
Eurographics Conference on Visualization (EuroVis) 2022
R. Borgo, G. E. Marai, and T. Schreck
(Guest Editors)

Volume 41 (2022), Number 3

Branch Decomposition-Independent Edit Distances for Merge Trees
Supplementary Material

Florian Wetzels , Heike Leitte , and Christoph Garth

Technische Universität Kaiserslautern

Appendix A: Unordered vs Ordered BDTs and other Relations

We illustrate the difference between the ordered distance
from [SSW14] and the unordered distance from [PVDT21] on an
example merge tree which can be seen in Figure 1. The three side
branches b-f, c-g and d-h have a natural ordering defined by the
scalar value of their saddles. This ordering is shown in the sibling
orderings in the BDTs. Pont et al. allow arbitrary mappings, i.e. all
three mappings are valid for their distance, whereas Saikia et al.
only allow order-preserving mappings. This means that crossings
in the mappings such as in the first one are not taken into account.
This can also be phrased differently: The allowed mappings be-
tween child branches of a node correspond to string-edit mappings
between the two child-sequences in this method by Saikia et al.
whereas the method of Pont et al. checks for the optimal maximum
matching between the two sets of children.

Furthermore, the unordered approach on BDTs used by Pont et
al. gives them advantage over all methods that work directly on
merge trees, as it allows for mappings that are ancestor-preserving
in the BDT but not in the origial merge tree, as can be seen by the
implicit mapping of the node with label b and c in Figure 1.

Relation of dC, W T
2 and dS We now discuss the relation of the

three branch decomposition-dependent methods in Figure 4 in
more detail, however, still in an intuitive manner without provid-
ing formal proofs for the claims. The constrained edit distance dC
is, as stated in the categorization, working on BDTs. In the origi-
nal paper, it is defined to work on merge trees that are labeled with
branch properties. This makes it equivalent (in terms of the map-
ping search space) to a constrained edit distance on ordered BDTs,
since the ancestor preservation condition in merge trees translates
to the ordering in BDTs. Therefore, the search space of dC is a strict
superset of the search space of dS (as long as the same base metric
is used).

As discussed before, the Wasserstein Distance on merge trees
W T

2 uses d1 as the underlying edit distance, as does dS, however,
it works on unordered BDTs. The lifting to unordered BDTs is the
only difference (in terms of search space) between dS and W T

2 . The
only difference between dS and dC is the step from d1 to dc. As both
variants require order preserving mappings, both consider strictly
ordered BDTs. From these two observations, we can follow that

a

b

c

d

e

f

g

h

a

b

c

d

f

e

g

h

a-e

b-f c-g d-h

a-e

c-g b-f d-h

a-e

b-f c-g d-h

a-e

c-g b-f d-h

a-e

b-f c-g d-h

a-e

c-g b-f d-h

Figure 1: On the left, we see a merge tree with three different map-
pings between the leaves in purple, green and orange. On the right,
we see the three corresponding mappings between the branch de-
composition graphs.

the search space extensions of dC and W T
2 in comparison to dS are

mutually exclusive and therefore dS has to be the intersection of the
two, as shown in Figure 4.

Appendix B: Proof of Theorem 1

For completeness, we first state the theorem again:

dB is a metric on the set

{(T,B)
∣∣ T is an abstract merge tree, B ∈ B(T )},

as long as the cost function c on the branch labels is a metric.

Proof Given two trees T1,T2 with branch decompositions B1 ∈

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

https://orcid.org/
https://orcid.org/
https://orcid.org/


F. Wetzels & H. Leitte & C. Garth / Branch Decomposition-Independent Edit Distances for Merge Trees (Supp.)

B(T1),B2 ∈ B(T2), the first two metric properties, identity and sym-
metry are trivial, so only the triangle inequality remains to be
proven. Therefore, consider a third tree T3 with branch decompo-
sition B3 ∈ B(T3) and optimal mappings M1,2 ⊆ B1 ×B2,M2,3 ⊆
B2 × B3 with dB(B1,B2) = c(M1,2) and dB(B2,B3) = c(M2,3).
Now suppose that the triangle inequality is violated for the triple
B1,B2,B3, i.e. dB(B1,B3)> dB(B1,B2)+dB(B2,B3).
To show a contradiction, we construct another mapping M1,3 be-
tween B1 and B3 in the following way. We define (a,c) ∈ M1,3 for
all branches a ∈ B1,c ∈ B3 where there is a branch b ∈ B2 such that
(a,b) ∈ M1,2 and (b,c) ∈ M2,3. Now consider the costs of the new
mapping

