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Abstract

Capturing and processing human geometry, appearance, and motion is at the core of
computer graphics, computer vision, and human-computer interaction. The high com-
plexity of human geometry and motion dynamics, and the high sensitivity of the human
visual system to variations and subtleties in faces and bodies make the 3D acquisition
and reconstruction of humans in motion a challenging task. Digital humans are of-
ten created through a combination of 3D scanning, appearance acquisition, and motion
capture, leading to stunning results in recent feature films. However, these methods
typically require complex acquisition systems and substantial manual post-processing.
As a result, creating and animating high-quality digital avatars entails long turn-around
times and substantial production costs.
Recent technological advances in RGB-D devices, such as Microsoft Kinect, brought
new hopes for realtime, portable, and affordable systems allowing to capture facial ex-
pressions as well as hand and body motions. RGB-D devices typically capture an image
and a depth map. This permits to formulate the motion tracking problem as a 2D/3D
non-rigid registration of a deformable model to the input data. We introduce a novel face
tracking algorithm that combines geometry and texture registration with pre-recorded
animation priors in a single optimization. This led to unprecedented face tracking qual-
ity on a low cost consumer level device.
The main drawback of this approach in the context of consumer applications is the need
for an offline user-specific training. Robust and efficient tracking is achieved by building
an accurate 3D expression model of the user’s face who is scanned in a predefined set
of facial expressions. We extended this approach removing the need of a user-specific
training or calibration, or any other form of manual assistance, by modeling online a 3D
user-specific dynamic face model.
In complement of a realtime face tracking and modeling algorithm, we developed a
novel system for animation retargeting that allows learning a high-quality mapping be-
tween motion capture data and arbitrary target characters. We addressed one of the main
challenges of existing example-based retargeting methods, the need for a large number
of accurate training examples to define the correspondence between source and target
expression spaces. We showed that this number can be significantly reduced by lever-
aging the information contained in unlabeled data, i.e. facial expressions in the source
or target space without corresponding poses.
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Abstract

Finally, we present a novel realtime physics-based animation technique allowing to sim-
ulate a large range of deformable materials such as fat, flesh, hair, or muscles. This
approach could be used to produce more lifelike animations by enhancing the animated
avatars with secondary effects.
We believe that the realtime face tracking and animation pipeline presented in this thesis
has the potential to inspire numerous future research in the area of computer-generated
animation. Already, several ideas presented in thesis have been successfully used in
industry and this work gave birth to the startup company faceshift AG.

Key words: markerless motion capture, facial animation, physics-based animation, re-
altime face tracking, realtime face modeling, facial animation retargeting
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Résumé

La capture et le traitement de la géométrie, de l’apparence, et des mouvements humains
sont au cœur de l’informatique graphique, de l’informatique de vision, et de l’interaction
homme-machine. La grande complexité de la géométrie humaine et de la dynamique des
mouvements, ainsi que la haute sensibilité du système visuel humain aux variations et
subtilités des visages et du corps, font de l’acquisition 3D et de la reconstruction des
hommes en mouvement une tâche difficile. Les humains numériques sont souvent créés
par une combinaison de numérisation 3D, d’acquisition de l’apparence, et de capture
de mouvement, conduisant à des résultats étonnants dans de récents longs métrages.
Cependant, ces méthodes nécessitent généralement des systèmes complexes d’acquisi-
tion et du post-traitement manuel de manière substantielle. En conséquence, la création
et l’animation des avatars numériques de haute qualité implique de longs délais et des
coûts de production importants.
Les récentes avancées technologiques dans les dispositifs RGB-D, tels que la Kinect
de Microsoft, ont apporté de nouveaux espoirs pour la creation de systèmes temps réel,
portables, et abordables, permettant de capturer les expressions faciales ainsi que les
mouvements de mains et du corps. Les dispositifs RGB-D capturent habituellement
une image et une carte de disparité. Ceci permet de formuler le problème de capture
de movement en un problème d’alignement 2D/3D non-rigide d’un modèle déformable
aux données d’entrées.
Nous avons introduit un nouvel algorithme de suivi du visage qui combine un mo-
dèle d’alignement de la géométrie et de la texture avec un modèle d’animation pré-
enregistrés en une seule optimisation. Cela conduit à une qualité sans précédent de suivi
du visage sur un dispositif à faible coût.
Le principal inconvénient de cette approche dans le cadre d’une application commer-
ciale était la nécessité d’entraîner le système hors-ligne pour chaque utilisateur. Un suivi
de visage robuste et efficace est réalisé en créant un modèle d’expression 3D précis de
l’utilisateur pour un ensemble prédéfini d’expressions faciales. Nous avons étendu cette
approche éliminant le besoin d’un étalonnage spécifique pour chaque utilisateur, ou de
toute autre forme d’assistance manuelle, par la modélisation en ligne d’un modèle dy-
namique de visage 3D spécifique à l’utilisateur.
En complément d’un algorithme de suivi du visage en temps réel, nous avons développé
un nouveau système pour le reciblage des animations qui permet un apprentissage de
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Résumé

haute qualité de la correspondance entre les données de capture de mouvement et le
caractère cible. Nous avons abordé l’un des principaux défis des méthodes de reciblage
basée sur l’exemple, la nécessité d’un grand nombre d’exemples précis pour calibrer le
système et définir la correspondance entre l’espace source et l’espace cible. Nous avons
montré que ce nombre peut être considérablement réduit en tirant parti de l’information
contenue dans les données non étiquetés, c’est à dire les expressions du visage dans
l’espace source ou l’espace cible sans poses correspondantes.
Finalement, nous présentons une nouvelle technique d’animation basé sur la physique
en temps réel permettant de simuler une large gamme de matériaux déformables comme
la graisse, la chair, les cheveux ou les muscles. Cette approche pourrait être utilisée pour
produire des animations plus réalistes en améliorant les avatars animés avec des effets
secondaires.
Nous croyons que le pipeline de suivi du visage et de l’animation en temps réel pré-
senté dans cette thèse a le potentiel d’inspirer de nombreuses recherches futures dans
le domaine de l’animation générée par ordinateur. Déjà, plusieurs idées présentées dans
cette thèse ont été utilisés avec succès dans l’industrie et ce travail a donné naissance à
la société faceshift AG.

Mots clefs : capture de mouvement sans marqueurs, animation faciale, animation basé
sur la physique, suivi du visage en temps réel, modélisation du visage en temps réel,
reciblage d’animation faciale
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Chapter1
Introduction

There was a time, before mail, phones, and the Internet, when all communication was
face-to-face. If you wanted to talk to someone, you had to look at the person, and use
your voice, gestures, and facial expressions to convey your emotions. Communication
plays a fundamental role in our society. Humans are highly social beings that like to
share personal experiences with others. Therefore, we had the desire to make long
distance communication possible.

Unfortunately, during the process of making long distance communication feasible we
lost numerous core aspects of face-to-face communication. In the beginning, we could
only communicate via text messages using mail. We got back the realtime compo-
nent of face-to-face communication when the telegraph was invented. We retrieved the
possibility to communicate with our voices thanks to the phone. Finally, with the devel-
opment of the Internet and of online video chat softwares, we can smile to the person
we are talking to. So, are we done? Is video chat the best way of communicating?

We live and communicate in a three dimensional world. Therefore, to retrieve all the
core aspects of real world face-to-face communication it is necessary to reintroduce the
three dimensional component. What if we could take long distance communication to
the next level by entering a photorealistic three dimensional virtual environment where
we could interact and communicate in a similar fashion to real-world communication?
To succeed this challenge, tracking the human body is key. A virtual world will not
be immersive until we can see and use our own bodies, and until our brains accept
three dimensional avatars as people. Consequently, it is of prime importance to develop
technologies to accurately track human motions and model human appearances in a way
suitable for consumer-level.

The high complexity of human geometry and motion dynamics, and the high sensitivity
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of the human visual system to variations and subtleties in faces and bodies make the
three dimensional acquisition and reconstruction of humans in motion a complex task.
Marker-based systems, multi-camera capture devices, or intrusive scanners commonly
used in high-end animation production require an expensive hardware setup, a complex
calibration phase, and necessitate extensive manual assistance to setup and operate the
system. These systems are therefore unusable at a consumer-level. Fortunately, recent
advances in three dimensional acquisition and display technologies at consumer-level
are paving the way for truly immersive virtual reality applications.

