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Abstract
The precise prevention and control of air pollution is a great challenge faced by environmental experts in recent years. Under-
standing the air quality evolution in the urban agglomeration is important for coordinated control of air pollution. However, the
complex pollutant interactions between different cities lead to the collaborative evolution of air quality. The existing statistical
and machine learning methods cannot well support the comprehensive analysis of the dynamic air quality evolution. In this
study, we propose AirLens, an interactive visual analytics system that can help domain experts explore and understand the air
quality evolution in the urban agglomeration from multiple levels and multiple aspects. To facilitate the cognition of the complex
multivariate spatiotemporal data, we first propose a multi-run clustering strategy with a novel glyph design for summarizing
and understanding the typical pollutant patterns effectively. On this basis, the system supports the multi-level exploration of air
quality evolution, namely, the overall level, stage level and detail level. Frequent pattern mining, city community extraction and
useful filters are integrated into the system for discovering significant information comprehensively. The case study and positive
feedback from domain experts demonstrate the effectiveness and usability of AirLens.

CCS Concepts
• Human-centered computing → Visual analytics; Geographic visualization; Information visualization;

1 Introduction

Air pollution has become a major environmental issue around the
world. In the report published by WHO in 2019 ‡, air pollution was
listed as the greatest environmental risk to human health. Since air
quality generally evolves within a specific region collaboratively,
urban agglomerations are divided for air pollution control, accord-
ing to the geographical and economic conditions. Understanding
the complex air quality evolution in the urban agglomeration is one
of the important prerequisites for controlling the air pollution joint-
ly. However, the air quality evolution in an urban agglomeration is
a complex spatiotemporal process, which is difficult to be analyzed.

Currently, existing works of spatiotemporal analysis for air
quality can be classified into statistical, learning-based and
visualization-based methods. Statistical methods generally com-
pute metrics for various goals, such as spatial autocorrelation
[SZF∗19], significance test and causality test [LCCC17]. Learning-
based methods can reveal more complex information, such as s-
patial clusters, temporal patterns [MGDVT18] and spatiotemporal
association rules [LC06]. However, these methods focus on stat-
ic metrics or patterns, and are weak in analyzing the dynamic and

† Corresponding author: Huijie Zhang (zhanghj167@nenu.edu.cn).
‡ www.paho.org/en/news/17-1-2019-ten-threats-global-health-2019

complex evolution of air quality in urban agglomeration. This moti-
vates us to adopt visualization-based methods, which allow experts
to intuitively inspect the complex spatiotemporal characteristics of
air quality data. Previous visualization studies for air quality data
mainly focused on analyzing variable correlations [GTC∗19], spa-
tial clusters [ZYL∗17] and pollution propagation [DWC∗19]. Some
works [QCX∗07, LXZ∗16] also provided overview visualizations
from multiple perspectives. However, to the best of our knowledge,
rare works in the visualization community have analyzed the air
quality evolution in urban agglomeration, which is an immediate
problem required to be examined. Developing an effective visual
analytics system for air quality evolution in urban agglomeration
faces the following challenges:

Effective analysis of air quality evolution. Analyzing air quality
evolution in the urban agglomeration requires to incorporate multi-
ple key topics concerned by experts, such as multivariate patterns,
city relationships and evolution patterns. Proposing an effective
framework that supports comprehensive analysis is challenging.

Visualization of large-volume spatiotemporal data. Displaying
the evolution of a dataset with multivariate and spatiotemporal in-
formation will cause scalability problems, especially over a long
time period. How to encode such complex information and ensure
the effectiveness and scalability is a great challenge.
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Flexible and efficient exploration of complex patterns. Experts
desiderate to explore and understand the data-driven analysis re-
sults, thus they can discover new knowledge and verify hypotheses.
Designing a system with flexible, efficient and reasonable interac-
tions for the complex dataset is an essential yet challenging task.

To address the first challenge, we extract the analysis tasks with
domain experts and propose an analysis framework that contains
the pollutant pattern inspection module and the evolution analy-
sis module, which allows experts to explore the data from multiple
aspects. Moreover, the proposed framework supports multi-level
analysis, which addresses the second challenge. It can summarize
the complex data from pollutant, spatial and temporal perspectives,
and the details can also be explored. For the third challenge, we
solve it by developing AirLens, an interactive system containing
multiple coordinated views and novel designs. It allows domain ex-
perts to adjust the parameters of automatic methods and visualiza-
tions flexibly, and provides visual feedback immediately. Through
the system, experts can discover insightful patterns and verify their
hypotheses. Our contributions are refined as follows:

• We characterized the problem domain of analyzing air quality
evolution in urban agglomeration during a long period, and sum-
marized a set of analysis tasks with domain experts.
• We proposed a multi-level framework that reveals complex col-

laborative evolution of air quality effectively and supports com-
prehensive analysis of significant patterns from multiple aspects.
• We proposed AirLens, a flexible visual analytics system for envi-

ronmental experts to understand and explore complex data pat-
terns, through novel visualizations and rich interactions.

2 Related Work

2.1 Air quality analysis and visualization

Air quality analysis is an important topic for various domains.
From the perspective of used methods, it can be classified into
model-based methods and data-driven methods. For the model-
based methods, air quality numerical models were developed based
on atmospheric physical and chemical processes for different appli-
cations. The common used models include CMAQ [BS06], WRF-
Chem [GPS∗05] and HYSPLIT [SDR∗15]. Environmental experts
could conduct simulations using these models and verify their hy-
potheses. However, uncertainty inevitably existed in these models,
and the simulation results were largely affected by the settings of
initial conditions and parameters. The huge time cost of the models
also hindered experts from conducting comprehensive analysis.

