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Figure 1: Interpolation results of Stethoscope. Note that the domain contains 2 holes, and the deformation is quite large. Our intermediate
frames look feasible, and the distortions are bounded by the input mappings.

Abstract

Shape interpolation is a fundamental problem in computer graphics. Recently, there have been some interpolation methods
developed which guarantee that the results are of bounded amount of geometric distortion, hence ensure high quality interpola-
tion. However, none of these methods is applicable to shapes within the multiply-connected domains. In this work, we develop
an interpolation scheme for harmonic mappings, that specifically addresses this limitation. We opt to interpolate the pullback
metric of the input harmonic maps as proposed by Chen et al. [CWKBC13]. However, the interpolated metric does not corre-
spond to any planar mapping, which is the main challenge in the interpolation problem for multiply-connected domains. We
propose to solve this by projecting the interpolated metric into the planar harmonic mapping space. Specifically, we develop
a Newton iteration to minimize the isometric distortion of the intermediate mapping, with respect to the interpolated metric.
For more efficient Newton iteration, we further derived a simple analytic formula for the positive semidefinite (PSD) projection
of the Hessian matrix of our distortion energy. Through extensive experiments and comparisons with the state-of-the-art, we
demonstrate the efficacy and robustness of our method for various inputs.

CCS Concepts

* Computing methodologies — Computer graphics; Animation; Shape analysis;

1. Introduction

Shape interpolation is essential for many computer graphics and
geometry processing applications. In particular, computer anima-
tion is a computer-aided process that heavily relies on the shape
interpolation technique, which allows the automatic generation of
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intermediate frames, after the animator sets the tone of the anima-
tion using keyframes. A good interpolation method is crucial for
producing visually feasible and pleasing intermediate frames.

Harmonic mappings are widely used in computer graphics, due
to their smoothness and easy to work with for numerical computa-
tion. Chien et al. [CCW16] developed a highly efficient and ef-
fective method for producing interpolation results with bounded
amount of distortion within the space of planar harmonic maps.
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They first interpolate the complex derivatives at each point, and
then reconstruct the intermediate map using numerical integration.
All their three variants use the complex logarithms, restricted to
simply-connected domains. Unfortunately, this is not applicable to
multiply-connected domains, as the integrability condition for the
interpolated complex derivatives is violated, leading to ‘broken’ re-
sults, as Fig. 2 and the accompanying video show.
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Figure 2: Interpolation results of the annulus shape for t = 0.5.
The method of Chien et al. [CCWI16] breaks down on this simple
multiply-connected domain. In contrast, our method generates a
natural looking result.

We present an interpolation method which is applicable to har-
monic mappings on multiply-connected planar domains. The input
to our algorithm is two (or more) harmonic mappings, which are
in the same homology class, allowing the mappings to be continu-
ously “morphed” between each other without breaking local injec-
tivity. Chen and Weber [CW17] extended the harmonic mappings
space onto multiply-connected domains for the deformation task.
Their method produces high-quality deformation results which are
of bounded amounts of geometric distortion, and this inspires us
to perform the shape interpolation task within the same mapping
space.

It has been shown in [CWKBC13, CCW16] that the pullback
metric tensor is an ideal candidate for the shape interpolation prob-
lem as it seamlessly encodes the mapping and naturally leads to
results with bounded distortion. As such, we also linearly interpo-
late the metric tensors of the input harmonic mappings. However,
this comes with a major obstacle that, the interpolated metric does
not necessarily correspond to a planar mapping. The same prob-
lem was encountered in [CCW16] for simply-connected domains,
where the problem is addressed by blending the metric along the
boundary only. While this approach could be applied to multiply-
connected domains, it still does not result in planar harmonic map-
pings, since the Hilbert transformation proposed in [CCW16] does
not apply to multiply-connected domains.

In this work, we propose to project the interpolated metric into
the space of planar harmonic mappings as the final interpolation
result. To measure the projection distance, we choose the popu-
lar symmetric Dirichlet energy of the resulting harmonic mapping,
which measures the isometric distortion w.r.t. the reference, i.e. the
interpolated metric. We design a Newton iteration routine to op-
timize the distortion along the domain boundary, and the bounded
distortion theorem of planar harmonic maps [CW17, Theorem 4.2]
ensures that the resulting map is locally injective and has bounded
distortion. Furthermore, noting that the symmetric Dirichlet energy
is convex in terms of the pullback metric [ACZW19], we derive

a simple analytic formula for the PSD projection of the Hessian
matrix during the Newton iteration, and this allows us to design
a fully parallel interpolation algorithm on modern GPUs. We per-
formed extensive experiments and comparisons with the state-of-
the-art, and show that our method is highly efficient and effectively
produces high-quality results with practically bounded distortion
on multiply-connected domains.

Our main contributions are:

e We propose to project the blended metric into the harmonic map-
ping space to obtain feasible results with bounded distortion;

e We derive a simple analytic PSD projection formula for the Sym-
metric Dirichlet energy;

e Our interpolation algorithm is implemented fully on the GPU,
enabling our method to run fast in the low dimensional mapping
space.