In this thesis, we present a novel end-to-end pipeline for realtime face tracking and
animation on low-cost RGB-D devices that could be deployed at the consumer-level.
Successfully deploying a motion capture technology at a large scale puts high demands
on performance, robustness, and usability. While being affordable and accessible, the
simplicity of these three dimensional acquisition devices come at the cost of high noise
levels in the acquired data. It is therefore necessary to develop algorithms combining
techniques from computer vision, machine learning, and computer graphics in order to
achieve efficiency, robustness and accuracy.

Tracking Modeling

Virtual Avatar

User-Specific Model

...

Blendshape
Weights

Rigid
Motion

Image Depth Map

Simulation

Retargeting

Figure 1.1.: Realtime face tracking and animation pipeline.
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Our tracking and animation pipeline is illustrated in Figure 1.1 and can be decomposed
into four main stages: tracking, modeling, retargeting, and simulation. Each frame
coming from the acquisition device is processed with an interleaved optimization that
alternates between tracking facial expressions and modeling the user’s face. The track-
ing parameters are then retargeted to drive a virtual avatar in realtime. Finally, physics
simulation is used to enhance the final animation by simulating secondary effects.

Tracking. Recent consumer-level three dimensional acquisition devices, i.e., RGB-
D devices, acquire an image and a depth map of the scene. This permits to formulate
the motion capture problem as a 2D/3D non-rigid registration of a deformable template
face model to the input data. In 1978, Ekman et al. published the Facial Action Coding
manual [64] where they explained that facial expressions can be broken up into some
constituents called Action Units, which correspond to the activation of one or multiple
facial muscles. In a similar spirit, our system uses a 3D facial action coding system,
called a blendshape model, as a template, where each action unit is represented by a
three dimensional expression model (see Figure 1.2). A novel facial expression can be
generated from this blendshape model as a linear combination of the blendshape bases,
i.e., the three dimensional expressions. The goal of the tracking stage is to find the rigid
motion of the face and the blendshape weights for to the blendshape bases such that the
resulting facial expression matches the expression of the user.

Neutral

Figure 1.2.: Our parametric face model.
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Modeling. Not only the blendshape weights representing the facial expression of the
user are unknown but also the blendshape bases representing the geometry of the user’s
facial expressions. Starting from the generic blendshape model in Figure 1.2, the goal of
the modeling stage is to deform the blendshape bases to match the the geometry of the
user’s facial expressions to create a user-specific blendshape model. As illustrated in the
pipeline Figure 1.1, tracking and modeling are tightly coupled. During the registration
of the face model to the input image and depth map both the shape of the face and the
expression matter, i.e., improving the shape will help to more accurately retrieve the
expression, and vice versa.

Retargeting. The goal of the retargeting stage is to animate a virtual target charac-
ter by adapting the tracking parameters to the target parameters. Mapping the captured
performance onto a virtual avatar is a highly non-trivial task, especially when the target
character is not a close digital replica of the user. One common way to compute the
mapping is to let the user provide a set of correspondences between tracking and target
parameters, i.e., for a given recorded expression the user creates a semantically match-
ing expression of the virtual target character. Given this set of labeled pairs, retargeting
essentially becomes a problem of scattered data approximation, i.e., extrapolating the
explicit correspondences into the entire expression space.

Simulation. To generate more lifelike animations of the virtual target character,
physics simulation can be employed to simulate the visco-elastic properties of soft-
tissues, or secondary effects such as hair motions. Physics-simulation is also important
to integrate the virtual character into a virtual world where external forces and contacts
could be applied on the character.

1.1. Contributions

The primary contributions of the work are:

• A novel realtime face tracking algorithm that combines 3D geometry and 2D
texture registration with a dynamic data-driven prior generated from existing face
animation sequences.

• An efficient method for online face modeling using an adaptive dynamic 3D ex-
pression model that combines a dynamic expression template, an identity PCA
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model, and a parameterized deformation model in a low-dimensional representa-
tion suitable for online learning.

• A semi-supervised retargeting approach that significantly reduces the number of
required training examples by learning a shared latent space between motion cap-
ture and character parameters to represent their underlying common structure.

• A new implicit solver for realtime physics-based animation that builds a bridge
between nodal Finite Element methods and Position Based Dynamics, leading to
a simple, efficient, robust, yet accurate solver that supports many different types
of constraints.

Together, these technical and scientific innovations enable a range of new applications
in communication, virtual reality, human-human and human-computer interaction, com-
puter gaming, or other forms of online interactions.

1.2. Organization

The thesis presents an end-to-end pipeline for realtime face tracking and animation.

In particular,

• Chapter 2 discusses the related work relevant to this thesis.

• Chapter 3 introduces the theory of 3D registration suitable for processing depth
data and presents a new unified registration framework.

• Chapter 4 presents a system for performance-based character animation that en-
ables any user to control the facial expressions of a digital avatar in realtime.
The user is recorded in a natural environment using a non-intrusive, commer-
cially available 3D sensor. The simplicity of this acquisition device comes at the
cost of high noise levels in the acquired data. To effectively map low-quality 2D
images and 3D depth maps to realistic facial expressions, we introduce a novel
face tracking algorithm that combines geometry and texture registration with pre-
recorded animation priors in a single optimization. Formulated as a maximum a
posteriori estimation in a reduced parameter space, our method implicitly exploits
temporal coherence to stabilize the tracking. We demonstrate that compelling 3D
facial dynamics can be reconstructed in realtime without the use of face markers,
intrusive lighting, or complex scanning hardware. This makes our system easy
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to deploy and facilitates a range of new applications, e.g. in digital gameplay or
social interactions.

• Chapter 5 extends Chapter 4 removing the need of user-specific training or cal-
ibration, or any other form of manual assistance, thus enabling a range of new
applications in performance-based facial animation and virtual interaction at the
consumer level. The key novelty of our approach is an optimization algorithm that
jointly solves for a detailed 3D expression model of the user and the correspond-
ing dynamic tracking parameters. Realtime performance and robust computations
are facilitated by a novel subspace parameterization of the dynamic facial expres-
sion space. We provide a detailed evaluation that shows that our approach sig-
nificantly simplifies the performance capture workflow, while achieving accurate
facial tracking for realtime applications.

• Chapter 6 introduces a system for facial animation retargeting that allows learning
a high-quality mapping between motion capture data and arbitrary target charac-
ters. We address one of the main challenges of existing example-based retargeting
methods, the need for a large number of accurate training examples to define the
correspondence between source and target expression spaces. We show that this
number can be significantly reduced by leveraging the information contained in
unlabeled data, i.e. facial expressions in the source or target space without corre-
sponding poses. In contrast to labeled samples that require time-consuming and
error-prone manual character posing, unlabeled samples are easily obtained as
frames of motion capture recordings or existing animations of the target character.
Our system exploits this information by learning a shared latent space between
motion capture and character parameters in a semi-supervised manner. We show
that this approach is resilient to noisy input and missing data and significantly
improves retargeting accuracy. To demonstrate its applicability, we integrate our
algorithm in a performance-driven facial animation system.

• Chapter 7 presents Projective Dynamics, a new method for implicit time inte-
gration of physical systems. This approach builds a bridge between nodal Finite
Element methods and Position Based Dynamics, leading to a simple, efficient,
robust, yet accurate solver that supports many different types of constraints. We
propose specially designed energy potentials that can be solved efficiently us-
ing an alternating optimization approach. Inspired by continuum mechanics, we
derive a set of continuum-based potentials that can be efficiently incorporated
within our solver. We demonstrate the generality and robustness of our approach
in many different applications ranging from the simulation of solids, cloths, and
shells, to example-based simulation. Comparisons to Newton-based and Position
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Based Dynamics solvers highlight the benefits of our formulation.

• Chapter 8 concludes the thesis by summarizing the main contributions, and sug-
gesting directions of future research.