With the extensive monitoring of air quality in recent years, re-
searchers had a good opportunity to study air pollution from the
data-driven perspective. Methods based on various theories have
been proposed. Shen et al. [SZF∗19] utilized statistical methods
to quantify the spatiotemporal characteristics of air quality data.
Complex network theories [FWX∗16, QDL∗21] were introduced
to analyze the topological features of air quality data and divide
the temporal data into flexible periods. Urban computing studies
[ZCWY14, ZYL∗15] integrated multi-source data, such as weath-
er and traffic, to analyze and predict air quality. Recently, deep
learning methods [QLKL19, ZDZZ21, HLZ∗21] have been exten-
sively used in air quality prediction. Compared with the model-
based methods, these approaches were commonly more efficient.

Meanwhile, their effectiveness and accuracy have also been proved.
However, most of these methods focused on static analysis tasks
and lacked the interactive analysis process. Thus, they were weak
in analyzing the complex and dynamic air quality evolution. More-
over, they generally could not consider domain knowledge well,
which made the results hard to be understood by domain experts.

Visualization is an effective way to solve the limitations of
fully automatic methods, which exploits human’s efficient visu-
al perception to seamlessly bring users into the analysis pro-
cess. Users can iteratively refine the data and explore the hid-
den information, which can facilitate users’ understanding of com-
plex data [TC05]. Based on air quality data, visual analytics sys-
tems have been proposed to solve various spatiotemporal prob-
lems in the environmental field, such as the evolution of spatial
clusters [ZYL∗17, GYL∗17], propagation patterns of air pollu-
tion [DWC∗19, RWZ∗20], temporal evolution patterns [QLR∗20,
ZRL∗19], anomaly detection and examination [LVG∗21], and co-
occurrence analysis [LCZ∗19]. Nevertheless, few works have fo-
cused on analyzing the collaborative evolution of air quality in ur-
ban agglomeration, due to the complex data structure. In this paper,
we design a comprehensive visual analytics system with multi-level
visualizations to explore the complex air quality evolution in urban
agglomeration.

2.2 Visualization of spatiotemporal data and event sequence

Air quality data has spatial, temporal and multivariate charac-
teristics, which can be considered as multivariate spatial time-
series. The techniques for time-series visualization, such as the
spiral-shaped visualization [WAM01], temporal stacked charts
[WWS∗16] and time-embedded parallel coordinates [GRPF16],
can also be used to analyze air quality data. However, these meth-
ods cannot encode all the information in one view. Another dimen-
sional information needed to be displayed by other views. Some
methods attempted to present spatial, temporal and attribute in-
formation through one visualization, such as global radial map
[LZM14], glyphs on maps [AAFW17], methods based on space-
time cube [Kra08, LWSY20], and small multiples [BDM∗17].

To reduce the data complexity and facilitate experts’ understand-
ing, we summarize the multiple pollutants of air quality data into
several pollutant patterns. Thus, the temporal air quality data can be
regarded as event sequences. The recent survey [GGJ∗21] has sum-
marized the visual analysis methods of event sequences compre-
hensively. For sequence analysis, frequent pattern mining and se-
quence summarization are two kinds of widely used methods to dis-
cover common patterns of event sequences. VMSP [FVWGT14],
SPAM [AFGY02] and MDL-based algorithms [CXR18] have been
used in the visual analytics systems [CYP∗20, PW14, WGW∗20]
for various objectives. Guo et al. [GXZ∗18, GJG∗19] proposed
two stage-based summarization methods for sequence visualiza-
tion. CoreFlow [LKD∗17] could automatically extract the branch-
ing patterns in event sequences and summarize the event sequences
as a tree structure. For visualization of event sequences, flow-based
visualization is an effective visual representation of large-scale se-
quence data, with the Sankey-based structure [WLS∗21,WLG∗21]
or tree-based structure [LKD∗17]. Matrix-based and list-based vi-
sualizations were also used to provide a scalable overview of
event sequences [ZLD∗15] and compare different event sequences

c© 2022 The Author(s)
Computer Graphics Forum c© 2022 The Eurographics Association and John Wiley & Sons Ltd.

224



D. Qu, C. Lv, Y. Lin, H. Zhang & R. Wang / Multi-Level Visual Exploration of Air Quality Evolution

[WGW∗20]. In this paper, using multiple techniques of showing
event sequences, we design multi-level visualizations with geo-
graphical information to display the air quality evolution in the ur-
ban agglomeration.

3 Overview

3.1 Data description and pre-processing

The air quality dataset is collected from the data platform of Chi-
na National Environmental Monitoring Centre, covering more than
1400 observation stations in 367 cities, from January 5, 2015 to
January 3, 2016. The data can reflect the air quality under different
weather conditions throughout the year. For each station, the data
are hourly records of the concentration of six pollutants containing
PM2.5, PM10, SO2, NO2, CO and O3.

Since many missing values exist in the data and our goal is an-
alyzing the air quality evolution during a long period and within
a large region, the experts set the analysis granularity as city and
day. Thus, for each pollutant, we computed its daily average of the
hourly concentrations among all the stations in each city, which is
a standard method in environmental field. Besides, the concentra-
tions of different pollutants have different units, which is difficult
to identify and compare their pollution levels. Thus, we calculated
the individual air quality index (IAQI) [EPD16] of different pollu-
tants, thus making all the pollutants have the same range [0, 500].
Moreover, for each day in each city, the air quality index (AQI) is
the maximal IAQI among the six pollutants. Based on the AQI, air
quality can be divided into six levels.

3.2 Design process and task analysis

In the past year, we worked closely with two environmental expert-
s. EA is a scholar of environmental evaluation, who is interested
in the coordinated control of air pollution in urban agglomeration.
EB is an atmospheric physics expert from the same institute as EA.
Guided by the nine-stage design study methodology framework [S-
MM12], we first conducted literature reviews about the analysis
and visualization of spatiotemporal air quality data. Then, we had
frequent discussions with domain experts through video meetings
and emails to iteratively refine the analysis tasks.