2. Previous work

Due to the abundance of literature on shape interpolation tech-
niques, we only review some of most related works. We refer the in-
terested reader to [Wol98] and [Ale02] for comprehensive reviews
of classical methods. Here, we concentrate on planar shape inter-
polation methods.

Usually, a shape interpolation method includes two steps: inter-
polate some geometric quantities which describe the input shapes,
and reconstruct the geometry from the interpolated quantities. The
main difference between different methods is the quantity being
chosen for interpolation.

One popular approach is the As-Rigid-As-Possible (ARAP)
method [ACOLO00], which chooses the element-wise Jacobian of
the source-to-target map as the geometry quantity for interpo-
lation. By interpolating the rotation and shear components of
the Jacobians separately, it leads to visually pleasing blending
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Figure 3: Interpolation results at t = 0.5 for Giraffe. ARAP fails
due to large rotation. The results of FFMP and GE are visually
similar to ours, however the distortions are unbounded at various
locations, which are marked in red in the images. In contrast, our
result (last column) contains just a few spots where only the con-
formal distortion is slightly unbounded.
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with a relatively low amount of distortion in many cases. How-
ever, this approach fails to handle large rotations and is sensitive
to the tessellation of the mesh. Another popular approach is to
pose the interpolation problem as finding geodesics in the shape
space [CPSS10, VISSH15, SGK19, HRWW12], by optimizing a
geodesic elastic (GE) energy in order to obtain the interpolation
results.

Another option for shape interpolation is to use the differential
coordinates [SK04,XZWB05, LSLCO05,KG08]. Among existing
differential coordinates representations, the generalized barycentric
coordinates [HF06, WBCG10, WG10, WBCGH11, WPG12] pro-
vide a simple and efficient way to define smooth spatial deforma-
tions. In the planar case, the deformation map is restricted to linear
combinations of real or complex-valued basis functions (e.g. the
Cauchy coordinates). Based on these coordinates, visually plausi-
ble interpolation results are produced in [CCW16] for shapes on
simply-connected domains. Recently, Chen and Weber [CW17]
generalize the Cauchy coordinates based harmonic mapping repre-
sentation to multiply-connected domains for the deformation prob-
lem, which naturally leads to the question of designing shape inter-
polation methods on multiply-connected domains.

This work is also inspired by the tetrahedral metric interpola-
tion method proposed by Aharon et al. [ACZW19], who proved
that within the space of pullback metrics, the popular symmetric
Dirichlet energy is convex, which further confirms that the metric
is an ideal geometric quantity for the shape interpolation problem.

3. Background

For completeness, we include a brief introduction for some basic
concepts for harmonic mapping and its discretization in 2D.

3.1. Harmonic Maps on Multiply-connected Domains
A harmonic map is a map f that satisfies the Laplace equation,
Af =0.

As we are focusing on the plane, the map f: Q — R?, f(x,y) =
[u(x,y),v(x,y)] can be conveniently expressed as a complex-valued
function f : Q C C — C where f(z) = u(z) +iv(z) with z = x+1iy.
Using the Wirtinger derivatives of complex-valued functions, a map
f is said to be holomorphic if it satisfies the Cauchy-Riemann
equations, which can be expressed as f; = 0, and a map f is
harmonic if and only if it satisfies the Laplace equation,

fzz=0.

Chen and Weber [CW17] proved some key theorems regarding
planar harmonic maps on multiply-connected domains. The first
theorem [CW17, Theorem 4.1] is about the representation and the
structure of harmonic maps:

Theorem 1 (Harmonic Map Decomposition). Let Q be a multiply-
connected planar domain with N holes K, ..., Ky, and choose N
arbitrary points p; inside K; accordingly. Then, any harmonic map
f: Q — C can be represented as:

f(2)=®(x)+¥(z) +Zwlloglz pil, (1)
i=1
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where @, ¥ : Q — C are holomorphic functions, and ®y, ...,
complex coefficients.

Wy are

By setting W(zo) = O for an arbitrary point zg € Q, the harmonic
decomposition in multiply-connected domains (1) is unique. The
main difference for the harmonic decomposition between simply-
connected domains and multiply-connected domains is the addi-
tional summation term, which is essential as it makes the represen-
tation of harmonic maps complete.

The second theorem [CW 17, Theorem 4.2] relates the global dis-
tortion bound and the distortion bound over the domain boundary:

Theorem 2 (Bounded Distortion Harmonic Map). A planar har-
monic map f : Q — C on a multiply-connected domain with ex-
terior boundary curve Y oriented counterclockwise and interior
boundary curves 7i, ..., Yy oriented clockwise, is locally injective
with an upper bound k € [0, 1) on the conformal distortion, a lower
bound 6, > 0 on the small singular value of the Jacobian, and an
upper bound 61 < oo on the large singular value at every point z in

Q if and only if:
oo B, fayto=o
'Yl)f@(o‘)) 'Y/fZ
ng(co)glc VcoeaQ

c1(0) <6; VoedQ
6, <oy (®) Vo €dQ.