c(M1,3) = ∑
(a,c)∈M1,3

c(a,c),

and specifically the single terms in the sum, pairs p with costs
c(p) = c(a,c). If a ∈ B1 and c ∈ B3, then there is a branch b ∈ B2
such that (a,b)∈ M1,2 and (b,c)∈ M2,3. Then we know that c(a,b)
and c(b,c) are terms in the sums of c(M1,2) and c(M2,3) and also
that c(a,b) + c(b,c) > c(a,c) = c(p) due to the metric property
of the basic distance function. If c /∈ B3 (i.e. c = ⊥), then either
(a,⊥) ∈ M1,2 holds or (a,b) ∈ M1,2 and (b,⊥) ∈ M2,3. In both
cases we know that c(a,⊥)≥ c(p) and c(a,b)+ c(b,⊥)≥ c(p). If
a /∈ B1 (i.e. a =⊥), then either (⊥,c)∈ M2,3 holds or (⊥,b)∈ M1,2
and (b,c) ∈ M2,3. Again, in both cases we know that c(⊥,c) ≥
c(p) and c(a,b) + c(b,⊥) ≥ c(p). In total, we can conclude that
c(M1,3)≤ c(M1,2)+c(M2,3) and therefore c(M1,3)≤ dB(M1,M3),
which leads to a contradiction.

Appendix C: Proof of Lemma 2

For completeness, we state the lemma again:

Given two merge trees T1,T2 with roots v1,u1, let v2,u2 be the
unique children of the two roots and let those have children v3,v4
and u3,u4. Let T ′

1 be the subtree rooted in (v2,v3), T ′′
1 rooted in

(v2,v4), T ′
2 rooted in (u2,u3) and T ′′

2 in (u2,u4). Let M be an opti-
mal branch mapping for T1 and T2. Then, for the optimal cost of M
it holds that:

• dB(T1,T2) = dB(T ′
1 ,⊥)+dB(T1 −T ′

1 ,T2) or
• dB(T1,T2) = dB(⊥,T ′

2 )+dB(T1,T2 −T ′
2 ) or

• dB(T1,T2) = dB(T ′′
1 ,⊥)+dB(T1 −T ′′

1 ,T2) or
• dB(T1,T2) = dB(⊥,T ′′

2 )+dB(T1,T2 −T ′′
2 ) or

• dB(T1,T2) = dB(T ′
1 ,T

′
2 )+dB(T1 −T ′

1 ,T2 −T ′
2 ) or

• dB(T1,T2) = dB(T ′′
1 ,T ′′

2 )+dB(T1 −T ′′
1 ,T2 −T ′′

2 ) or
• dB(T1,T2) = dB(T ′

1 ,T
′′

2 )+dB(T1 −T ′
1 ,T2 −T ′′

2 ) or
• dB(T1,T2) = dB(T ′′

1 ,T ′
2 )+dB(T1 −T ′′

1 ,T2 −T ′
2 )

Proof To prove this lemma, we will do two nested case distinctions.
First, consider the optimal mapping M. It is build upon two branch
decompositions B1 ∈ B(T1) and B2 ∈ B(T2). Since the roots have
degree one, in both branch decompositions the main branch has to
go through v2 and u2. Therefore, in B1 either the edge (v2,v3) or
the edge (v2,v4) is contained in the main branch, and in B2 either
(u2,u3) or (u2,u4).
Let us first consider the case that (v2,v4) and (u2,u4) are part of the
main branches of B1 and B2. Then there is a branch a = v2v3...vl ∈
B1 and a branch b = u2u3...ul ∈ B2 and we know that B1[T

′
1 ] and

B2[T
′

2 ] exist. For the mapping M we have the following options:

(A) (a,b) ∈ M: In this case the subtrees T ′
1 and T ′

2 are mapped
to each other, i.e. M[B1[T

′
1 ]] = M[B2[T

′
2 ]] and it holds that

c(M) = c(M[B1[T
′

1 ]]) + c(M[B1[T1 − T ′
1 ]]) which then means

that M[B1[T
′

1 ]] and M[B1[T1 − T ′
1 ]] are optimal mappings be-

tween T ′
1 and T ′

2 and between T1 −T ′
1 and T2 −T ′

2 , as otherwise
they could be replaced in M by better mappings contradicting
the optimality of M.