In the first discussion, EA and EB introduced the study pipeline
of their domains and put forward their high-level requirements. EA
wanted to understand the spatiotemporal characteristics of air qual-
ity in the five key urban agglomerations in China, to write air qual-
ity reports. EB wished to find some significant patterns for further
study. We also described how visual analytics can help them from
the data-driven perspective. In the next two months, through de-
signing multiple overall views and iteratively discussing with the
experts, we obtained some initial analysis tasks. During the system
development, the prototype was developed and improved iterative-
ly based on the experts’ feedback. The analysis tasks were also re-
fined and finally summarized into two modules, namely, pollutant
pattern inspection module and evolution analysis module.

The tasks of the pollutant pattern inspection module support ex-
perts in summarizing and exploring the typical pollutant patterns
and their spatiotemporal characteristics.

T1. What are the typical pollutant patterns among the data?
The multiple air pollutants have complex associations with each

Figure 1: System overview. AirLens has three modules: data selec-
tion, pollutant pattern inspection and evolution analysis.

other, which are influenced by topography and weather conditions.
Experts wish to obtain the typical pollutant patterns in the specific
urban agglomeration during a period, which helps them verify and
infer the latent pollutant associations.

T2. What are the spatiotemporal characteristics of the typical
pollutant patterns? Experts want to further explore the spatiotem-
poral characteristics of these patterns, to understand the pollutant
patterns deeply.

The tasks of evolution analysis module support multi-level and
multi-facet visual exploration of the air quality evolution.

T3. What are the latent stages during the whole period? Due to
the large volume and complexity of air quality data, it is difficult for
experts to obtain detailed information from an overview analysis.
Dividing the period into stages adaptively and revealing the key
information can help experts understand the evolution effectively
with a medium level of details and acceptable data volume.

T4. What are the city communities within an urban agglomer-
ation? The cities in an urban agglomeration can be divided into
small communities according to their latent associations. Experts
want to discover the latent city communities in a data-driven way
and explore the community-level air quality evolution.

T5. What are the frequent patterns of air quality evolution
within a stage? During the exploration of evolution trends, experts
also wish to know if there are any patterns that frequently occur in-
side a stage, which can facilitate the perception and understanding
of the evolution trends.

T6. What are the evolution details inside a stage? The air quality
evolution is related to complex information regarding geographical
locations, time and pollutants. To inspect and understand the air
quality evolution effectively, experts require a view that presents
the evolution details inside a stage with comprehensive context.

3.3 System overview

Figure 1 presents the workflow of AirLens. It is a web application
that comprises three modules, namely, data selection, pollutant pat-
tern inspection and evolution analysis. The data selection module
allows experts to select the target urban agglomeration, time range
and pollutants. For the selected data, the pollutant pattern inspec-
tion module online summarizes the pollutant patterns (T1), com-
putes their evaluation metrics (T1) and shows their spatiotemporal
distributions (T2). Based on the air quality evolution represented
by the pollutant patterns, the evolution analysis module divides the
whole period into stages adaptively (T3) and thus provides a multi-
level visualization of the evolution trends (T3, T6). City commu-
nities (T4), frequent patterns (T5) and multiple evolution filters are
provided to help experts explore the complex evolution trends.

c© 2022 The Author(s)
Computer Graphics Forum c© 2022 The Eurographics Association and John Wiley & Sons Ltd.

225



D. Qu, C. Lv, Y. Lin, H. Zhang & R. Wang / Multi-Level Visual Exploration of Air Quality Evolution

Figure 2: Visual design of the pollutant pattern inspection module. (A) Parameters view for selecting data. (B) Cluster inspection view for
checking all the clustering results. (C) Legends for AirLens. (D) Spatiotemporal distribution view shows spatiotemporal distribution of a
focused cluster. (E) Cluster detail view is a PCP that shows the detailed data items of a focused cluster.

The architecture of AirLens consists of a back-end supported by
Flask and MongoDB, and a front-end implemented by Vue.js and
D3.js. The back-end supports the computations of data processing
and all the algorithms used in the AirLens. The front-end interface
implements the data filters, visualizations and interactions.

4 System design

4.1 Data selection module

The data selection module (Figure 2-A) helps experts select the
data of interest from three aspects: space, time and pollutants.

The space selector (Figure 2-A1) provides two ways to select
the target urban agglomeration. One way is to select a specified
urban agglomeration from the drop-down menu. The other way is
to select a set of cities by drawing a polygon on the map. The cities
selected in both ways are highlighted on the map. The time selector
(Figure 2-A2) supports the setting of the start date and end date.

The pollutant selector (Figure 2-A3) is a force-directed node-
link diagram that reveals the pollutant significance and associations
in the selected region and period, which helps experts to select
the pollutants of interest. Each node denotes a pollutant, and the
color encodes the mean of the pollutant’s IAQIs. For meeting the
experts’ habit of perceiving pollution levels, we design the IAQI
color scheme according to the technical regulation [EPD16] that
specifies the standard colors for six pollution levels. To encode the
IAQI in detail, we extended each standard color to a sequential col-
ormap as shown in Figure 2-A4 and C2, which were selected from
ColorBrewer using the colorblind-safe mode. This color scheme is
used to encode the IAQI in all the views of AirLens.

Moreover, entropy [Sha48] and mutual information [CT90] are
computed to reveal the information content of each pollutant’s
IAQIs and the associations between each pair of pollutants, as en-
coded by the node size and link width, respectively. Based on these
metrics, experts can select the pollutants of interest by clicking the
nodes. The selected nodes are highlighted with a blue border, while
the deselected nodes are with gray border. All the pollutants are se-
lected by default, while the deselected pollutants are not computed
and not shown in the system.

