
Eurographics Conference on Visualization (EuroVis) 2021
R. Borgo, G. E. Marai, and T. von Landesberger
(Guest Editors)

Volume 40 (2021), Number 3

Animated Presentation of Static Infographics with InfoMotion
Supplementary Material

Yun Wang1, Yi Gao1,2, Ray Huang1, Weiwei Cui1, Haidong Zhang1, and Dongmei Zhang1

1Microsoft Research Asia 2Nanjing University

1. Information Structure Inference

Infographic designs can be organized into information structures
consisting of visual elements. The major component of an info-
graphic are the units that are composed with visual elements. The
units usually have similar designs and are placed to certain posi-
tions to imply the relations. The connectors are usually used to
connect units together. Embellishments with various design may
appear at any positions in an infographic. For each element, we
assign semantic tags, such as titles, descriptions, icons, et.

in f oStructure := {units, layout,conns,embs,semanTags}

units := {unit1,unit2, ...,uniti}

uniti := {elemi,1,elemi,2, ...,elemi, j}

elemGroup j := {unit1.elem1, j,unit2.elem2, j, ...,uniti.elemi, j}

Our approach starts by (1) finding repeating (similar) elements
that are used across repeating units, which are constitutive of repeat-
ing units (Line 2, Algorithm 1). Then we (2) organize those elements
into repeating units to model the information structure of the info-
graphic designs (Line 3, Algorithm 1). Finally, we (3) recognize
infographic connectors (Line 4, Algorithm 1) and (4) add semantic
tags (Line 5, Algorithm 1) to complete the structure inference that
enables flexible animation arrangements .

Algorithm 1 Information Structure Inference
INPUT: elements . visual elements in an infographic
OUTPUT: in f oStructure := (units, layout,conns,embs,semants)

1: procedure EXTRACTINFOSTRUCTURE(elements)
2: (clusters,n)← cluster(elements)
3: (units, layout,others)← mergeCluster(clusters,n)
4: conns← detectConns(units,others)
5: embs← detectEmbellishments(units,others)
6: semanTags← detectSemants(units,others)

return (units, layout,conns,embs,semanTags)

2. Identifying Repeating Units

After extracting many clusters, we assign them into repeating units
(Algorithm 2). we first identify the layout type of every cluster of
size(Cn) = N by classifying them into one of the four layout types.
We take the most frequent layout type as the overall unit layout (Line
3, Algorithm 2). Then we try to merge clusters of size(Cn) >= N
one by one into units by layout or proximity (Line 8-12, Algorithm
2). When the clusters’ layouts are identified and the same with the
units’ layout, and the sizes of the clusters are of N, we naturally try
to merge them into the N units by layout; otherwise, we merge them
by proximity.

Algorithm 2 Merge Cluster
1: procedure MERGECLUSTER(clusters,n)
2: units← []
3: unitLayout ← mostFrequentLayout(clusters)
4: unitCands← filter(clusters,c⇒ c.len≥ n)
5: others← filter(clusters,c⇒ c.len < n)
6: u← unitCands.pop()
7: while u 6= NULL do
8: layout ← detectLayout(u)
9: if layout == unitLayout and u.len == N then

10: assembleResult ← assembleByLayout(units,u)
11: else
12: assembleResult ← assembleByProximity(units,u)
13: if assembleResult == NULL then
14: add u to others
15: else
16: add assembleResult.selected to units
17: if assembleResult.le f t.len ≥ n then
18: add assembleResult.le f t to tail of unitCands
19: else
20: add assembleResult.le f t to tail of others
21: u← unitCands.pop()

return (unitLayout, units, others)

When elements are merged by layout, they are sorted according
to their positions and added to the units accordingly. When elements
are assembled by proximity, we calculate the distance between
the elements in the new cluster and existing units, and put each
element in the cluster into correct units. To ensure proper merging

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.



Yun Wang et al. / Animated Presentation of Static Infographics with InfoMotion

into units, we further leverage element regularity across units by
calculating standard deviations of the distances between current
units and the newly added elements (Algorithm 3). We permutate all
the ways of merging these elements into units and calculate standard
deviations of the distances between current units and the newly
added elements. We take the permutation with the minimal total
distance. The standard deviation should be lower than a threshold p
to avoid grouping by mistake. The default value of p is set to 0.04
based on our experiments.

Algorithm 3 Assemble Elements in a Cluster into Units
1: procedure ASSEMBLEBYPROXIMITY(units,candCluster)
2: minDist ←MAX_NUMBER_VALUE
3: unitCentroids← []
4: selected ← []
5: le f t ← []
6: n← units.len
7: for i = 0 . . .n−1 do
8: unitCentroids[i]← calculateCentroid(units, i)
9: for each perm in permutateElement(candCluster,n) do

10: for i = 0 . . .n−1 do
11: dist[i]← calculateDistance(unitCentroids[i], perm[i])
12: totalDist ← sum(dist)
13: di f f Factor← stddev(dist)
14: if di f f Factor < THRESHOLD and totalDist < minDist then
15: selected ← perm
16: le f t ← candCluster.substract(perm)
17: minDist ← totalDist
18: if minDist == MAX_NUMBER_VALUE then
19: return NULL
20: else
21: return (selected, le f t)

When the clusters are of size(Cn)> N, we take out the elements
to be merged to the units, and check whether the remaining elements
are still of size(Cn)>= N. It is common that the remaining elements
can still contribute to the units. We put them back to the tail of
candidate clusters. If the remaining elements are of size less than
N, we put the remaining elements to the set of others. Finally,
the others elements that cannot be successfully merged into units
will be further considered as connectors, embellishments, or other
components in the next step.

3. Animation Effects

We explore a data-driven method to build an element-effect model.
Through this way, we can further understand whether designers
have similar considerations when adopting animation effects. We
extract 461 visual element-animation effect pairs from our dataset.
We select six common animation styles, namely, fading, floating,
zooming, wiping, flying, and splitting, as general choices for the
effects, covering 95.5% of the effects in the dataset.

We train a random forest model to recommend top-k ideal effects
for the visual elements [rf20]. Random forests are an ensemble
learning method of constructing a multitude of decision trees at
training time and outputting the majority vote from these individual
trees as final predictions. The parameters for each element include
element width, element height, element shape, unit layout, and

element position. We construct 100 decision trees in this forest at
the training time. When looking for the best split, we only consider
the radical number of features and we use Gini impurity to measure
the quality of a split in each tree. Tree nodes are expanded until all
leaves are pure. The model takes the properties of visual elements as
input and retrieves top-k animation effects with highest probabilities
as the output. We set k as a parameter to adjust the number of
animations that we can recommend based on the requirements of
applications and the accuracy of our model. While training the
model, we use 10-fold cross-validation. In other words, we first split
the dataset into 10 groups. Then for each group, we take the group
for testing and take the remaining for training.

We calculate the accuracy of animation prediction if the animation
effect in one test case is included. The average accuracy of cross vali-
dation is 86.98% (k=3), 73.69% (k=2), and 65.8% (k=1). Depending
on the flexibility of animation design environments, animation de-
sign applications can recommend top-1, or top-k animation design
to the users. When users need to modify the animation effect for
a given component, applications can recommend a ranked list of
effects. This enables users to easily modify the animation effects
based on their personal preferences.

References
[rf20] sklearn.ensemble.randomforestclassifier. https://scikit-lea
rn.org/stable/modules/generated/sklearn.ensemble.Rando
mForestClassifier.html, 2020. 2

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