1.3. Publications

This thesis mainly covers the following publications:

• WEISE, T., BOUAZIZ, S., LI, H., AND PAULY, M. Realtime performance-based
facial animation. ACM Trans. Graph. (2011)

• BOUAZIZ, S., WANG, Y., AND PAULY, M. Online modeling for realtime facial
animation. ACM Trans. Graph. (2013)

• BOUAZIZ, S., AND PAULY, M. Semi-supervised facial animation retargeting.
Tech. rep., EPFL, 2014

• BOUAZIZ, S., MARTIN, S., LIU, T., KAVAN, L., AND PAULY, M. Projective
dynamics: Fusing constraint projections for fast simulation. ACM Trans. Graph.
(2014)

A background section on registration is provided and uses parts of the following publi-
cations:

• BOUAZIZ, S., DEUSS, M., SCHWARTZBURG, Y., WEISE, T., AND PAULY, M.
Shape-up: Shaping discrete geometry with projections. In Computer Graphics
Forum (2012)

• BOUAZIZ, S., AND PAULY, M. Dynamic 2d/3d registration for the kinect. In
ACM SIGGRAPH Courses (2013)

• BOUAZIZ, S., TAGLIASACCHI, A., AND PAULY, M. Sparse iterative closest
point. Computer Graphics Forum (2013)

• BOUAZIZ, S., DENG, B., AND PAULY, M. Projection-based optimization with
fast convergence. Computer Graphics Forum (2015). Submitted

In addition, some other publications were published during the same time period but are
not explicitly addressed in this thesis:
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• DENG, B., BOUAZIZ, S., DEUSS, M., ZHANG, J., SCHWARTZBURG, Y., AND

PAULY, M. Exploring local modifications for constrained meshes. Computer
Graphics Forum (2013)

• DENG, B., BOUAZIZ, S., DEUSS, M., KASPAR, A., SCHWARTZBURG, Y., AND

PAULY, M. Interactive design exploration for constrained meshes. Computer-
Aided Design (2014)

• ZHANG, J., DENG, B., LIU, Z., PATANÈ, G., BOUAZIZ, S., HORMANN, K.,
AND LIU, L. Local barycentric coordinates. ACM Trans. Graph. (2014)

• ICHIM, A. E., BOUAZIZ, S., AND PAULY, M. Dynamic facial avatar creation
using handheld cameras. ACM Trans. Graph. (2015)

• TAGLIASACCHI, A., SCHRÖDER, M., TKACH, A., BOUAZIZ, S., BOTSCH, M.,
AND PAULY, M. Robust articulated-ICP for real-time hand tracking. Computer
Graphics Forum (2015)
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Chapter2
Related Work

Facial performance capture and animation have been active research areas in recent
years, with a plethora of different acquisition systems and processing pipelines that
share many fundamental principles as well as specific implementation details [140].
Performance-based facial animation typically consists of a tracking stage to capture the
facial expressions of a person. This tracking stage often relies on a parametric template
model of the user’s face created during an offline or online modeling process. The
tracking stage is usually followed by a retargeting procedure allowing to transfer the
captured facial expressions onto a virtual avatar. Finally, to improve the realism of the
resulting animation, physics-based animation techniques can be employed to simulate
hair, fat, flesh, and muscles.

2.1. Face Tracking

Animating digital characters based on facial performance capture is a well-established
approach in the computer graphics industry and has been an active area of research.
One fundamental tradeoff in all of the face tracking systems is the relation between the
quality of the acquired data and the complexity of the acquisition setup. On one end of
the spectrum are systems designed for greatest possible accuracy that lead to stunning
virtual avatars suitable for movie production. Because of their robustness, marker-based
techniques [191, 80, 114, 59, 20] are widely used for realtime facial animation and
generally deliver sufficient motion parameters for convincing retargeting of non-human
creatures or simple game characters.

Face markers significantly simplify tracking, but also limit the amount of spatial detail
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that can be captured. For the realistic digitization of human faces, performance capture
based on dense 3D acquisition, such as structured light scanners [199] or multi-view
camera systems [70, 37, 14, 178], have been developed more recently and proven ef-
ficient to capture fine-scale dynamics (e.g. wrinkles and folds). High-resolution facial
motion is generally recovered through variants of non-rigid registration and tracking
algorithms across sequences of input geometry, texture, or both. With a focus on preci-
sion, these systems are not designed to achieve interactive performance in general en-
vironments, a crucial requirement for the type of consumer-level applications targeted
by our work. Realtime performance can be achieved by a combination of markers and
3D scanning, while still preserving fine-scale spatial and temporal detail [118, 22, 91].
The method of Weise et al. [189] achieves realtime performance using a reduced PCA
tracking model. While being able to track facial expressions in realtime, these methods
involve controlled studio environments and/or highly specialized setups that need care-
ful calibration. Therefore, none of the above methods is suitable or easily adaptable to
the kind of consumer-level applications that we target, where minimal hardware setup,
realtime performance, and the absence of complex manual calibration or extensive pre-
processing are mandatory.

On the other end of the tradeoff between data quality and hardware complexity are
passive, single camera systems that have been a focus of research in computer vi-
sion. Most commonly, 2D parametric shape models have been used for non-rigid
tracking [110, 23, 65, 55, 141]. However, due to the additional challenges posed by
uncontrolled lighting environments and unreliable textures, tracking is usually limited
to facial features such as eyes, eyebrows, pupils, or inner and outer contours of the
lips. Established methods such as active appearance models [51, 5], constrained lo-
cal model [152], and Eigen-Points [53] employ a probabilistic prior model built from
large sets of training data to achieve realtime performance while preventing drifts. As
demonstrated in Chuang and Bregler [50], these parametric models can be used to reli-
ably synthesize simple facial expressions for virtual avatars but inherently lack in facial
details. Chai and colleagues [44] first extract 2D animation controls using feature track-
ing and then map these controls to 3D facial expressions using a preprocessed motion
capture database to reduce tracking artifacts. Recently, Cao et al. show that 3D po-
sitions of facial landmark points [42] and 3D facial shapes [41] can be inferred by a
regressor from 2D video frames leading to compelling facial animations. High-quality
face tracking using a single camera has also been demonstrated [73, 155]. However, the
processing times of these approaches is significant, impeding interactive frame rates.

The price to pay for the simplification of the acquisition system is often a substan-
tially lower tracking quality leading to artifacts in the generated face animations. Our
goal is to raise tracking quality while keeping the acquisition system simple enough
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for consumer-level applications and avoiding any manual system calibration or train-
ing. Recent developments in RGB-D technology, such as the Microsoft Kinect or Asus
Xtion Live, facilitate this goal. The method presented in [7] demonstrates how inte-
grating depth and intensity information in a constrained local model improves tracking
performance significantly compared to image-based tracking alone. We propose a real-
time performance-based facial animation system [187] combining 2D and 3D non-rigid
registration methods in a single optimization to achieve high-quality realtime tracking.
We follow the established strategy of using existing animation data for regularization.
However, instead of performing a separate post-filtering step as in most previous work,
e.g. [116], we integrate an animation prior directly into the tracking optimization using
a maximum a posteriori estimation. Our animation prior is based on Mixtures of Prob-
abilistic Principal Component Analyzers (MPPCA) [173], similar in spirit to [102] who
use a static pose prior for interactive design of facial geometry. In comparison to Gaus-
sian Processes that have been successfully employed as pose prior, e.g. [79] and [95],
MPPCA scales well with the size of the data set, making it particularly suitable for
real-time applications.

The main drawback of our approach [187] in the context of consumer applications is
the need for extensive training. Robust and efficient tracking is achieved by building
an accurate 3D expression model of the user by scanning and processing a predefined
set of facial expressions. Beyond being time-consuming, this preprocess is also error-
prone. Users are asked to move their head in front of the sensor in a specific static
pose to accumulate sufficient depth information. However, assuming and maintaining
the correct pose (e.g. mouth open for a specific, pre-defined opening angle) is difficult
and often requires multiple tries. Li et al. [112] improved on our system by creating on-
the-fly shape correctives adjusted to the actor’s expressions through incremental PCA-
based learning. As a result, this system can track starting from just a single face scan
of the subject in a neutral pose. In [34] we further extended our system [187] requiring
no user-specific preprocessing, nor any calibration or user-assisted training, making the
tracking system operational right away for any new user. Contrary to [112], we build the
specific full blendshape model [108] of a user concurrently to the tracking optimization,
requiring no preceding training or calibration stage.