Justification: Initially, we used MDS [BG05] to project the pol-
lutant nodes into 2D space based on the similarities between their
IAQI distributions, as shown in Figure 4-A. However, the positions
of projected nodes may hinder the perception of edges. Thus, we
adopted the force-directed layout that could better display edges.

4.2 Pollutant pattern inspection module

After selecting the target urban agglomeration and period, the pol-
lutant pattern inspection module (Figure 2) is used to summarize
the air quality data into typical pollutant patterns (T1), evaluate
their spatiotemporal characteristics (T2), and help experts inspect
the pollutant patterns through visual exploration.

Pollutant pattern summarization. To facilitate the understand-
ing of multiple pollutants, we summarize the air quality data as
several representative pollutant patterns by clustering, which is an
effective way for multivariate data summarization. Multiple meth-
ods have been considered, including K-Means [Mac67], DBSCAN
[EKSX96] and hierarchical clustering [Fox91]. We choose K-
Means, since it is intuitive for experts and very efficient. To help
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Figure 3: Design of cluster glyph that has an upper part comprised
of inner radar chart (A) and outer ring (B), and a lower part (C).

experts obtain the satisfied clustering result and reduce the burdens
of testing different cluster numbers, we propose a multi-run cluster-
ing strategy that juxtaposes the results of K-Means using different
cluster numbers, as the rows in the cluster inspection view (Fig-
ure 2-B). In each row, the clusters, namely the pollutant patterns,
are arranged sequentially, and the key information of each cluster
is revealed by the designed glyph. Through multiple experiments
and discussions with experts, the cluster numbers are set from 4 to
10, which can handle various situations, including the regions and
periods with very stable and unstable air quality.

Pollutant pattern evaluation and glyph design. We compute
multiple metrics to describe and evaluate the clusters. The descrip-
tive metrics reveal the main information of each pollutant, includ-
ing mean, maximum, standard deviation, as well as peakedness and
skewness of the IAQI distribution. Furthermore, three metrics are
introduced to evaluate the significance of a cluster’s spatiotemporal
distribution, namely concentration, continuity [WSH13] and joint
entropy. Concentration and continuity describe the intensive degree
and connection degree of cluster occurrence in the spatial and tem-
poral distribution, respectively. Joint entropy evaluates the amount
of information from the spatiotemporal distribution of the cluster.

To present these metrics intuitively, we design the cluster glyph
as shown in Figure 3. Since the descriptive and the evaluative met-
rics represent different types of information, we divide the cluster
glyph into an upper part and a lower part. Considering the multiple
pollutants, the upper part (Figure 3-A and B) is designed as a radar
chart with an outer ring to show the descriptive metrics. In the inner
radar chart, the area displays the mean IAQIs of different pollutants.
Furthermore, the line segments display the maximal IAQIs of pol-
lutants. To facilitate the perception of pollution levels, the area and
line segments are colored with the IAQI color scheme. The outer
ring comprises a gray background, a highlighted ring and the arc-
s corresponding with the pollutants. The width of the highlighted
ring represents the cluster size, and its color is the same as the in-
ner area. The width of the gray background indicates the maximal
cluster size among all the clusters computed using different cluster
numbers. The arcs show the standard deviation of pollutants, using
the measurement colormap as shown in Figure 2-C3. Besides, some
arcs are with black borders, which indicates abnormal peakedness
and skewness. Experts can hover on the arc to check the distribution
of the pollutant’s IAQIs and the values of peakedness and skewness,
as shown in Figure 3-B. Since the evaluative metrics are all quan-
titative, they are encoded by three bars with different border styles
in the lower part (Figure 3-C).

Context views. We develop a spatiotemporal distribution view

Figure 4: Alternatives for (A) layout of pollutant selector, (B) lay-
out of cluster inspection view and (C) design of cluster glyph.

(Figure 2-D) and a parallel coordinates (PCP) view (Figure 2-E), to
help experts examine the spatiotemporal distribution and data de-
tails of a focused cluster, by clicking the corresponding cluster g-
lyph. For the spatiotemporal distribution view, the x-axis represents
the weeks, and the y-axis represents the cities in the urban agglom-
eration. These cities are sorted by the 1D projected coordinates of
their longitudes and latitudes using MDS, which can reflect the city
adjacencies and better interpret the continuity of the spatiotemporal
distribution. The bar’s height and opacity both encode the number
of days that the pollution pattern occurs in this week at the city, as
shown in the legend in Figure 2-D1. The PCP comprises the axes
of the city, month and pollutants. All the data items are shown as
the background with gray lines. When a cluster is selected, the data
items of this cluster will be highlighted using the color of the clus-
ter’s mean AQI. The PCP also supports filtering and reordering of
the axes, which helps users explore the whole data. After exploring
and comparing different groups of clusters, users can select a sat-
isfied cluster group as the pollutant patterns, by clicking the icon
as shown in Figure 2-B4 and further analyze the evolution among
these pollutant patterns in the Evolution analysis module.

Justification: For the layout of cluster glyphs, we first show them
in a 2D space with the axes of concentration and continuity, as
shown in Figure 4-B. However, the 2D layout does not well adapt
to different cluster numbers. When the cluster number is small, the
view is space ineffective. When the cluster number is large, it will
result in visual clutter. Thus, we use the 1D layout to show the clus-
ter glyphs sequentially and show the concentration and continuity
by the bars in the lower part of the glyph, which are more scalable
and the remaining space can be used to display the legends. For
the glyph design, we also try to display the temporal distribution of
the cluster by the arcs shown in Figure 4-C. However, the spatial
information can not be encoded. Thus, we display the cluster’s s-
patiotemporal distribution by a separate view, and replace the arcs
with the outer ring that shows other useful information.