(B) (a,b′) ∈ M, but b′ ̸= b is not a branch of T ′
2 : If a is mapped to

a branch other than b this means that b and all its descendant
branches are not mapped in M as this would either contradict
the order condition or the parent condition of branch mappings
(conditions 3 and 4, Definition 2).

(C) (a′,b) ∈ M, but a′ ̸= a is not a branch of T ′
1 : If b is mapped to

a branch other than a this means that a and all its descendant
branches are not mapped in M as this would either contradict
the order condition or the parent condition of branch mappings
(conditions 3 and 4, Definition 2).

(D) There is no branch a′ of T ′
1 and no branch b′ of T2 with

(a,b′) ∈ M or (a′,b′) ∈ M.

In each case, we can conclude the following for M and c(M) =
dB(T1,T2):

(A) Since M[B1[T
′

1 ]] and M[B1[T1 − T ′
1 ]] are optimal, we can con-

clude that

dB(T1,T2) = dB(T
′

1 ,T
′

2 )+dB(T1 −T ′
1 ,T2 −T ′

2 ).

(B) Since T ′
2 is not covered by M, we can conclude that it is mapped

to ⊥ in M and therefore

dB(T1,T2) = dB(⊥,T ′
2 )+dB(T1,T2 −T ′

2 ).

(C) Since T ′
1 is not covered by M, we can conclude that it is mapped

to ⊥ in M and therefore

dB(T1,T2) = dB(T
′

1 ,⊥)+dB(T1 −T ′
1 ,T2).

(D) Since T ′
1 and T ′

2 are not covered by M, we can conclude that
they are mapped to ⊥ in M and therefore

dB(T1,T2) = dB(T
′

1 ,⊥)+dB(T1 −T ′
1 ,T2)

and

dB(T1,T2) = dB(⊥,T ′
2 )+dB(T1,T2 −T ′

2 )

both hold.

Together with the other cases for B1 and B2, which yield analogous
equations, we get all the terms from above.

Appendix D: Proof of Lemmma 3

For completeness, we state the lemma again:

Given a merge tree T1 with root v1, let v2 be the unique children
of the root and let it have children v3,v4. Let T ′

1 be the subtree
rooted in (v2,v3) and T ′′

1 rooted in (v2,v4). Then, for the optimal
cost of M⊥(T1) it holds that:

• dB(T1,⊥) = dB(T ′
1 ,⊥)+dB(T1 −T ′

1 ,⊥) or
• dB(T1,⊥) = dB(T ′′

1 ,⊥)+dB(T1 −T ′′
1 ,⊥),

and dB(⊥,T2) decomposes symmetrically.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



F. Wetzels & H. Leitte & C. Garth / Branch Decomposition-Independent Edit Distances for Merge Trees (Supp.)

Proof If one of the trees is empty, then we only have to find the
branch decomposition for the other one that has the lowest cost.
Locally, we only have two cases. Either v3 lies on the main branch
or v4 does. In either case, the optimal branch decomposition B1 ∈
B(T1) decomposes into those of the trees listed in the lemma, as
seen in Section 3.1. If v3 is on the main branch of B1, then

c(B1,⊥) = c(B1[T
′′

1 ],⊥)+ c(B1[T1 −T ′′
1 ],⊥)

and if v4 is on the main branch of B1, then

c(B1,⊥) = c(B1[T
′

1 ],⊥)+ c(B1[T1 −T ′
1 ],⊥).

Appendix E: Proof of Lemmma 4

For completeness, we state the lemma again:

Given two merge trees T1 = ({v1,v2},{(v2,v1)}), T2 =
({u1,u2},{(u2,u1)}) that only have one branch, the following
holds for dB:

• dB(T1,⊥) = c(v1v2,⊥),
• dB(⊥,T2) = c(⊥,u1u2) and
• dB(T1,T2) = c(v1v2,u1u2).

Proof For dB(T1,⊥) and dB(⊥,T2) this follows directly from the
definition of M⊥(T1),M⊥(T2) and the uniqueness of the branch
decompositions.
For dB(T1,T2) it follows directly from the requirement to map the
main branches (condition 2 in Definiton 2) and the uniqueness of
the branch decompositions.

Appendix F: Algorithm

We now give the pseudo code for an algorithm computing the dis-
tance dB. Again, we only show the recursion for binary trees, but
it is easy to adapt for trees of arbitrary degree (see below). Algo-
rithm 1 shows the recursive procedure without memoization.