3.2. Discretization of Harmonic Maps

Let P = {z1,...,z2m} C C be the vertices of a multiply-
connected planar polygon (i.e. the cage in the inset).
Chen and Weber [CW17] discretize
the harmonic map (1) on multiply-
connected domains based on the
complex-valued Cauchy barycentric
coordinates [WBCG10] as follows:

g (P1+ZC

j=1

Ci(z) = 6./'(2) j=1....m
! loglz—pj—m|  j=m+1,...,m+N,

@

where C; i(2) is the j* " Cauchy coordinate associated with vertex z i
(see [WBCG]O]), N is the number of holes in the domain, p is any
point inside the jth inner boundary loop (i.e. hole), ¢; and y; are
complex coefficients with

9=V, j=m+1,...,m+N. 3)

The Wirtinger derivatives are easy to obtain as follows:

CE WICTECES W

B,(2) i=tm @

_— j=m+1,....m+N,
Z=Pj—m

where D i(2) is the derivative of the Cauchy coordinates.
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4. The Interpolation Problem
In general, a shape interpolation method consists of 2 steps:

1. Interpolate some geometric quantity to obtain the intermediate
quantity;

2. Reconstruct the shape from the intermediate quantity as the in-
terpolation result.

Our algorithm follows the same process. Section 4.1 introduces the
metric tensor as the geometric quantity for our method. As it is
infeasible to reconstruct the shape from the intermediate metric by
direct integration, we propose to project it into the harmonic map
space in order to obtain the result in section 4.2. Section 4.3 gives
the formula of some necessary steps in our method.

We cast the shape interpolation problem as that of the interpola-
tion of mappings. Assuming f0 1§ —Sp and fl 1§ — S are har-
monic maps within the same homology class, which is required a
priori for the existence of the smooth transformation from fj to fi,
we would like to produce an intermediate harmonic map f* : S — Sy
with the following properties,

1. (interpolation). f*|,—o = f° and f'|,—; = f'.

2. (local injectivity). f* is locally injective over the domain.

3. (bounded distortion). The conformal distortion and isometric
distortion are bounded by the distortions of input mappings.

The first two properties are strictly enforced in our method, while
the third is loosened to be having low overall distortion, which
means in practice, the bounded distortion property can get slightly
violated for some input mappings.

4.1. Linear Blending of The Pullback Metric

The pullback metric has been proven to be an excellent choice for
the shape interpolation problem in both 2D [CWKBC13,CCW16]
and 3D [ACZW19]. The pullback metric of a map f(x) : S C R? —
R? can be expressed in terms of the Jacobian:

T
My =JgJy.

This tensor is used to measure differential quantities such as lengths
of infinitesimal vectors under map f(S) using the standard Eu-
clidean metric of S.

In the case of planar mapping, f can be written in complex num-
bers, as a function of z and Z, which allows us to derive the ex-

my  my

pression for My = m ) in terms of f; and f;, according
3

to [CCW16]:

ma

my = (Ref; +Refg)2 + (Imf; — Im]Tz)2
my = —2 (Ref; - Imf; + Refs - Imf) ®)
my = (Ref: —Refr)” + (Imf: +Imfz)”.

For the interpolation problem, assuming given planar maps fo
and f U we linearly blend their pullback metrics M?‘ and M} to
obtain M}v =(1- t)M(; +tM } Unfortunately, the blended met-
ric M}v does not correspond to a planar mapping f'. Chen et
al. [CWKBC13] solved this problem by using a discrete curvature

flow to flatten the metric. While Chien et al. [CCW16] blend the
metric only for the boundary of the simply-connected domains and
use Hilbert transform to obtain the mapping of the whole domain.
However, neither approach is available for multiply-connected do-
mains.

4.2. Harmonic Projection

After linearly blending the metrics, we face the problem of realiz-
ing M} as a planar mapping within the multiply-connected domain
Q. To solve this, first we also focus on the boundary of Q, whose
bounded distortion implies a global distortion bound by Theorem 2.
Then we project the metric to find a map in our harmonic mapping
space.

Assume g is some reference mapping that realizes the linearly
blended metric Mg = M’f, we note however that g is most likely
to be curved and non-planar, therefore we would like to obtain a
planar mapping & as ‘close’ to g as possible. We suggest that the
isometric symmetric Dirichlet energy is a suitable measure for the
gap between g and £, as it has been widely adopted for geometric
optimization in numerous recent works, ranging from parameteri-
zation [SAPHO4, SS15, KGL16], deformation [RPPSH17, CW17]
to shape interpolation [ACZW 19, SGK19]. It has a builtin barrier
term that prevents elements from collapsing, ensuring that the local
minima sought by the optimizer is locally injective, when given a
locally injective initialization. Formally, the isometric energy of a
mapping f (at a given point) is defined as:

1

Eio= (MWP+17'P) =3 () + ™)), @

where M = JTJ with J being the Jacobian of the mapping f.

Note that in our context, the mapping in concern is P : g — h,
where g is the reference corresponds to the linearly blended metric
and £ is a planar mapping in the harmonic space. The isometric
energy for one sample can be written as follows (Appendix A):

1 _ _
Eigo = 5 (Tr(Mg 'My) + Te(Meh, ) ) %

and the overall isometric energy is:
h
ESh = ?é  Eol@)ds. ®)

Then the interpolation problem becomes an optimization problem
of finding a map & within our harmonic mapping space such that it
minimizes the isometric energy (8). We note that in this overall en-
ergy, the isometric energy is integrated over the domain boundary,
as it allows us design an efficient algorithm to perform the mini-
mization, and in the meantime, Theorem 2 ensures that the result-
ing map is locally injective and has bounded amount of distortions.