4.3 Evolution analysis module

After the pollutant patterns are selected, the original multivariate
spatiotemporal data can be simplified into a spatial event sequence
with uniform time steps, where each pollutant pattern is regarded
as an event. The evolution analysis module (Figure 5) helps experts
understand the evolution in air quality event sequences, by support-
ing the multi-level (T3, T6) exploration and the guidance based on
city communities (T4) and frequent patterns (T5).

4.3.1 Overall-level view
To provide an overview of the whole period, we use a temporal
stacked bar chart to show the distribution of pollutant patterns with-
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Figure 5: Visual design of evolution analysis module. (A) Parameters view for setting algorithm parameters and flow filters. (B) Overall-level
view is a temporal stacked bar chart that shows pollutant pattern distribution among the urban agglomeration for each day. (C) Stage-level
view contains some stage cards that show major trends for city communities. (D) Spatiotemporal flow chart shows detailed evolution trends
in the focused stage with a spatiotemporal context. (E) Guidance part based on city community and frequent patterns.

Figure 6: Design of stage card. (A) Stage range bar. (B) Pollu-
tant pattern distribution in the stage. (C) City location components
show city communities. (D) Main trend component with two modes.

in the urban agglomeration for each day. As shown in Figure 5-B,
the x-axis represents days. The height of a bar encodes the number
of cities where a pollutant pattern occurs on the day, and the bar
color is the same as the corresponding cluster glyph’s inner area.

4.3.2 Stage-level view
To help experts understand the air quality evolution with more de-
tails, we design the stage-level view (Figure 5-C) that divides the
whole data into meaningful stages (T3) and presents the main evo-
lution trends for latent city communities (T4).

Computation. From the temporal perspective, we divide the
whole period into latent stages based on an unsupervised stage ex-
traction algorithm [GXZ∗18] for event sequences. It encodes events
through word embedding and extracts stages based on the semantic
meaning of event sequences. To further refine the evolution from
the spatial perspective, we construct the city relationships among
the urban agglomeration based on co-occurrence and successive
occurrence of pollutant patterns in a time window. On this basis,
we divide the urban agglomeration into city communities using the

efficient Louvain algorithm [BGLL08], which detects communities
by maximizing a modularity score for each community.

Visual design. To reveal the major evolution trends in a stage,
we design the stage card as shown in Figure 6. It presents the gen-
eral stage information including the stage range (Figure 6-A) and
distribution of pollutant patterns (Figure 6-B), as well as the evo-
lution trends of each city community. Specifically, the city location
component (Figure 6-C) displays the relative locations of the cities
in each city community. To avoid the occlusion of city points, we
map them to their most closed locations on a regular square mesh,
which can largely maintain the proximity between cities (Figure 6-
C1). The main trend component (Figure 6-D) provides two modes
of visual representations. If the stage length is not greater than 30
and the size of the city community is less than 5, we directly show
the pollutant pattern sequence of each city (Figure 6-D2) and link
these sequences to corresponding cities by curves (Figure 6-C2).
Otherwise, to avoid visual clutter, we introduce the CoreFlow algo-
rithm [LKD∗17] to extract main evolution trends, which can pro-
vide a high-level summary of long sequences by generating a tree
structure using key events as nodes. Its result can be shown by an
icicle plot (Figure 6-D3), where rectangular partitions represent key
pollutant patterns in the sequence, and the partition’s height indi-
cates the number of cities containing this pollutant pattern. The hi-
erarchy indicates the evolution order in the sequence. To highlight
the important information at the start and end of the stage, we add
stacked bar charts (Figure 6-D1) to represent their pollutant pattern
distributions on the left and right sides of the icicle plot. The stage-
level view (Figure 5-C) arranges the stage cards in temporal order,
where experts can click the stage of interest to inspect details. Stage
marks (Figure 5-B1) are also added onto the overall-level view.
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Figure 7: Visual design of spatial node. (A) Normal mode of spatial
node. (B) Spatial node after filtering by city communities, frequent
patterns and flow filters. (C) Spatial node after hovering.

Justification: During designing the stage card, we have com-
pared our final design with several alternatives of showing evolu-
tion trends, including: (1) directly showing original sequences with
colored bars, (2) showing original sequences with highlighting the
start and end of sequences, and (3) only showing the icicle plot of
CoreFlow. Among them, the designs that show original sequences
are hard to perceive for long stages. Besides, the design that only
shows the icicle plot may lose the information of stage start and
end. Thus, we embed the icicle plot between the stacked bar charts
that summarize the start and end of the sequences.

4.3.3 Detail-level view
Experts can inspect the detailed evolution among a stage of interest
in the detail-level view (Figure 5-D and E), which comprises the
spatiotemporal exploration part and the guidance part.

The Spatiotemporal exploration part allows experts to explore
the detailed evolution in a stage with a spatiotemporal context.
Due to the contradiction between limited screen space and a large
amount of details, we design a local spatiotemporal flow chart (Fig-
ure 5-D1) with comprehensive context and the time controller (Fig-
ure 5-D2). It allows experts to select a focused period in the stage
by moving the slider according to the provided cues, and explore
the corresponding details in the spatiotemporal flow chart.

The spatiotemporal flow chart is based on the Sankey diagram,
where the x-axis is a timeline (Figure 5-D3) with the granularity of
days and the vertical direction encodes different pollutant patterns
in the order of mean AQIs of the pollutant patterns (Figure 5-D4).
To reveal the detailed geographical information, we design a spatial
node (Figure 7), which indicates the cities belonging to the node or
the filtered evolution. When hovering on the spatial node, it will
be enlarged, and the colored points are replaced by two arcs that
represent the pollutant patterns of the last day and the next day,
respectively. This can help experts trace the evolution of the cities
in the node.