2.2. Face Modeling

Due to the high complexity of facial morphology and heterogeneous skin materials, the
most common approaches in facial modeling are data-driven. The seminal work of [24]
builds a statistical (PCA) model of facial geometry by registering a template model to a
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collection of laser scans. Such a PCA model can be employed to create a static model
from a single image [24], from multiple images [4], from video sequences [61], or for
the creation of personalized real-time tracking profiles [187, 112, 34]. However, as a
compact PCA model only captures the coarse-scale characteristics of the dataset, the
generated models are typically rather smooth, lacking the ability to represent fine-scale
features like wrinkles and expression lines. Fine-scale detail for facial modeling has
been recovered in a controlled environment with multiple calibrated DSLR cameras
in the work of Beeler et al. [11]. This setup allows capturing wrinkles, skin pores,
facial hair [12], and eyes [16]. The more involved system of [75] uses fixed linear
polarizers in front of the cameras and enables accurate acquisition of diffuse, specular,
and normal maps. While effective for high-end productions, such systems require a
complex calibration within a lab environment.

A static reconstruction only recovers the geometry for a single facial expression. How-
ever, reconstructing a dynamic expression model that faithfully captures the user’s spe-
cific facial movements is a necessary step for facial tracking. One approach to create
such a model is to simulate facial muscle activation and model the resulting bone move-
ments and viscoelastic skin deformations [179, 192]. However, the large computational
cost and complex parameter estimation make such an approach less suitable for facial
animation. Consequently, parametric models are typically employed to represent dy-
namic skin behavior [136, 97]. Unfortunately, such models are not only difficult to
design, but are typically also custom-tuned to a particular animation rig. This makes it
difficult to infer generic models for facial dynamics that can easily be adapted to specific
subjects. The use of custom hardware has been the most successful way of estimating
dynamic models for high-end productions. For example, the Digital Emily project [2]
demonstrates how the Light Stage system enables photorealistic dynamic avatars. The
work of Alexander et al. [1] recently extended this approach to enable real-time render-
ing of highly detailed facial rigs. Structured light and laser scanners have also been used
to acquire facial geometry at the wrinkle scale [199, 118, 109, 91]. Similarly, the setup
of [11, 14] is capable of reconstructing fine-scale detail using multiple calibrated/syn-
chronized DSLR cameras. The recent techniques of [18], and [113] can re-introduce
high frequency details in a coarse input animation, if a high-resolution performance
database is provided. More recent work attempts to further reduce the setup complexity
by only considering a binocular [178] or a hybrid binocular/monocular setup [73]. A
monocular system has been presented by Shi et al. [155] using a multi-linear model.
The multi-linear model introduced by [183] and then further explored in [43, 41, 155]
offer an efficient way of capturing a joint space of pose and identity. Alternatively,
rather than assuming a joint prior on pose and identity, we propose a novel method [34]
to model dynamic geometry variations in realtime while tracking using the combination
of a PCA model and Laplacian basis functions to better capture user specific details.
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2.3. Facial Animation Retargeting

This compact linear model is tailored towards estimating a small set of parameters to
enable realtime performance.

2.3. Facial Animation Retargeting

Since the seminal work of Williams [191], numerous methods have been devoted to
facial animation retargeting. Among those methods, approaches based on correspon-
dences between motion capture markers and target characters [21, 118, 154] have been
successful when the actor and the animated faces are geometrically similar. Related to
those approaches, [135, 164, 196] use dense correspondences between a source and a
target mesh in order to retarget facial expression using vertex or triangle motion trans-
fer. Numerous facial tracking and retargeting systems [54, 91, 187, 154, 34, 41] use a
blendshape representation [108] based on Ekman’s Facial Action Coding System [64].
However, because of the linearity of the blendshape model, reproducing subtle non-
linear motions can be difficult.

Our novel retargeting system [32] is most closely related to example-based methods [59,
159, 100, 195, 52, 146] that do not require any similarity between the source and the
target face. The main difference to existing solutions is that our approach supports non-
linear retargeting of motion capture data and exploits unlabeled data to improve the
retargeting accuracy with a reduced number of training examples in a semi-supervised
manner. Contrary to Rhodin et al. [146] that only exploit unlabeled samples in target
motion sequences, we also exploit unlabeled samples in source motion sequences.

The core of our facial animation retargeting system is based on recent works on Gaus-
sian Process Latent Variable Models (GPLVM) [104]. GPLVM was used successfully
for human body tracking [176], retargeting [193] and inverse kinematics [79]. Recently,
GPLVM has been extended to support multiple observation spaces [63], missing data
[133] and constrains over the latent space [177, 186]. In our work we enhance the
shared GPLVM [63] with a prior over latent configurations allowing to preserve local
distances of the observation spaces. This prior takes its roots in manifold alignment [86]
and Gaussian random fields [202, 180].
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Chapter 2. Related Work

2.4. Physics-Based Facial Animation

Physics-based simulation of deformable material has become an indispensable tool in
computer animation. Since recent years, high-quality animations in video games or
movies, incorporate sophisticated simulations to greatly enhance visual experience.
Since the seminal work of Terzopulous and colleagues [169], models derived from
continuum mechanics and Finite Element methods play an important role in physics-
based animation. Such models have been used successfully for generating facial anima-
tions [170, 157, 158], and to simulate flesh [168, 106], muscles [25, 106] or hair [153].
Unfortunately, while these methods enable to reproduce realistic facial expressions [170,
157, 158], few of these approaches have found their way into realtime applications due
to their high computational cost and robustness issues.

Realtime simulation of facial muscles and hair has been achieved using mass–spring
systems [200, 45]. However, these methods suffer from instabilities and are not physi-
cally accurate. Robustness can be obtain using Position Based Dynamics [131, 68] but
similar to mass–spring systems these approaches are also inaccurate and the simulation
heavily depends on the topology and scale of the underlying mesh.

In this thesis we present Projective Dynamics [30], a new method that builds a bridge
between Finite Element methods and Position Based Dynamics, leading to a simple,
efficient, robust, yet accurate solver that supports many different types of deformable
materials and constraints. This solver could be used to robustly simulate muscles or
hair in realtime similar to Position Based Dynamics [131, 68] but with the accuracy
of Finite Element methods [170, 157, 158, 153]. Instead of simulating an anatomically
accurate face model [157, 158], augmenting facial animations with plausible physically-
simulated secondary motions could be done efficiently by combining Projective Dynam-
ics with the subspace approaches of Hahn et al. [83, 84].
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Chapter3
Background

Recent technological advances in RGB-D sensing devices, such as the Microsoft Kinect,
facilitate numerous new and exciting applications, for example in 3D scanning and hu-
man motion tracking. While affordable and accessible, consumer-level RGB-D devices
typically exhibit high noise levels. This necessitates a particular emphasis on the ro-
bustness of 3D registration algorithms. In this section we introduce the theory of 3D
registration algorithms suitable for processing depth data. We focus on pairwise regis-
tration to compute the alignment of a source model onto a target model. This alignment
can be rigid or non-rigid, depending on the type of object being scanned. We formulate
the registration as the minimization of an energy

Ereg = Ematch +Eprior. (3.1)

The matching energy Ematch defines a measure of how close the source is from the tar-
get. The prior energy Eprior quantifies the deviation from the type of transformation or
deformation that the source is allowed to undergo during the registration, for example,
a rigid motion or an elastic deformation. The goal of registration is to find a transfor-
mation of the source model that minimizes Ereg to bring the source into alignment with
the target. We will first present the concept of proximity function which is essential to
our registration framework and then explain how the proximity function can be applied
to 3D registration.
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Chapter 3. Background

3.1. Proximity Function

A central task in 3D registration is to optimize geometric shapes such that they sat-
isfy certain constraints. For example, volume preservation can be enforced to model
the behavior of certain physical materials during the registration procedure. A typical
strategy to enforce such constraints is to minimize an objective function that measures
their violation. We focus on geometric shapes that can be represented using their point
elements, e.g., meshes with fixed connectivity such that their shapes are determined by
the vertex positions. Such a shape can be naturally mapped to a high-dimensional point

x =
£
pT

1

,pT
2

, . . . ,pT
n
§T 2R3n

,

where n is the number of vertices, and pi 2 R3

(i = 1, . . . ,n) are the vertex positions.
Usually for each constraint about the geometry x, one can search for a scalar function
ci (x) whose zero level-set corresponds to the shapes that satisfy the constraint. Then the
total constraint violation can be measured using a function

E(x) =
X

i
wi ci (x)

2

, (3.2)

where wi > 0 are weights that control the relative importance of the constraints. By
minimizing this function, we obtain a new geometry x that satisfies the constraints as
much as possible. In many cases, the functions {ci } are non-linear, and the solution need
to be computed using a numerical solver.