4.3. Numerical Optimization

Suppose that:
81 & hy
M, = . M, = s 9
§ (gz ga)’ h (hz hs) ©)

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



D. Shi, R. Chen / Harmonic Shape Interpolation on Multiply-connected Planar Domains

then the isometric energy at one point is:

E ~g3h —2g2h +g1h3 1 n 1
1S0 —
2 gi1g3—g mhs—h3 ) (10)

= E(hl ,h27h3),

By Eq. (4,5), this energy can be written in terms of ¢ and s, since
hy, hp and h3 are functions of h; and hz, which in turn are linear
combinations of ¢ and y,

Eiso(9,¥) = E (h1 (9,¥) 112 (9,¥) , 713 (0, W) - a1

The objective energy of our optimization problem is:

1
Egﬁh(w,\u)=m Y Eiolw). (12)
WEIQ

As our optimization problem involves a small number of vari-
ables (i.e. the length of vectors ¢ and W), we naturally turn to the
Newton’s method to optimize the energy given its quadratic con-
vergence rate.

4.3.1. Gradient and Hessian

The first step of the Newton’s method is to evaluate the gradient
and Hessian of the objective function. In our case, they possess
relatively simple closed-form expressions, as derived in Appendix
B. The results are summarized in the following. We use bold sym-
bols to denote real vectors and matrices. Let D = (Dy,D3,...,Dy) €
C™X" be a complex-valued row vector, we define the real-valued

matrix D as:
“ \Im(D) Re(D) ‘

The Wirtinger derivatives can be expressed as real 2-vectors:
_ (Re(hz) T Re (/) 2x1
h; = (Im(hz) , hz= Im(z) eR™". (14)

Substitute them into Eq. (5), we get the expressions for ;,i =1,2,3

as:
—(pT 7T . (h:
hi (hZ h: >1X4Fl (hf>4x1 ) 15)

where Fj,i = 1,2,3 are constant 4 X 4 real matrices given in Ap-
pendix B.

The gradient of Ejs, w.r.t. the 4n real variables is:
v(I).,‘IlEiso = thisov(P,\llha (16)
and the 4n x 4n real Hessian matrix of Ejg, is:

V%Q,wEiso = Vo.y (ViEisoVoyh)

3 2 T <2 (17)
= Z 8,11.E150Vq,’wh,- + (V(p,\yh) thisov(p_’\vh.

i=1
Finally, the gradient and Hessian of the full mapping energy are:
1

V(Pq‘«I’Egﬁh =~ ol Z VEiso()
199 ,Ga
| (8)
v(2|’3‘~|’Eg—>h = 09| Z Vinso(m)'
®EIQ
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4.3.2. Positive Definite Hessian

In Newton’s method, the Hessian matrix must be positive definite,
in order that the obtained update points in a descending direction.
Unfortunately, the Hessian matrix Vinm is not positive definite in
general, and we need to find a way to get a positive semi-definite
(PSD) matrix which is the “closest” (in Frobenius norm) to Vinso.
Let V2E150+ denotes the PSD Hessian matrix for a single sample,
the PSD Hessian matrix for the full map can be constructed as,

+ 1
VviEsTh = 0] Y VEio' (o). (19)

WEIQ

A key observation for obtaining an analytic PSD projection
VinSOJr is that the 2nd term in the Hessian expression (17) is al-
ways PSD, since V%Eiso is PSD. More formally, we have the fol-
lowing theorem.

Theorem 3 V%Eiso is positive semi-definite.

This is due to that the symmetric Dirichlet energy is a convex
function of the metric, as proven by Aharon et al. [ACZW19].
Therefore, we can separate the Hessian matrix into 2 parts,
VowEiso = Hi + Hy, with Hy = ¥}, 9}, EisoV.yhi and Hy =
(Vowh) V2Ei, (Veyh). According to Theorem 3, Hy is PSD,
therefore we only need to focus on Hj, whose expression is derived
in Appendix B,

pT o D 0
H, —2( 0 DT) K (O D)’ (20)
with
5 o + 03 0 o] — 03 —0
0 ol + o —o —0 +
K] = Z(XiF;' = o — 1_ 3 2 10 3
= 1—03 %] 0 + 03
—0l —0 + 03 0 o + 03

The eigenvalues of K| are:

Ma= oy +os+1/ (o —o3)” + 0
21

2
7»3’4=(X1+(X37 ((X.]*OC3) +OC%.

The “closest” PSD projection of K| can be obtained by examining
the signs of the eigenvalues and replacing the negative eigenvalues
with 0. More specifically, we consider the following 3 cases:

o A2 >A34>0:

K| =K.
o 0>MA1p>A34:
K =0
o 7\,1’2 >0> 7\,3341
N 0 o — O3 —0l
K+ _ 7\,1 0 N —0 —0 + 03
! 7\.1 — }\,3 o] — O3 —0l s 0
—0 —o + 03 0 s
where s = #
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Thus we obtain V‘P\ll o = H1+ + H,, with H1+ =
D’ 0\ _./D 0 . . .