The flows in the spatiotemporal flow chart represent the evolu-
tion among pollutant patterns between two days. The width of flow
encodes the number of cities belonging to the evolution. The flows
are colored by the linear gradient from the color of the source pol-
lutant pattern to the color of the target pollutant pattern. To facili-
tate the experts’ perception of the relatively important or surprising
flows, we propose two metrics, namely importance and surprise, to
set the opacity of flows. Importance evaluates the significant degree
of evolution. For an evolution flow fi j where i and j are respective-
ly the ranking indexes of the source pollutant pattern and the target

pollutant pattern, its importance SImportance is computed as

SImportance( fi j) = a×SSpan +b×SPollution + c×NSource, (1)

where SSpan = abs(i− j), SPollution = max(i, j), and NSource is the
number of cities belonging to the source node. The parameters a, b
and c can adjust the focused aspects of importance. Surprise eval-
uates the infrequent degree of evolution, and is computed as

SSurprise = (NSource/NTotal +NTarget/NTotal)×SSpan, (2)

where NTarget and NTotal are the numbers of cities belonging to the
target node and the urban agglomeration respectively. Experts can
select one of the two metrics to set the opacity of flows.

We provide various filters to refine flows, which are the filters
of flow direction, flow span, city number, flow metric, pollutant
pattern and city. The flow-related filters can be set in the Parameters
View (Figure 5-A2 to A5). The filters of pollutant pattern and city
can be set by clicking the cluster glyphs (Figure 5-D5) and the city
points in the spatiotemporal flow chart, respectively. After setting
the filters, the flows that meet all the filters are highlighted.

The time controller (Figure 5-D2) comprises three rows. The
bottom row contains a time axis representing the stage with the
unit of days and a slider that can be dragged on the time axis to se-
lect the focused range. The middle row presents the entropy of the
occurred pollutant patterns on each day, using colored bars with the
measurement colormap (Figure 2-C3). It can help experts quickly
find the days with consistent or chaotic pollutant patterns. The top
row with colored bars presents the flow number of each day when
the flow-related filters are set. It helps experts find the days with
more filtered flows within the stage. When clicking these colored
bars, the focused period will start from the corresponding time step.

Guidance part. To support more effective exploration, we pro-
vide guidance based on city communities and frequent patterns. For
city community guidance, we design a matrix-based view for show-
ing city relationships (Figure 5-E1), whose x-axis and y-axis both
encode the cities. The gray line segments (Figure 5-E2) on the ax-
es indicate city communities. The elements of the matrix encode
the number of occurrences between the cities and are colored with
the measurement colormap. A tooltip will be shown when hover-
ing on an element. Moreover, we design the city community card
(Figure 5-E3) to show concise information of each city communi-
ty, which shows the contained cities and the temporal sequence or
distribution of pollutant patterns for each city (Figure 5-E3). After
selecting a city community card, the related flows are highlighted in
the spatiotemporal flow chart. Besides, experts can adjust the city
communities freely according to their expectations, by clicking the
city points in the spatial component of the card. If a highlighted c-
ity point is clicked, this city is eliminated from the city community.
Otherwise, the clicked city is eliminated from its original commu-
nity and added into the new city community.

The frequent pattern guidance uses the efficient VMSP
algorithm [FVWGT14] to extract the common evolution patterns in
a stage. To avoid trying different support thresholds repeatedly, we
propose a strategy for summarizing the frequent patterns with dif-
ferent support thresholds. Firstly, the extracted frequent patterns are
classified by their start pollutant pattern, and the number of patterns
in different classes are shown as buttons (Figure 5-E4). Then, the
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Figure 8: Workflow of the case study.

main trends of each class are computed by the CoreFlow algorithm
and depicted as a vertical icicle plot (Figure 5-E5) when clicking
the corresponding button. Each node in the icicle plot corresponds
to a set of frequent patterns that follow the sequence traced from the
root node to the current node, which are displayed as the frequent
pattern cards in Figure 5-E6 after clicking the node. The top of the
frequent pattern card shows the pattern’s support, occurrence count
and length. Its left part displays the sequence of pollutant patterns,
and the right part is a glyph that shows its spatiotemporal distribu-
tion. When selecting a frequent pattern card, the related flows are
highlighted in the spatiotemporal flow chart.

5 Evaluation

5.1 Case study

Experts EA and EB were invited to conduct case studies. To inte-
grate their knowledge from different research fields, experts decid-
ed to complete case studies together on one computer where the
system was deployed. We recorded their observations and findings
by video meeting. Experts operated freely according to their needs
without specified tasks. The following describes the case study of
Jing-Jin-Ji urban agglomeration with severe air pollution, and the
workflow of the case study is shown in Figure 8. Another case study
by a new expert EC is introduced in supplementary materials.

Pollutant association inspection. The experts began with the
data selection where all days were selected for Jing-Jin-Ji urban
agglomeration. Then, from the pollutant selector (Figure 2-A3),
EB noticed that O3 had the lowest entropy among all the pollutants.
This is not in line with his expectation, because the formation of o-
zone was very unstable and was easily affected by seasons. Experts
further examined the links and found that the main pollutants PM2.5
and PM10 presented high association and both had low association-
s with O3. This observation accorded with the inference of EB. He
explained that formations of PM2.5 and PM10 would consume the
precursors of O3, such as VOCs and nitrogen oxides. Moreover,
hazes caused by particulate matter would reduce near-surface light,

which also inhibited the formation of O3. After inspecting the pol-
lutant associations, experts retained all the pollutants.