Central to our registration framework is the notion of a proximity function, which mea-
sures the violation of a given constraint for the considered geometry. We can describe
a constraint for the geometry using its feasible set C Ω R3n , i.e., the set of shapes that
satisfy the constraint. A feasible set is also often called a constraint set. The proximity
function for a point x 2R3n with respect to the feasible set C is defined as the minimum
distance from x to C as

d(x) = min

y2C
kx°yk

2

.

Equivalently, the proximity function can also be written as

d(x) = min

y
kx°yk

2

+±C (y). (3.3)

Here, ±C (y) is an indicator function that evaluates to zero if y 2C and to +1 otherwise,
and formalizes the requirement that y should lie in the feasible set. This proximity
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Figure 3.1.: The proximity function φ(x) is the weighted sum of squared distances di (x)

of the point x to the projections PCi (x) onto the respective feasible sets Ci .
Minimizing φ(x) yields a feasible solution if the feasible sets intersect (left),
and a least-squares solution otherwise (right).

function can be reformulated only using x as

d(x) = ∥x−PC (x)∥
2

, (3.4)

where
PC (x) = argmin

y∈C
∥x−y∥

2

is the projection from x to the feasible set C . Then the constraint can simply be ex-
pressed using Equation 3.4 as d(x) = 0. For a collection of constraints with feasible sets
C

1

,C
2

, ...,Cm , we can measure their violation as a weighted sum

φ(x) =
m∑

i=1

wi di (x)

2

, (3.5)

a shown in Figure 3.1. This function needs to be minimized to obtain a geometry with
the least violation of the constraints. In the following, we first review the gradient of
the proximity function. Then we derive the first-order approximations of the proximity
function, which will be instrumental in developing our optimization schemes.
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Chapter 3. Background

Gradient of the squared proximity function. For the proximity function d(x)

in (3.4), we can derive the gradient of its squared value d(x)

2 as

rd(x)

2 = 2(I° JPC (x))

T
(x°PC (x))

= 2(x°PC (x))°2 JPC (x)

T
(x°PC (x)),

where I is the identity matrix, and JPC (x) is the Jacobian of PC with respect to x. Note
that JPC (x)

T
(x°PC (x)) is the derivative of PC (x) along the vector x°PC (x). Since lo-

cally PC (x) does not change when x moves towards PC (x), we have JPC (x)

T
(x°PC (x)) =

0. It follows that
rd(x)

2 = 2(x°PC (x)). (3.6)

Applying this to the target function ¡(x) in (3.5), we obtain

r¡(x) = 2

mX

i=1

wi (x°PCi (x)).

First-order approximation of the proximity function. Knowing the gradient
of the squared distance d(x)

2, we can derive the first-order approximation of d(x) =p
d(x)

2 at x
0

as
bd(x)|x

0

= kx
0

°PC (x
0

)k
2

+n(x
0

)

T
(x°x

0

), (3.7)

where
n(x

0

) = x
0

°PC (x
0

)

kx
0

°PC (x
0

)k
2

.

Interestingly, n(x
0

) is the normal of the feasible set C at the projection point PC (x
0

).
We can rewrite the approximation as

bd(x)|x
0

= n(x
0

)

T
(x°PC (x

0

)) (3.8)

by noticing that kx
0

°PC (x
0

)k
2

= n(x
0

)

T
(x

0

°PC (x
0

)). The approximation in (3.8) is
exactly the distance from x to the tangent plane of the feasible set C at PC (x

0

). Applying
this to the target function (3.5) results in an approximation of ¡ at x

0

:

b¡(x)|x
0

=
mX

i=1

wi
£
ni (x

0

)

T
(x°PCi (x

0

))

§
2

, (3.9)

where ni (x
0

) is the normal of the feasible set Ci at PCi (x
0

) (see Figure 3.2).

Remark. The above analysis shows that for a proximity function, we can evaluate its
gradient and first-order approximation using only the projection operator with respect
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Figure 3.2.: The proximity function measures the weighted sum of squared distances
of the point x to the projections onto the respective feasible sets (left). By
linearizing the proximity function we obtain the squared distances of the
point x to the planes tangent to the feasible sets (right).

to the feasible set, without computing the derivatives of the projection function.

3.1.1. Optimization Using Projection Operators

Section 3.1 shows that the local behavior of a proximity function, described by its gra-
dient and first-order approximation, is fully determined from the projection operator.
Moreover, for many constraints used in geometry processing, their projection operators
can be evaluated efficiently (see e.g. [29, 30]). Based on this observation, we will now
discuss three different ways of minimizing the target function (3.5), all using projection
operators. In particular, we will show how the gradient information can be utilized to
design projection-based Gauss-Newton type solvers with fast convergence.

Alternating minimization. A simple way to minimize the function ¡(x) in (3.5) is
to employ an alternating minimization scheme that iterates between the following two
steps:

1. Compute the projections PCi (x) while keeping the current estimate x fixed.

2. Update x by minimizing ¡(x) while keeping PCi (x) fixed.

To understand why this optimization converges, we observe that the first step weakly
decreases each cost function kx°PCi (x)k2

2

given the current estimate x, hence ¡(x) can-
not increase. The second step minimizes the problem globally by fixing the projections,
thus ¡(x) cannot increase either. Thus we obtain a sequence where the target function
value is non-increasing and bounded from below (as the sum of squared residuals can-
not be negative). As a result, this algorithm always convergences monotonically to a
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Figure 3.3.: Two iterations of the two-step minimization of the proximity function ¡(x)

with wi = 1. Step I computes the projections using the current estimate
x. Step II updates x by minimizing ¡(x) keeping the projections fixed. At
each step, ¡(x), illustrated by the sum of the error bars, will decrease, even
if some of the individual elements increase.

stationary point (see Figure 3.3).

Interestingly, these two steps can also be expressed as the following iterative process

xk+1 = argmin

x

mX

i=1

wikx°PCi (xk
)k2

2

, (3.10)

where xk is the estimate of x at the k-th iteration. xk+1 can be rewritten as a simple
average of the projections

xk+1 =
Pm

i=1

wi PCi (xk
)

Pm
i=1

wi
. (3.11)
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3.1. Proximity Function

Gradient descent Using the projection-based gradient of proximity functions, we
can define a gradient descent scheme for ¡(x) as

xk+1 = xk °2∏k
mX

i=1

wi (xk °PCi (xk
)), (3.12)

where ∏k is an appropriately chosen step size to ensure the decrease of ¡(x). There is
an interesting connection between alternating minimization and gradient descent: with
step size

∏k = 1

2

Pm
i=1

wi
,

the gradient-descent scheme (3.12) reduces to the alternating minimization scheme
(3.11).