2 ( 0 DT) K ( 0 D)' This analytic expression enables us

to implement our Newton iteration efficiently, and further allows

easy parallelization on modern GPUs.

Table 1: Numbers of iterations and runtime (s) for different types
of projection on various shapes att = 0.5. Delete: delete Hy; Full-
Proj: project H| + Hj together; PartProj: project H| (our method).

Delete | FullProj [ PartProj(CPU) PartProj(GPU)

Model - - - - - - - -
#iter | runtime | #iter | runtime [ #iter | runtime #iter | runtime

Archery 11 2.944 10 2.942 10 3.069 10 0.281
Bar holes 15 1.722 10 1.121 10 1.015 10 0.161
Links 13 1.658 11 1.523 11 1.442 11 0.200
Stethoscope 18 3.167 17 2.971 17 2.900 17 0.241
Rect 19 0.880 10 0.484 9 0.391 9 0.095
Rex 21 3.796 12 2.166 13 2.325 13 0.276
Rings 12 3.857 12 3.956 12 3.888 12 0.549
Scissors 15 2.261 13 2.107 14 2.058 14 0.223
Jackbean 12 1.952 11 1.788 12 1.938 12 0.241
Giraffe 19 4.035 24 5.156 23 4.763 23 0.295

Table 1 compares the performance of three types of projection.
‘Delete’ means setting H = H, which is PSD by construction,
‘FullProj’ means performing numerical eigenvalue decomposition
on H = H| + Hj to get its PSD projection and ‘PartProj’ means
projecting H; alone using our analytic expression. The first three
tests are performed on the CPU. We also list the results of our GPU
implementation for the same input. ‘Delete’ has the least runtime
per iteration, while taking the most iterations to converge. It takes
nearly the same number of iterations for ‘FullProj’ and ‘PartProj’ to
converge, and ‘PartProj’ runs faster since it avoids performing nu-
merical eigenvalue factorizations. Compared with the other three
setups, our GPU implementation takes the least runtime till conver-
gence.

4.3.3. Injectivity Certification

To ensure that the map stays locally injective, we verify that con-
dition |h;| > |hz| holds, and backtrack in our line search otherwise.
For this part, we follow the steps in [CW17, Section 8] and keeps
the map locally injective by utilizing the Lipschitz continuity of the
Wirtinger derivatives on the boundary segments.

5. Implementation

Algorithm 1 provides the pseudocode of our method. In the remain-
ing of this section, we point out some practical aspects of the im-
plementation.

5.1. Initialization

The initialization for the Newton iteration can have significant in-
fluence on its convergence rate. In our experiments, we set ®f, ¥f,
to be the interpolation result of the previous frame. In all the results
presented in the paper, we uniformly sample ¢ € [0, 1] and interpo-
late 500 frames for each input mapping.

5.2. Energy, Gradient and Hessian Evaluation

By the benefits of harmonic maps in Theorem 2, when computing
ES™" VES™ and V2ES™"" using Eq. (12), (18) and (19), we
use uniformly distributed samples over the boundary. Furthermore,

Algorithm 1 Harmonic Interpolation based on Newton’s Method

Input: source map (¢°,y°), target map (@', y'), time ¢
Output: interpolation result (¢, y")
1: compute the reference metric M
2: initialize with a locally injective map (¢f, ¥)
3: loop
4 compute E,fﬁh by (12)
50 setg + VES by (18)
+
6 setH« V2ES" by (19)
7 (H,g) < EliminateVariables (H,g)

8: solve Hd = —g, where d = (d >
dy

9: set s LineSearch(E,f_’h,d,g,(pk,\yf{)
10: if E;, — E;1 < € then

11: return (@, V})

12: else

13: (P15 Wier1) = (9, Wh) + 5(dg, d)
14: end if

15: end loop

due to the high computational cost of the Hessian matrix, we use
only a subset of the boundary sample when evaluating the Hessian.
Let G = {0, my,... ,0)|G|} C 0Q be a set of uniformly distributed

samples, ES " VES ™" and VZES ™" * can be approximated as:

G| G
h h
EST = |G‘ ZENO (0, VEgﬁ |(G| ZVEISO (1),)
i=1 22)

—ht
V2E$ |H| Zv el

where H C G with |H| = r|G/, and r is the Hessian sampling ratio
from the energy samples. Table 2 shows the runtime and number
of iterations till convergence of our method for one frame under
different r. For most inputs, r = 20% leads to the fastest conver-
gence for each frame. Therefore, we set r = 20% throughout our
experiment.

Table 2: Average runtime (ms) and number of Newton iterations
till convergence of interpolating each frame with different sampling
rate r for the Hessian.