Theorem 1 Let T1,T2 be abstract merge trees with roots r1,r2 and
let r′1,r

′
2 be their unique child. Then dB(r1,r

′
1,r2,r

′
2) in Algorithm 1

computes the branch mapping distance between T1 and T2.

Proof Algorithm 1 strictly resembles the recursion from Lem-
mas 2-4, where T1 is represented by (n1, p1), T ′

1 by (c1,1,n1),
T1 − T ′

1 by (c1,1, p1), T ′′
1 by (c1,2,n1), T1 − T ′

1 by (c1,2, p1) and
T2,T

′
2 ,T

′′
2 ,T2 − T ′

2 ,T2 − T ′′
2 symmetrically. This correspondence

then also yields the correctness of the initial call dB(r1,r
′
1,r2,r

′
2)

for T1,T2.

Adaption for Arbitrary Degree. For the purpose of readability,
we omitted a detailed description of the algorithm for unbounded
degree, but we now give a short discussion on which adaptations
have to be made. To adapt the algorithm for trees of arbitrary de-
gree, we have to replace the last four options in line 23 through an
optimal matching of the subtrees, similar to the algorithm for the
constrained edit distance by Zhang [Zha96]. For each pair of pos-
sible main branches in the two trees, we have to find the optimal
matching between the remaining children. For the constrained edit
distance, this adds a factor of (deg1+deg2) · log(deg1+deg2), but
since we still have to find the optimal pair of main branches, we get
another factor of deg1 ·deg2. To obtain a more precise upper bound,

Algorithm 1: Computing the branch mapping distance

1 Function dB(n1, p1,n2, p2):
2 if n1 =⊥ and n2 is a leaf then
3 return c(⊥, p2...n2)
4 if n2 =⊥ and n1 is a leaf then
5 return c(p1...n1,⊥)
6 if n1 is a leaf and n2 is a leaf then
7 return c(p1...n1, p2...n2)
8 if n1 =⊥ and n2 is an inner node then
9 Let c2,1,c2,2 be the children of n2

10 return min

{
dB(⊥,⊥,c2,1, p2)+dB(⊥,⊥,c2,2,n2)

dB(⊥,⊥,c2,2, p2)+dB(⊥,⊥,c2,1,n2)

11 if n2 =⊥ and n1 is an inner node then
12 Let c1,1,c1,2 be the children of n1

13 return min

{
dB(c1,1, p1,⊥,⊥)+dB(c1,2,n1,⊥,⊥)

dB(c1,2, p1,⊥,⊥)+dB(c1,1,n1,⊥,⊥)

14 if n1 is a leaf and n2 is an inner node then
15 Let c2,1,c2,2 be the children of n2

16 return min

{
dB(n1, p1,c2,1, p2)+dB(⊥,⊥,c2,2,n2)

dB(n1, p1,c2,2, p2)+dB(⊥,⊥,c2,1,n2)

17 if n2 is a leaf and n1 is an inner node then
18 Let c1,1,c1,2 be the children of n1

19 return min

{
dB(c1,1, p1,n2, p2)+dB(c1,2,n1,⊥,⊥)

dB(c1,2, p1,n2, p2)+dB(c1,1,n1,⊥,⊥)

20 if n1 is an inner node and n2 is an inner node then
21 Let c1,1,c1,2 be the children of n1
22 Let c2,1,c2,2 be the children of n2

23 return min



dB(c1,1, p1,n2, p2)+dB(c1,2,n1,⊥,⊥)

dB(c1,2, p1,n2, p2)+dB(c1,1,n1,⊥,⊥)

dB(n1, p1,c2,1, p2)+dB(⊥,⊥,c2,2,n2)

dB(n1, p1,c2,2, p2)+dB(⊥,⊥,c2,1,n2)

dB(c1,1, p1,c2,1, p2)+dB(c1,2,n1,c2,2,n2)

dB(c1,1,n1,c2,1,n2)+dB(c1,2, p1,c2,2, p2)

dB(c1,2, p1,c2,1, p2)+dB(c1,1,n1,c2,2,n2)

dB(c1,2,n1,c2,1,n2)+dB(c1,1, p1,c2,2, p2)

one would have to study how these costs amortize over the whole
tree, since there are obvious limits to the sum of degrees (e.g. there
can only be a constant number of degree Ω(n) nodes), but we omit
this analysis as merge trees of high degree do usually not appear in
realistic scenarios.