Linearization. The alternating minimization scheme and the gradient descent scheme,
although being very simple, often suffer from slow final convergence. The asymptotic
convergence rate of alternating minimization is sublinear [10], while for gradient de-
scent it is linear at best [134]. As a result, it can take a large number of iterations for
these methods to converge to a high-accuracy solution. To improve the final conver-
gence rate, we note that the minimization of ¡(x) is a non-linear least squares problem.
For such problems, it is well-known that better convergence behavior can be achieved
by linearizing the residual terms [120]. Such linearization is provided exactly by Equa-
tion (3.9). Therefore, we can optimize ¡(x) using the following iterations:

xk+1 = argmin

x

mX

i=1

wi

h
ni (xk

)

T
≥
x°PCi (xk

)

¥i
2

. (3.13)

Since this problem is quadratic, it amounts to solving a linear system about x

A x = b, (3.14)

where

A =
mX

i=1

wi ni (xk
) ni (xk

)

T 2R3n£3n
,

b =
mX

i=1

wi ni (xk
) ni (xk

)

T PCi (xk
) 2R3n

.

This approach corresponds to the Gauss-Newton method, a well-known non-linear least
squares solver [120]. The algorithm may converge slowly or not at all if the matrix
A is ill-conditioned. To improve its stability, we can regularize the approximation of
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¡(x) in (3.13) using the distance from x to the projection points PCi (xk
), resulting in the

following iterative scheme:

xk+1 = argmin

x

mX

i=1

wi

∑≥
ni (xk

)

T
(x°PCi (xk

))

¥
2

+µ
∞∞∞x°PCi (xk

)

∞∞∞
2

2

∏
, (3.15)

where µ> 0 is a damping parameter. This approach is similar to the Levenberg-Marquardt
solver for non-linear least squares problems, where a damped Gauss-Newton system is
solved in each iteration [120]. The damping parameter µ can be used to ensure the de-
crease of the target function in each step. The larger µ becomes, the closer xk+1 is to the
alternating minimization iteration in Equation (3.11); thus when µ is large enough, xk+1

is guaranteed to weakly decrease the function ¡(x) just like alternating minimization.
On the other hand, with a small value of µ, the step is close to a Gauss-Newton step and
leads to faster convergence.

Remark. There is one important difference between our regularized scheme and the
classical Levenberg-Marquardt method: our approach uses the squared distances to the
projection points {PCi (xk

)} as the regularization terms, while Levenberg-Marquardt uses
the squared distance to the current estimate xk for regularization.

3.1.2. Generalizing the Proximity Function

So far in our discussion, the proximity functions are always defined using the Euclidean
distance in R3n . In a more general setting, a constraint can be imposed with respect
to a point ¬(x) 2 Rl , where ¬ : R3n 7! Rl is a function that maps a shape x 2 R3n to
another suitable representation. In this case, we can generalize the proximity function
to consider ¬(x). Specifically, let F 2Rl be the feasible set for ¬(x). Then we can define
a generalized proximity function as

h(x) = min

y
k¬(x)°yk

2

+±F (y) = min

y2F
k¬(x)°yk

2

= k¬(x)°PF (¬(x))k
2

,

where PF (¬(x)) is the projection of ¬(x) onto F . Using the generalized proximity
function, we can measure the violation of a collection of constraints with a weighted
sum similar to (3.5):

√(x) =
mX

i=1

wik¬i (x)°PFi (¬i (x))k2

2

. (3.16)
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3.1. Proximity Function

In the following, we show that the optimization schemes in Section 3.1.1 can be natu-
rally extended to the generalized setting.

Gradient and first-order approximation The gradient of the squared regularized
proximity function h(x)

2 can be evaluated using the chain rule

rh(x)

2 =
°
r¬h(x)

2

¢T
J¬(x),

where r¬(·) is the gradient with respect to ¬, and J¬(x) is the Jacobian of ¬ with respect
to x. Applying Equation (3.6) to evaluate r¬h(x)

2, we obtain

rh(x)

2 = 2

°
¬(x)°PF (¬(x))

¢T J¬(x). (3.17)

If follows that
r√(x) = 2

mX

i=1

wi
°
¬i (x)°PFi (¬i (x))

¢T J¬i (x). (3.18)

Similarly, the first-order approximation of h(x) at x
0

can be computed using the chain
rule as

bh(x)|x
0

= h(x
0

)+n¬(x
0

)

T J¬(x
0

)(x°x
0

), (3.19)

where
n¬(x) = ¬(x)°PF (¬(x))

k¬(x)°PF (¬(x))k
2

.

This leads to the following approximation of √(x):

b√(x)|x
0

=
Xm

i=1

wi
£
k¬i (x

0

)°PFi (¬i (x
0

))k
2

+ n¬i (x
0

)

T J¬i (x
0

)(x°x
0

)

§
2

. (3.20)

Which can be rewritten as

b√(x)|x
0

=
Xm

i=1

wi
£
n¬i (x

0

)

T
(b¬i (x)|x

0

°PFi (¬i (x
0

)))

§
2

,

where b¬i (x)|x
0

=¬i (x
0

)+ J¬i (x
0

)(x°x
0

) is the first-order approximation of ¬i (x) at x
0

.

Projection-based optimization The optimization schemes in Section 3.1.1 can be
extended to the generalized setting, using the gradient and first-order approximation we
have derived above. In the following paragraph, we discuss the alternating minimization
and the linearization algorithm, since it is trivial to extend the gradient descent scheme.

Similarly to Equation (3.10), we can write the alternating minimization scheme for the
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generalized target function √ as

xk+1 = argmin

x

mX

i=1

wikb¬i (x)|xk °PFi (¬i (xk
))k2

2

. (3.21)

xk+1 can be computed by solving a linear system
√

mX

i=1

wi J¬i (xk
)

T J¬i (xk
)

!

x =
mX

i=1

wi J¬i (xk
)PFi (¬i (xk

)). (3.22)

It is interesting to note that if J¬i is not a diagonal matrix the alternating minimization
scheme is different than gradient descent as a linear system needs to be solved. In this
case alternating minimization often converges faster than gradient descent due to the
coupling induced by the Jacobian.

For the linearization we can use the regularize approximation of √ presented in Equa-
tion (3.15) resulting in the following iterative scheme:

xk+1 = argmin

x

mX

i=1

wi

∑≥
n¬i (xk

)

T
(b¬i (x)|xk °PFi (¬i (xk

)))

¥
2

+ µ
∞∞∞ b¬i (x)|xk °PFi (¬i (xk

))

∞∞∞
2

2

∏
. (3.23)

Similar to Section 3.1.1, this minimization can be computed by solving a linear system.

3.2. Matching energy

In 3D registration we want to align a source surface X embedded in R3 to a target sur-
face Y in R3. To formalize this problem, we introduce a surface Z that is a transformed
or deformed version of X that eventually aligns with Y (see Figure 3.4).

The matching energy measures how close the surface Z is to the surface Y and can be
defined using a proximity function as

Ematch(Z ) =
Z

Z
kz°PY (z)k2

2

dz, (3.24)

where z 2 R3 is a point on the surface Z , and PY (z) : R3 ! R3 returns the closest point
(using Euclidian distance) on the surface Y from z. PY (z) can also be seen as the
orthogonal projection of z onto Y . To solve the registration problem numerically, we
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3.2. Matching energy

Figure 3.4.: The surface Z is a deformed version of the source surface X that eventually
aligns with Y .

represent the continuous surface X by a set of points X = {xi 2X , i = 1. . .m} and define
their corresponding points on the deformed surface Z as Z = {zi 2 Z , i = 1. . .m} (see
Figure 3.5). Different sampling strategies have been presented by Rusinkiewicz and
Levoy [150]. The discrete 3D registration energy is then defined as

Ematch(Z ) =
mX

i=1

kzi °PY (zi )k2

2

. (3.25)

Figure 3.5.: The surface Z is sampled by a set of points Z = {zi 2 Z , i = 1. . .m}. The
projection PY (zi ) returns the closest point on the surface Y from zi .

Iterative closest point (ICP). One way to minimize the registration energy in
Equation 3.1 is to use the alternating minimization approach. The alignment is com-
puted by solving iteratively

Z t+1 = argmin

Z

mX

i=1

kzi °PY (zt
i )k2

2

+Eprior(Z ). (3.26)
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To speed up the convergence of the optimization one can use the first-order approxima-
tion of the proximity function. The optimization can be reformulated as

Z t+1 = argmin

Z

mX

i=1

°
nT

i (zi °PY (zt
i ))

¢
2 +Eprior(Z ), (3.27)

where ni is the normal of the surface Y at PY (zt
i ).