M r=100% r=50% r=20% r=10% r=5%
odel - n - - - 5 - - - -
time | #iter time | #iter time | #iter time l #Hiter time | #iter
Archery 178.4 3.0 121.3 3.0 87.7 3.0 75.5 3.0 1380.8  100.0
Bar_holes | 48.3 3.0 392 3.0 34.0 3.0 32.6 32 353 4.2
Links 71.3 3.0 529 3.0 41.6 3.0 38.3 3.0 101.6 15.5
Stethoscope| 81.4 3.0 61.6 3.0 49.8 3.0 47.1 3.0 51.6 39
Rect 24.1 34 23.6 34 23.0 34 24.8 35 24.4 3.6
Rex 108.1 3.1 76.9 3.1 58.7 3.1 54.1 32 817.5 100.0
Rings 175.5 22 118.4 22 92.0 2.4 351.1 15.1 1662.1 95.4
Scissors 78.1 3.0 58.5 3.0 47.0 3.0 51.6 43 364.9 549
Jackbean | 79.2 29 60.5 29 48.5 29 46.6 3.0 452 3.1
Giraffe 149.1 42 105.1 42 79.5 4.2 77.0 4.7 961.8 100.0

5.3. Elimination of Variables

The Hessian matrix given in Eq. (18, 19) is singular, due to that the
representation of the harmonic map in Eq. (2) has some degrees of
redundancy. As discussed in [CW17], it has in fact a nullspace of
dimension 4N + N + 1, among which, 4N is due to the 2 complex

© 2022 The Author(s)
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DOF per hole for each of the two Cauchy barycentric mapping, N
is due to the conjugation constraint on some of the coefficients (3),
and the term 1 is due to the decomposition (1). In our optimization
problem, there is an additional dimension to be considered. As the
objective is defined with M) = JhT Jp, it is obvious that, if R is a
rotation, then (RJ,)” (RJ;) = JI (RTR)J, = My, which means the
objective is invariant to global rotation. To eliminate this nullvector,
we set Reg; = 0.

6. Results

We implement our method in C++ using the GPU with NVIDIA
CUDA Toolkit 11.2 and generate input for our interpolation method
using the method of [CW17]. There are some default parameters in
the algorithm throughout our experiments. The number of the en-
ergy and gradient samples |G| is set to 10,000, while the number
of Hessian samples is |H| = 0.2|G|. The termination condition for
our Newton iteration is set to be AEjs, < 10~7. When comparing
to mesh-based methods, a mesh with 10,000 vertices is used. The
conformal distortion ¥ = g—; and the symmetric Dirichlet isometric
distortion are evaluated on each vertex and normalized for the dis-
tortion plot in each example. In all the distortion graphs, we show
100 samples with the largest distortion for every method. Our ex-
periments are performed on a machine running Windows 10 with
Intel(R) Core(TM) i5-8500 CPU @ 3.00GHz (6 cores), 32GB and

has a NVIDIA GeForce RTX 2080 Ti graphics card.
Source ARAP FFMP GE

\
db’

Brm”

Figure 4: Comparison of interpolation results of Scissors for
t = 0.5. The left handle of Scissors in the FFMP result appears
smaller than the other. The results of ARAP, GE and our method
look similar, however only our result shows bounded amount of
distortion, as the distortion plots reveal.

=

As the state-of-the-art shape interpolation methods, including
[CCW16,CWKBC13], cannot handle multiply-connected domains,
we compare our results only to three mesh-based interpolation
methods, i.e. ARAP [ACOLO00], FFMP [KGO08] and GE [SGK19].
The first two methods are direct methods, which generate the in-
termediate frame by solving one or two large linear systems for
the vertex positions. In contrast, GE iteratively solves a nonlinear
optimization problem. It’s worth noting that GE gave an analytic
eigen-system for the symmetric Dirichlet energy, based on the SVD
decomposition of the Jacobian. Our method differs from these three
methods, mainly in two aspects. First, our input and interpolation
results are in the harmonic space. Second, our optimization uses
samples only from the boundary, instead of the whole domain.

© 2022 The Author(s)
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Source

0PN :
ood°0°®

Target Ours

Figure 5: Interpolation results of Links for t = 0.25,0.5,0.75. Fo-
cus on the change of conformal distortion, plenty of samples are
marked as unbounded in red by GE (top), while only few samples
of our method (bottom) are marked.

Source

e Wv f\\;j@r W W@
&
2
= i
o= -.
,' . V:277,F:384 V:939,F:1607 V:8392,F:15762 V:8392,F:15762
‘ Runtime:2.68s Runtime:5.19s  Runtime:17.51s Runtime:0.11s

Target GE Ours

Figure 6: Interpolation results for t = 0.75 of different mesh res-
olutions. Notice that for mesh-based method (three results in the
middle), lower mesh resolution leads to faster runtime but less
smooth mappings.

When the input mappings contain large rotations, ARAP pro-
duces unfeasible results, such as the neck and tail of the giraffe
in Fig. 3, one arm of Jackbean and a corner of Bar_holes in Fig.
10. For the other inputs, ARAP produces results visually similar to
ours, although it does not have bounded distortions. FFMP makes
some improvement, but still performs badly in some cases. In Fig.
4 and Fig. 10, the left handle of Scissors and the bottom corners of
Rect show unnatural scaling which leads to unbounded distortions.
In our experiments, GE produces visually pleasant interpolation re-
sults with bounded distortions on most inputs, and the results often
appear similar to ours. In Fig. 3 and Fig. 5, we can see that some
points in the domain have distortions perform badly within the in-
terpolation sequence for GE, while our results has well behaved
distortions throughout the sequence.