Appendix G: Experimental Runtimes

Using a C++ implementation of Algorithm 1, we perform bench-
marks on the datasets from Section 5. We use different simplifica-
tion thresholds for the heated cylinder dataset, the synthetic out-
lier ensemble, and the vortex street dataset. For the latter two, we
first add artificial noise. The observed running times can be seen
in Table 1. For each dataset, we compute the branch mapping dis-

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



F. Wetzels & H. Leitte & C. Garth / Branch Decomposition-Independent Edit Distances for Merge Trees (Supp.)

HC (10) O (20) VS (68) VS (135) O (196) VS (213) HC (233) VS (259) O (356)
Runtime 1.5 ·10−5s 9.5 ·10−5s 3 ·10−3s 7 ·10−2s 3.7 ·100s 1.1 ·100s 6.5 ·100s 1.5 ·100s 4.2 ·101s

Table 1: Running times of the branch mapping distance on the datasets from Section 5: The synthetic outlier dataset (O), the heated cylinder
(HC) and the vortex strees (VS). We used different versions of the datasets with different levels of noise and simplification. The sizes of the
merge trees are shown in brackets.

tance for 100 random pairs. The table shows the average sizes of
the merge trees as well as the average running times over all 100
pairs. We expect that further optimization of our code (e.g. paral-
lelization) could yield practical running times for even larger trees.
We leave this for future work.

Appendix H: Applications

We now show the more detailed results on some of the datasets
from Section 5. We start with renderings of the full synthetic en-
sembles in Figures 3 and 4. Furthermore, in these figures the clus-
termaps are shown together with dendograms of the underlying hi-
erarchical clusterings.

To show that this example is independent of the chosen param-
eters (Wasserstein distance and squared costs), we provide the dis-
tance matrices for the branch mappings and constrained edit map-
pings also for the L∞- and overhang cost from [SMKN20] in Fig-
ure 2. Furthermore, Figure 5 shows another ensemble and the dis-
tance matrices of the branch mapping and constrained edit distance,
where we did not use the squared costs. We were unable to do
these extra comparisons for the Wasserstein distance, as its TTK-
implementation does not allow for a base metric change.

Figure 6 shows the complete distance matrix for the dataset from
Section 5.2 and Figure 7 a direct comparison with our implemen-
tation of the distance by Sridharamurthy et al. [SMKN20] on the
same dataset.

In Figure 12, we provide a comparison of our tracking results on
the ion density dataset with the results of the Wasserstein distance
on the same dataset provided by Pont et al. in [PVDT21].

We also provide the distance matrices for noisier versions of the
outlier ensemble and the vortex street dataset. For the outlier exam-
ple, we did this on a noisy version of the ensemble from Figure 5
and a new outlier ensemble that was directly created with noise.
Figures 10 and 11 show that the outlier is still visible if we add
artificial noise to the synthetic ensemble, however, not as clearly.
The same holds for the periodic pattern in the vortex street dataset
with artificial noise, which can be seen in Figures 9 and 8. Here, the
difference to the normal version is more significant. The periodic-
ity detection is possible, but clearly impeded. We should note that
an improved robustness against this kind of noise is not the goal of
our approach, but rather robustness against structural perturbations
like in the original synthetic ensemble, which was its motivation.
We included these examples with noise to show that our method
has some robustness agaist this type of noise, comparable to other
merge tree-based methods, but it is not significantly improved. In
fact, it might even perform worse in some cases due to the generally
smaller distances.

Figure 2: Comparison of branch mapping distance and con-
strained edit distance on the outlier ensemble using different base
metrics. The distance matrices for the branch mapping distance
can be seen on the left and for the constrained edit distance on the
right. The top matrices represent the distances using the L∞ base
metric and the bottom matrices the distances using the Overhang
base metric.

References
[PVDT21] PONT M., VIDAL J., DELON J., TIERNY J.: Wasserstein

distances, geodesics and barycenters of merge trees. IEEE Transactions
on Visualization and Computer Graphics (2021), 1–1. doi:10.1109/
TVCG.2021.3114839. 1, 4, 11

[SMKN20] SRIDHARAMURTHY R., MASOOD T. B., KAMAKSHI-
DASAN A., NATARAJAN V.: Edit distance between merge trees. IEEE
Trans. Vis. Comput. Graph. 26, 3 (2020), 1518–1531. doi:10.1109/
TVCG.2018.2873612. 4, 8

[SSW14] SAIKIA H., SEIDEL H., WEINKAUF T.: Extended branch
decomposition graphs: Structural comparison of scalar data. Comput.
Graph. Forum 33, 3 (2014), 41–50. doi:10.1111/cgf.12360. 1