Exploring pollutant patterns (T1, T2). Experts first had an
overall observation of the cluster glyphs in the cluster inspection
view (Figure 2-B). EA found that the cluster glyphs with green col-
ors only existed in the rows containing more than 6 clusters and
decided to select a cluster group among these finer clustering re-
sults. Then, EA compared the cluster groups with 7 and 8 clusters
by inspecting the pollutant distribution, spatiotemporal distribution
and PCP view. EA found that the cluster groups with 7 and 8 cluster-
s are quite similar in both pollutant distribution and spatiotemporal
distribution. Thus, they considered that the fineness of the cluster
group with 7 clusters could satisfy their need, and selected the clus-
ter group by clicking the icon as shown in Figure 2-B4.

Finding evolution stages of interest (T3). The experts started
from the overall-level view (Figure 5-B) with stage markers. They
found that the overall air quality distribution of Jing-Jin-Ji was con-
sistent with the general knowledge that the air quality in winter was
worse because of the urban central heating. EA also checked the
marker positions and thought the stage division was largely rea-
sonable by comparing the colors inside a stage and the colors near
the marker. Then, they inspected three stage cards with heavy air
pollution in the stage-level view, as shown in Figure 5-C1, C2 and
Figure 9-A1. EA found that the divisions of city communities in
these stages were very similar, and one city community had com-
paratively better air quality and the other had worse air quality. EB
was also interested in another summer stage (Figure 5-C3), where
his concerned pollutant pattern with large IAQI of O3 (Figure 2-B2)
most commonly occurred in a city community (Figure 5-C4).

Analyzing city communities (T4) and frequent patterns (T5).
EB further examined the summer stage (Figure 5-C3) and noticed
the city relationship view (Figure 5-E1). EB found that the relation-
ships among the bigger city community were very strong, which
implied the concentration of O3 in these cities might affect each
other. Then, EB selected this city community (Figure 5-E2) and fil-
tered the flows related to the pollutant pattern with a large IAQI
of O3 (Figure 5-D5). From the highlighted flows (Figure 5-D1), he
confirmed that the pollutant pattern was dominated among the city
community in this summer stage. To further investigate the frequent
evolution started from the concerned pollutant pattern, EB inspect-
ed the part of frequent patterns (Figure 5-E5). He found that the
concerned pollutant pattern commonly occurred continuously and
tended to become the green pollutant pattern. Thus, EB further ob-
served the frequent patterns started from the green pollutant pattern,
and found that evolution commonly turned to the concerned pollu-
tant pattern. After the exploration, the experts had a better under-
standing of the evolution regarding the concerned pollutant pattern.
EB recorded the stage and the frequent patterns for further research.

Exploring the specific evolution and the focused city (T6). To
inspect the winter stages, EA selected the stage card with the heavi-
est air pollution (Figure 9-A1). Since the evolution in this stage was
complex, EA first selected the city community with more heavy pol-
lution. Then, EA noticed the two light colored bars (Figure 9-A2)
in the middle row of the time controller, which meant the two days
had relatively stable air quality among the urban agglomeration.
Thus, she checked the two days and found that air quality of all the
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Figure 9: Exploration of the winter stage. (A) Finding days with low entropy of pollutant patterns. (B) Finding up trends with more than 2
change levels. (C) Finding down trends with more than 5 cities. (D) Finding abnormal evolution with high surprise.

cities became better in these two days (Figure 9-A3). The experts
further filtered the flows with up trend and more than 2 change lev-
els by setting the filters as Figure 9-B1, and found multiple short
periods (Figure 9-B2) where the air quality became better. The ex-
pert inferred that snowfall might occur in the corresponding cities
during these periods. The experts also inspected the evolution with
down trends and more than 5 cities (Figure 9-C1), and discovered
some periods that existed a large range of air quality deterioration,
as shown in Figure 9-C2. The expert clicked some flows of inter-
est (Figure 9-C3) and recorded the corresponding cities. To find
the abnormal evolution, the expert switched to the Surprise mode
and filtered the flows with high surprise values (Figure 9-D1), and
found the evolution with drastic changes (Figure 9-D2) in air qual-
ity existed on BJ (Beijing). Thus, the experts further selected the
city Beijing and observed its evolution. EB found that the poor air
quality in Beijing usually co-occurred with the distant cities. Thus,
EB refined the city community for Beijing as shown in Figure 9-D3,
and recorded it for future research.

5.2 Expert interview

After the case studies, we interviewed the domain experts EA and
EB. Their comments regarding the workflow, visual design and ef-
fectiveness of AirLens have been recorded. Since the visual designs
of our system are also related to the analysis of spatiotemporal da-
ta and event sequence, we also invited three researchers RA−RC
who used the system for the first time. RA is a post-doctoral schol-
ar focusing on analyzing environmental problems using machine
learning and GIS techniques, who is a potential final user of Air-
Lens. RB and RC are second-year PhD students that have more than
two years of experience in the visualization of spatiotemporal data
and event sequence data respectively.

Procedure. For the new researchers that had not used AirLens,
we followed the interview procedure used by Wang et al.
[WPL∗21]. First, we introduced the data, problem and analysis
tasks to them. Second, we demonstrated the workflow, visual de-
signs and interactions through a detailed example. Third, we intro-
duced the process and findings of the case study in Section 5.1.
Fourth, the researchers explored the system freely and shared the
discovered information of interest with us. Finally, we conducted
an interview for each researcher, and collected their feedback and
suggestions about the system. The feedback of both domain experts
and new researchers is summarized as follows.

System. The domain experts both considered the system effec-
tive and comprehensive, which fulfilled all the analysis tasks. Al-
though visual analytics was different from their traditional research
methods, they thought the workflow was easy to follow, and the
results were credible and explainable because of the comprehen-
sive context in AirLens. "These views can help me understand the
metrics and the results of the algorithms" commented EB. More-
over, both domain experts appreciated the stage-based analysis and
multi-level visualization. "Our methods generally focused on spe-
cific spatial and temporal scales, and time intervals are fixed. The
multi-level analysis with stages is flexible, and I can find some in-
teresting conditions that I have not noticed before." commented EA.