Table 3: Comparison of average runtime (ms) and number of New-
ton iterations per frame between GE and our method under two
different mesh resolutions.

V ~8kF ~ 15k V ~ 80k, F ~ 150k
Model GE Ours GE Ours
runtime | #iter runtime | #iter runtime | #iter runtime | #iter
Archery | 1804.9 354 87.7 3.0 165329 352 89.2 3.0

Bar holes | 1889.4 432 34.0 3.0 17750.1 41.3 45.6 3.0
Links 1856.8 36.2 41.6 3.0 17359.6  35.6 48.3 3.0
Rex 2802.7 58.4 58.7 3.1 232109 55.4 81.2 3.1
Rings 2980.2 58.7 92.0 2.4 25200.4 57.7 107.4 24
Scissors | 2119.5 38.1 47.0 3.0 214040 471 63.1 3.0
Jackbean | 2421.4 43.8 48.5 29 19416.0  41.6 68.5 29
Giraffe [ 7780.3 164.5 79.5 4.2 56775.1  165.6 112.7 4.2

Table 3 shows the average runtime and number of iterations for
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)

Source # Id

| 5
\,/E\‘h

Figure 7: Interpolation results of Rex. When the input mapping fo # Id, our method also produces feasible intermediate frames. As it is
difficult to normalize the distortions in this case, we plot the distortion graph without normalization. As the graph shows, the distortions of
the interpolation result are still bounded by the input mappings fo and fi.

each frame with different mesh resolutions. We can see that the run-
time of our method is not affected by the mesh resolution. When the
number of vertices and faces increases, the runtime of our method
stays nearly the same. In contrast, the runtime of GE increases ac-
cordingly. In fact, as Fig. 6 shows, there is a trade-off between the
runtime and mapping smoothness for mesh-based methods.

Table 4: Comparison of average runtime (ms) per frame with dif-
[ferent methods and average number of Newton iterations per frame
with GE and our method.

ARAP | FFMP GE Ours

Model - p - - - -
runtime | runtime | runtime | #iter runtime | #iter
Archery 48.9 188.3 1804.9 35.4 87.7 3.0
Bar holes 49.5 186.8 1889.4 43.2 34.0 3.0
Links 51.6 192.2 1856.8 36.2 41.6 3.0
Stethoscope| 50.4 183.1 6184.8 149.8 49.8 3.0
Rect 52.4 190.1 3586.5 85.7 23.0 34
Rex 54.2 198.8 2802.7 58.4 58.7 3.1
Rings 53.0 187.5 2980.2 58.7 92.0 2.4
Scissors 55.9 198.2 2119.5 38.1 47.0 3.0
Jackbean 59.0 204.0 2421.4 43.8 48.5 2.9
Giraffe 61.9 210.3 7780.3 164.5 79.5 4.2

Table 4 compares the runtime between our method and mesh-
based methods. For most shapes, our method takes only 2-4 New-
ton iterations to produce one intermediate frame, which means that
it converges extremely fast. For each frame, ARAP solves one large
sparse linear system whose size is proportional to the number of
vertices, while FFMP needs to solve two large linear systems of
similar sizes. In contrast, our method iteratively solves a dense
small linear system whose size is proportional to the dimension
of the planar harmonic mapping space. This enables our method to
run faster in most cases, as it takes very few iterations to converge.

The Bar_holes and Rings examples in Fig. 10 show that our
method performs well for complex domains. Note that our method
trivially applies to the simply-connected domains. Fig. 8 shows
our iterative algorithm converges to visually the same result as
[CCW16] for one such domain, which essentially solves a least
square problem based on the Hilbert Transform [Bell5]. Note that
the input mapping fy for our method is not restricted to identity
mapping. Fig. 7 shows the interpolated frames at + = 0.33 and
t = 0.67 for the Rex shape. It can be seen that both frames look
feasible and the distortions are bounded by the input mappings fy
and fl .

Source

[CCW16] Ours

Figure 8: Interpolation result of Dragon for t = 0.5. For this input
which is on a simply-connected domain, we get visually the same
result as [CCW16].

In the accompanying video, we show some smooth animations
for some of these results, in comparison to the mesh-based meth-
ods. Although we have no guarantee that the interpolation will be
smooth w.r.t. time since each frame is optimized independently, the
results of our method exhibit good temporal coherence in practice,
as the video shows.

Fig. 9 shows how the number of intermediate frames (for ¢ €
[0,1]) affects the convergence of our method. Apparently, more in-
termediate frames mean the time difference between every two con-
secutive frames is smaller, and therefore the interpolation results
should be closer. This enables our method to converge faster, as

02 03 04 05 06 07 08 09 1 04 05 06 07 08 09 1
intermediate time . intermediate time

Figure 9: The convergence behavior of our algorithm. The middle
graph plots the number of iterations taken for our method to con-
verge, the right graph plots the energy after convergence.