[Zha96] ZHANG K.: A constrained edit distance between unordered la-
beled trees. Algorithmica 15, 3 (1996), 205–222. doi:10.1007/
BF01975866. 3

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

https://doi.org/10.1109/TVCG.2021.3114839
https://doi.org/10.1109/TVCG.2021.3114839
https://doi.org/10.1109/TVCG.2018.2873612
https://doi.org/10.1109/TVCG.2018.2873612
https://doi.org/10.1111/cgf.12360
https://doi.org/10.1007/BF01975866
https://doi.org/10.1007/BF01975866


F. Wetzels & H. Leitte & C. Garth / Branch Decomposition-Independent Edit Distances for Merge Trees (Supp.)

Figure 3: The example ensemble (left) with a comparison of branch mapping distance (top right), constrained edit distance (center right)
and Wasserstein distance (bottom right). Heatsmaps for distance matrices of the three distance measures are shown where the rows and
columns are ordered by the clustermap function of the seaborn library to clearly identify clusters.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



F. Wetzels & H. Leitte & C. Garth / Branch Decomposition-Independent Edit Distances for Merge Trees (Supp.)

Figure 4: The outlier ensemble (left) with a comparison of branch mapping distance (top right), constrained edit distance (center right)
and Wasserstein distance (bottom right). Heatsmaps for distance matrices of the three distance measures are shown where the rows and
columns are ordered by the clustermap function of the seaborn library to clearly identify clusters. The plots also show the dendograms of the
underlying clusterings.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



F. Wetzels & H. Leitte & C. Garth / Branch Decomposition-Independent Edit Distances for Merge Trees (Supp.)

Figure 5: Another outlier ensemble (left) with a comparison of branch mapping distance (top right) and constrained edit distance (bottom
right). Heatmaps for distance matrices of the two distance measures are shown where the rows and columns are ordered by the clustermap
function of the Seaborn library to clearly identify clusters.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



F. Wetzels & H. Leitte & C. Garth / Branch Decomposition-Independent Edit Distances for Merge Trees (Supp.)

Figure 6: The complete distance matrix for all 1001 time steps of the vortex street dataset.

Figure 7: Comparison of the (partial) distance matrices of the vortex street dataset using the branch mapping distance (left) and the
constrained edit distance (right). The right image was computed using our own implementation of the constrained edit distance and resembles
Figure 13 in [SMKN20] (small differences can be due to different merge tree computation or different ways of attaching branch properties to
vertices). Both, or better to say all three, matrices show the same periodic pattern in the data.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



F. Wetzels & H. Leitte & C. Garth / Branch Decomposition-Independent Edit Distances for Merge Trees (Supp.)

Figure 8: Distance matrices (using Wasserstein distance as base metric) for noisy versions of the vortex street dataset. Four different variants
of noise are shown using noise of different intensity/amplitude (top 1%, bottom 0.4% of scalar range) and different simplification (left ≈ 200
vertices, right ≈ 150 vertices, original data ≈ 65 vertices).

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



F. Wetzels & H. Leitte & C. Garth / Branch Decomposition-Independent Edit Distances for Merge Trees (Supp.)

Figure 9: Distance matrices (using persistence difference as base metric) for noisy versions of the vortex street dataset. Four different
variants of noise are shown using noise of different intensity/amplitude (top 1%, bottom 0.4% of scalar range) and different simplification
(left ≈ 200 vertices, right ≈ 150 vertices, original data ≈ 65 vertices).

Figure 10: Distance matrices for noisy versions of the outlier ensemble from Figure 5. The left matrix was computed using the branch
mapping distance, the right one using the constrained edit distance. The merge trees were simplified to ≈ 200 vertices.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



F. Wetzels & H. Leitte & C. Garth / Branch Decomposition-Independent Edit Distances for Merge Trees (Supp.)

Figure 11: Distance matrices for a new outlier ensemble with noise. The left matrix was computed using the branch mapping distance, the
right one using the constrained edit distance. The merge trees were simplified to ≈ 200 vertices.

Figure 12: Comparison of the tracking on the ion density dataset using the branch mapping distance (top) and the Wasserstein distance
(bottom). For the bottom image, we replicated the mapping from Figure 11 in [PVDT21] using the TTK implementation of the Wasserstein
distance. It is easy to see that both methods yield the same semantically meaningful matching.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.