Remark 1. The energy Epoint(Z ) = kzi °PY (zt
i )k2

2

is often referred as the point-to-
point energy [19]. The energy Eplane(Z ) =

°
nT

i (zi °PY (zt
i ))

¢
2 is typically referred as

the point-to-plane energy [48]. The point-to-point and point-to-plane energies are of-
ten presented as two separate entities, but they are in fact two ways of optimizing the
same proximity function. It is also interesting to notice that using the ICP method with
the point-to-point or the point-to-plane energy is equivalent to Equation 3.26 and Equa-
tion 3.27.

Remark 2. Pottmann et al. [142] showed that close to the surface the point-to-plane
measure is a very good approximant of the second order approximation of the squared
distance function of a surface at a point x, and inversely far from the surface the point-
to-point measure is a better approximant. Our optimization strategy in Equation 3.15
encodes this fact by using the parameter µ to combine point-to-point and point-to-plane
distances.

3.3. Prior energy

In this section we present several prior energies that can be used for registration. These
energies can also be combined to build more sophisticated priors. Priors encode prop-
erties of the object X being registered. For example, when scanning rigid objects, a
global rigidity prior can be used to limit the allowed transformations to rotations and
translations. For deforming objects, for example a human body, geometric priors are
often employed that try to mimic physical behaviors such as an elastic deformation.
More complex deformation behavior can be captured using a data-driven approach. One
popular method is based on a collection of sample shapes that represents the space of
allowed deformations. Using dimensionality reduction, like principal component anal-
ysis, efficient linear models can be derived that are suitable for realtime registration
algorithms.
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3.3. Prior energy

3.3.1. Global Rigidity

The global rigidity of the 3D registration can be measured using a proximity function

Erigid(Z ) =
mX

i=1

kzi °Prigid(zi)k2

2

. (3.28)

The projection Prigid(zi) = si returns the closest point si from zi such that

si = Rxi + t, (3.29)

where R 2 R3£3 is a rotation matrix and t 2 R3 a translation vector. In this case, the de-
formed surface Z tries to follow a rigid transformation of the original surface X . The

projection Prigid(zi) can be computed using the least-squares estimation of transforma-
tion between two point sets approach of Umeyama [175].

3.3.2. Linear Model

A 3D linear shape model can be defined using a matrix B containing the shape model
bases, and a mean shape vector m [24]. A new shape s can be defined as

s = Bd+m, (3.30)

where d is a vector containing the bases coefficients. The linear model energy can be
formulated as the deviation of the vertices from the linear model

Elinear(Z ) = kZ°Plinear(Z)k2

2

, (3.31)

where Z = [zT
1

,zT
2

, . . . ,zT
k ]

T is a vector that stacks all vertices z
1

, . . . ,zk 2 R3 involved in
the shape constraint. The projection Plinear(Z) = s returns the closest shape s from Z.
Therefore, Plinear(Z) can be computed in closed-form as

Plinear(Z) = B(BT B)

°1BT
(Z°m)+m. (3.32)

27



Chapter 3. Background

Such linear model could be a blendshape model or a PCA model, for example.

3.3.3. General Shapes

The key observation of this section is that the proximity function is ideally suited to
encode general geometric shape constraints. The projection of a set of vertices onto a
geometric shape is found by minimizing the sum of the squared distances of the vertices
to the corresponding feasible set. This minimum is computed through shape matching,
i.e. by finding the least-squares fit of the constraint shape onto the set of vertices. We
formulate the shape proximity function as

Eshape(Z ) = kNZ°Pshape(NZ)k2

2

. (3.33)

The matrix N is used to center the vertices of Z at their mean and is defined as

N = (Ik£k °
1

k
1k£k )≠ I

3£3

, (3.34)

where ≠ is the Kronecker product and 1k£k is a k £ k matrix of ones. Subtracting
the mean allows translational motion as a degree of freedom during the optimization.
This introduces a global solve, but considerably improves convergence [29, 30]. This
formulation is possible because shape projections are invariant under rigid motion, and
therefore invariant under translation.

As mentioned above, we find the minimal displacement of vertices by projecting them
onto the least-squares fit of the shape over those vertices. In this section we present
a variety of different shape projections that can be combined, adapted, or extended
to formulate new geometric optimization solutions. The original vertex positions are
denoted by X = [xT

1

, . . . ,xT
k ]

T , and the projected vertex positions by Pshape(NZ) = Z§ =
[z§T

1

, . . . ,z§T
k ]

T . To simplify notation, we assume that the vertices stacked in Z and X are
already mean centered.

We describe three classes of constraints. Continuous shapes, such as planes or circles,
polygonal shapes, such as line segments, regular polygons, or rectangles, and relative
shapes. The latter encode the class of transformations that the shapes of the original
geometry, e.g. polygons, tetrahedra, one-ring neighborhoods, etc., can undergo during
the optimization. This allows the preservation of geometric properties such as lengths
or angles of the original model.
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3.3. Prior energy

3.3.3.1. Continuous Shapes

Line - Plane. This constraint specifies that the vertices of Z should
all lie on a continuous line or plane.

Projection: We can efficiently solve for the projection by first computing the sorted
eigenvectors U =

h
e

1

,e
2

,e
3

i
of the 3£3 covariance matrix CCT where C =

h
z

1

, . . . ,zk

i
.

We remove the last column of U for plane projection and the last two columns for line
projection. The projected vertices are then given as

h
v§

1

, ...,v§
n

i
= UUT C.

Circle - Sphere. This constraint specifies that the vertices of Z
should all lie on a 2D circle or a 3D sphere.

Projection: Since the direct projection of 3D vertices to their 2D least-squares circle can
be computationally expensive, we apply an approximate projection. We first project the
vertices onto their least-squares plane (see above) and then fit a 2D circle within that
plane. Circle fitting is achieved by minimizing

P
j (kz j ° ck2

2

° r 2

)

2, where r and c are
the unknown radius and center of the circle, respectively. We solve for these parameters
using the closed-form solution of [171] and project the vertices of Z onto this circle to
obtain Z§. The projection onto a sphere is computed by minimizing the same equation
directly on the 3D points.

3.3.3.2. Relative Shapes

Rigid - Similar. These constraints are defined relative to the orig-
inal vertex set X, i.e. they constrain the type of transformation that
the vertex set can undergo. Rigid aims at restricting the deformations
to isometries, while Similar aims for a conformal deformation.

Projection: Finding the closest rigid transform or similarity that maps the original ver-
tices X onto the current set Z can be solved using the method described in [175]. The al-
gorithm computes the rigid transformation and uniform scale using least-squares fitting
and allows a minimal and maximal scale constraint by keeping the rigid transformation
as is and clamping the scale to the desired range.

While this approach works well, we also propose a faster projection operator for 2D
shapes. The idea is to first project the vertices onto their least-squares plane and then
formulate the fitting in 2D. We denote the projected 2D points by a bar, e.g. x j is the
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Chapter 3. Background

projection of the original vertex x j onto the least-squares plane.

Let M be all the sets of points conformal to the 2D original points X= [xT
1

, . . . ,xT
k ]

T . We
find the point set Z

§ = [z§T
1

, . . . , z§T
k ]

T 2 M closest to Z= [zT
1

, . . . ,zT
k ]

T , i.e. solve for

{z§
1

, . . . ,z§n} = argmin

Z
§2M

kX

j=1

kz§j °z jk2

2

. (3.35)

As explained in [90], at the minimum of Equation 3.35 the centroids of Z and Z
§

coin-
cide. Therefore, if Z is centered, Equation 3.35 can be expressed as

argmin

z§
1

||

2

66664

I
2£2

s
2

Rµ
2

...
snRµn

3

77775

| {z }
A

z§
1

°

2

66664

z
1

z
2

...
zk

3

77775
||2

2

, (3.36)

where si Rµi represent the scale and rotation mapping the first point to the i th point in
the original centered set X.

x
1

x
2

x
3

The minimum of Equation 3.36 is obtained by solving the normal equation

z§
1

= (AT A)

°1AT Z. (3.37)

We can then express the projection as a linear operator P = A(AT A)

°1AT , which maps
the current point set Z to the closest point set Z

§
in M, i.e., Z

§ = PZ. The matrix P
depends only on the original point set X and can thus be precomputed. If P is applied
to any point set in M, by the idempotence property of the projection operator, the result
is unchanged. Since AT A is a 2£2 matrix, this projection operator has a closed form
expression.
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3.3. Prior energy

3.3.3.3. Polygonal Shapes

Line Segment. For a pair of vertices {z
1

,z
2

}, this constraint spec-
ifies the allowed value for their relative distance.

