the Program-
matic + GUI interface.
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