For the new researchers, they thought that the system was intu-
itive and flexible. Regarding the pollutant pattern inspection mod-
ule, they considered that it was good to display multiple clustering
results at one time. Regarding the evolution analysis module, they
had a better perception of complex patterns compared with the do-
main experts. However, they commonly stopped the analysis after
focusing on a city and could not propose new hypotheses, due to the
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lack of domain knowledge. This also meant that the target users of
AirLens were mainly environmental experts related to air pollution.

Visual designs and interactions. Both groups of users consid-
ered the system was well designed, with informative visualizations
and rich interactions. The new researchers could understand most
of the visual encodings and interactions after our demonstration.
They thought the labels, tooltips and legends provided in the system
can help them understand the visualizations. All the users appreci-
ated the stage-level view that presented the general evolution trends
of different city communities. "The general trends for different city
communities are shown clearly" (EA). "I can easily compare two
stages, as well as the city communities in a stage" (RB). Most users
thought the flow filters were very useful to find the desired infor-
mation. Especially, the filters were linked with the time controller,
which was appreciated by RA and RC. RA and RB also appreciated
the visual designs of different kinds of cards, which can present rich
information and remind users to click them. Besides, RC thought
the exploration of frequent patterns computed by different support
thresholds was very useful, since she had been confused with the
setting of the support threshold of VMSP algorithm.

Some problems were also commented by the researchers. RA and
RC considered some pollutant pattern colors of the same pollution
level were difficult to distinguish. EA and RB commented that the
city relationship view was inconvenient to find the relationship be-
tween two specific cities, since city names were not shown directly.

Suggestions. Both groups of users also provided valuable sug-
gestions. From the perspective of system functions, domain expert
EA advised us to support the analysis history, thus they could con-
tinue with the previous analysis quickly. EB suggested the function
of saving the findings of interest as a structured file, which can re-
duce his burden of recording the findings. From the perspective of
visual design, RA suggested a separate comparison view for com-
paring different urban agglomerations. RB commented that more
statistical information could be provided for the focused city.

6 Discussion

6.1 System performance

Since AirLens aims to support online analysis according to the se-
lected space, time and pollutants, we adopt efficient algorithms for
the analysis tasks, including K-Means, Louvain and VMSP. Their
average computation time for the largest urban agglomeration (41
cities) with the longest period (364 days) are as follows: clustering
8.97 seconds, stage division 0.74 seconds, city community division
0.59 seconds, Coreflow 0.21 seconds, and VMSP 2.82 seconds. It
can be shown that the most time-consuming process is clustering,
which means experts only need to wait at first and can explore the
data fluently during the subsequent analysis. Our system has the
potential to be applied to larger datasets, since the computation
processes of clustering and frequent pattern mining are easy to be
parallelized, which can largely reduce the computation time for the
data with very large spatial and temporal scales.

6.2 Generalizability

First, the pipeline, methods and most of the designs can be applied
to the grid-based air quality data generated by simulation models.
The space-related designs can be easily changed to display grid-

s. Second, the pollutant pattern inspection module can be used
to summarize and visualize other multivariate spatiotemporal da-
ta, such as climate data and vegetation change data, where domain
experts also need to explore typical multivariate patterns. Finally,
the exploration process of frequent patterns can be applied to gener-
al event sequence data, such as learning behavior data and medical
record data, for exploring patterns with different frequent degrees.

6.3 Limitations

Although the effectiveness of AirLens has been evaluated by the
case study and expert interview, it has several limitations that need
to be improved. The first concern is the scalability of our visual
designs. Although we have designed multi-level visualizations for
the long-period air quality data, the scalability problem still exists
when the number of pollutant patterns is large. On the one hand,
the height of the detail-level view is proportional to the number of
pollutant patterns. Although we have used an adaptive strategy to
set the height of cluster glyphs, the limited screen space cannot sup-
port many pollutant patterns. On the other hand, the color encoding
of pollutant patterns faces a scalability problem. Although we have
used a sequential colormap for each standard color in the IAQI col-
or scheme, it is also hard to distinguish multiple patterns that are in
the same pollution level, when the number of pollutant patterns is
large. In AirLens, the numbers of pollutant patterns are set from 4
to 10, which is considered as sufficient by domain experts. For sup-
porting more pollutant patterns, we plan to add the pattern index
labels to the corresponding visual elements along with the colors.

The other limitation is that AirLens mainly helps experts
discover significant information or verify their hypothesis, but can-
not support further reasoning the discovered information, due to
lacking the data of air quality influence factors. More datasets can
be integrated into AirLens for supporting further reasoning.

7 Conclusions

In this paper, we propose AirLens, a comprehensive visual analytics
system that supports domain experts in exploring the complex
air quality evolution in urban agglomeration through two analy-
sis modules. The pollutant pattern inspection module helps experts
summarize the typical pollutant patterns by combining the automat-
ic algorithm with experts’ knowledge, which facilitates experts’ un-
derstanding and reduces the perception complexity. On this basis,
the evolution analysis module helps experts explore the air quali-
ty evolution from multiple levels, including the overall level, stage
level and detail level. Moreover, with the help of frequent pattern
mining, city community extraction and various filters, experts can
understand the air quality evolution among the urban agglomer-
ation and discover significant information from multiple aspects.
The comprehensive case study and the expert interview have eval-
uated the effectiveness and usability of our system.

In the future, we intend to improve the system according to the
feedback, including promoting the scalability of visual designs and
providing more information for the focused city. To further help ex-
perts conduct in-depth quantitative analysis and reason the discov-
ered information, we plan to incorporate more datasets and develop
a new module that helps experts explore the relationships between
air quality and its influence factors.
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