© 2022 The Author(s)
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can be observed from the scatter plot in the middle. This is that we
initialize our method for each frame with the result of the previous
frame, therefore with more intermediate frames, the initialization
gets closer to the local optima of our energy. The right plot shows
the energy when our algorithm converges for each frame. Surpris-
ingly, our method consistently converges to the same minima for
each frame, when given different initializations, which proves the
robustness of our method.

7. Summary and Discussion

We have presented a method for interpolating planar harmonic
mappings on multiply-connected domains. The input to our algo-
rithm is two (or more) harmonic mappings, and our method pro-
duces harmonic mapping with practically bounded distortion on
the same domain as the output. We propose to linearly blend the
metric of the input mappings which ensures that the interpolated
metric has pointwise bounded distortion. However, this leads to the
problem that the blended metric may not correspond to a planar
mapping. We address this by projecting the interpolated metric into
the planar harmonic mapping space in order to obtain the interpo-
lation result. In the projecting process, we choose the symmetric
Dirichlet energy to measure the distance between the reference and
the resulting harmonic map, and we further design a highly efficient
Newton iteration for the optimization problem.

Compared with mesh-based methods, our method performs op-
timization over a sampling of the boundary, which means that the
interpolation results and runtime of our method are not influenced
by the meshing quality. Furthermore, our method works in the low-
dimensional harmonic mapping space, leading to a much smaller
system than the mesh-based methods. Using the key observation
that the symmetric Dirichlet energy is convex in terms of the met-
ric, the PSD projection for the Hessian matrix possesses a simple
analytic form and can be easily implemented on the GPU, enabling
our Newton iteration to run extremely efficient.

7.1. Limitation and Future work

While we prove that the interpolated reference metric has distortion
strictly bounded pointwise by the input mappings, we cannot guar-
antee this property holds after the projection. Our method produces
visually pleasing results by minimizing the global distortion and
guarantees the results are locally injective thanks to the bounded
distortion theorem for harmonic maps [CW17]. However, it may
occur in practice that the relative distortion is not bounded by the
input. The Rings in Fig. 10 shows one such example. It remains
interesting to find an interpolation method with a strict pointwise
distortion bound.
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Appendix A: Isometric energy

We consider the mapping P : g — h which can be expressed as
P=hog™ I implying that its Jacobian matrix is J = Jj,J,—1 and its
metric is M = JpJp = J {1 I} g1

For the Tr(M) part, we have:
Tr(M) = Te(Jg—1 I} Indg—1) = Te(g1 a1 Jj Jy) = Te(My ' My,),
which s due to that (J-177 ) My = (J=171-1 ) (74 ¢) = L.

Similarly, we obtain Tr(M ~"):
-1
Te(Mp ') = Tr <(Jg,11,fjh1g71) )

:Tr<(fg_n)71 (M)~ (JgT">_1)

= Tr (oM, g ) =Tr (el My ) =T (M ).

Appendix B: gradient and Hessian of the isometric energy

Let @ = (@1,...,0x) € CV and y = (y1,...,y,) € C"™! be com-
plex column vectors containing our variables. Their real expres-

sions are:
_ Re((P)) _ (Re(w)>
? (Im(«p) ¥ Umey)
Apply the multivariable chain rule, we get the gradient of E with

respect to the 4n variables @, y:

3
VoyE =V,EVeyh=Y 0;Veyhi,

i=1

Xhere 0; = 0y, E can be derived from Eq. (10). Substitute h; = D@,
hz = Dy into (5), we get:

= (% A 9)(9)

1 0 1 0 0 0 0 -1
0 1 0 -1 0 0 -1 0
E=11 0 1 o] 2=l0o -1 0o o
0 -1 0 1 -1 0 0 0

1 0 -1 0

1 0 1

B=1_1 0 1 ol
0 1 0 1

then we obtain the gradient:

pT 0 h;
E=2 F; F F —
\% (O DT) (a1 Fi 4+ 0 F + 03 F3) (hz)

D’ 0 h,
(0w ()
Apply the chain rule again, we get the 4n x 4n Hessian of E as:

3
VowE =Y. EVeyhi+ (Voyh) ViE (Veyh)
i=1

W

33

= (X,'V%q)"\vhi-l— Z Bivjv(pwhi(V(p,\yhj)T,
i=1 i=1,=1

where B; ; = % can also be derived from Eq. (10). For V%W,h,v
; o
and Ve.yhi(Veyh;)", we have:

T
2 D 0 D O
V(P,\Ilhizz(o DT)Fi(O D)
Vowhi(Voyh))" =
) L) h\ /o, — D 0
4(0 DT)E(E)<I‘Z b)) (o p):

Finally, the 4n x 4n Hessian with respect to @, Y is:
T
2 D 0 D O
v (o) (0 o)

3 33 T T
’ h:h h;h>

K=2Y osFi+4 Y BijFi| -5 “Zp|F
i=1 i=1j=1 hzh;  hzhe

=2K| +4K;.
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Figure 10: More interpolation results at t = 0.5 of Archery, Bar_holes, Rings, Jackbean and Rect, in comparison with three other methods.
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