Projection: Let d = kz
1

° z
2

k
2

be the current distance between the vertices and d§ the
desired length of the line segment. Then the projection {z§

1

,z§
2

} is computed as z§
1

= d§

d z
1

and z§
2

=°z§
1

.

Regular Polygon. This constraint specifies that the vertex set Z
should assume the shape of a regular polygon, i.e. have all angles be
equal and all sides be of equal length.

Projection: Since a regular polygon is invariant only under similarity transformations,
we can use the same projection method as described above for relative shapes. We
simply replace the original vertex set X by the vertices of the regular polygon of the
corresponding order.

Parallelogram. This constraint specifies that a quadrilateral
should become a parallelogram, i.e. have two pairs of parallel sides.

z§
1

z§
2

z§
3

z§
4

Projection: We formulate the parallelogram fitting by extending the projection for rel-
ative shapes as described above. We first project the vertices onto their least-squares
plane, then formulate the optimization as

argmin

z§
1

,z§
2

||
"

I
4£4

°I
4£4

#

| {z }
A

"
z§

1

z§
2

#

°

2

6664

z
1

z
2

z
3

z
4

3

7775 ||2
2

. (3.38)

As previously, the solution of this optimization is Z§ = A(AT A)

°1AT Z.
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Rectangle. This constraint specifies that a quadrilateral should
become a rectangle, i.e. have only right angles.

z§
1

z§
2

z§
3

z§
4

Projection: We first project the vertices onto their least-squares plane and then fit the
rectangle in 2D. Unlike the other polygonal shapes, we compute the equation of the four
lines that define the rectangle by solving

argmin

c
1

,c
2

,n
||

2
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1
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2

nx

ny

3

7775 ||2
2

s.t knk2

2

= 1. (3.39)

This optimization is minimized by taking the QR decomposition of A and solving a
2£ 2 eigenvalue problem as described in [71]. We then find the projected points by
computing the intersection of these four lines.

3.4. Robust Registration

3.4.1. Robust Functions

In registration, outliers are not only introduced by corrupted sensor measurements, but
also by partial overlaps -– many samples on the source simply do not have an ideal
corresponding point on the target shape. To address this problem, various techniques
rely on a set of heuristics to either prune or downweigh low quality correspondences.
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3.4. Robust Registration

Typical criteria include discarding correspondences that are too far from each other,
have dissimilar normals, or involve points on the boundary of the geometry; see [150]
for details. As we will see next these heuristics are related to the optimization of ro-
bust functions. In this section we will consider robust functions as alternatives to the
Euclidean metric and introduce a suitable optimization technique to use them efficiently.

In previous sections, we always considered least squares energies composed by terms
like '(≤(x)), where '(≤) = ≤2 and ≤(x) is the euclidean norm of the residual vector with
parameters x. This squared Euclidian distance metric is ideal for data corrupted by
Gaussian noise [36, Sec. 7.1.1]. However, the squared Euclidian distance is not robust
to outliers which are common in real world data acquired by RGB-D devices.
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Figure 3.6.: The penalty functions ' (top) . The weight functions w (bottom).

In registration, robustness can be obtained by exploiting robust functions [125]. In this
framework, '(≤) acts as a “penalty” function – a function measuring the influence that
a certain residual has in the optimization. Given one of these functions, our robust
optimization can be expressed as

argmin

x

mX

i=1

'(≤i (x)). (3.40)

In Figure 3.6 we show a few commonly used penalty functions. These functions possess
properties like radial monotonicity and symmetry [67].

The optimization problem in Equation 3.40 can be solved using Iteratively Re-Weighted
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Least Squares (IRLS) by solving a sequence of problems of the form

argmin

x

mX

i=1

Æi ≤i (x)

2

. (3.41)

To understand how to compute the weights Æi first notice that the optima of Equa-
tion 3.40 can be obtained by vanishing its gradient, which can be computed by a simple
application of the chain rule (note we only look at one element of the sum)

@'(≤(x))

@x
=√(≤(x))

@≤(x)

@x
= w(≤(x))≤(x)

@≤(x)

@x
, (3.42)

where √(x) = @'(x)/@x for compactness of notation and w(x) =√(x)/x is the so called
weighting function. Interestingly, the gradient of Equation 3.41 is

@Æ≤(x)

2

@x
=Æ≤(x)

@≤(x)

@x
. (3.43)

We can now see that by setting Æ= w(≤(x)) the two gradients become equal. However,
as the optimal weights Æ§

i = w(≤i (p§
)) are not available, we use an iterative approach

where at each iteration the weights are computed using the previous iteration

xt+1 = argmin

x

mX

i=1

w(≤i (xt
))≤i (x)

2

. (3.44)

This scheme is know as Iteratively Re-Weighted Least Squares (IRLS) and is related
to majorization-minimization. The basic idea of majorization-minimization is to itera-
tively minimize a function always larger or equal to the objective function and with at
least one point in common. If these requirements are fulfilled the algorithm converges
to a stationary point [181].

Remark. In this derivation '(·) needs to be a non-decreasing function on R+. In this
case '(k.k

2

) achieves its minimum value at the same points as k.k
2

. Therefore,

PC (x) = argmin

y2C
'(kx°yk

2

) = argmin

y2C
kx°yk

2

.

The robust proximity function can in turn be written as

d(x) = min

y2C
'(kx°yk

2

) ='(kx°PC (x)k
2

),

and solved using IRLS and one of the optimization approaches described in Section 3.1.
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3.4. Robust Registration

3.4.2. Trimmed Metrics.

Discarding unreliable correspondences is undoubtedly the simplest and most common
way of dealing with outliers [150]. Interestingly, this can as well be formulated by Equa-
tion 3.40, as it corresponds to a weight function similar to the one in Figure 3.6 (bottom-
middle) whose corresponding penalty function is a truncated squared euclidean norm
Figure 3.6 (top-middle). Even though this is trivial to implement, the local support of
the weight function is problematic: if the source surface is too far from the target sur-
face the registration process will not proceed as all the weights would be zero valued.
A possible solution is to dynamically adapt the threshold value by analyzing the distri-
bution of residuals. For example, when the ratio of outliers versus inliers is known a
priori, then the threshold can be readily estimated [49].

3.4.3. Sparse Metrics

The shortcomings of trimmed metrics can be overcome by considering sparse met-
rics [33]. Our formulation is based on recent advances in sparsity-inducing penalties
[6, 121] that have been successfully applied in compressive sensing [40]. The regis-
tration problem is formulated as recovering a transformation that maximizes the num-
ber of zero distances between correspondences. This can be achieved by minimizing
the `

0

norm of the vector of error residuals, or by using non-convex `p relaxations of
the `

0

norm where p ∑ 1, i.e., the penalty function takes the form '(≤) = |≤|p , see Fig-
ure 3.6 (bottom-right). An important observation is that the weight functions of p-norms
tend to infinity as we approach zero giving a very large reward to inliers. Moreover,
contrary to trimmed metrics, p-norms weakly penalize outliers leading to a more stable
approach when target and source are far apart. Problems involving `p norms can be ap-
proached by IRLS techniques [47] as presented in Section 3.4.1. In practice, however,
IRLS can suffer from instability when the residuals vanish, as the weight function goes
to infinity. To optimize registration problems involving the `p norm of the proximity
function in a robust manner, we transform the minimization problem

min

x,yi

mX

i=1

k¬i (x)°yikp
2

+±Fi (yi ) (3.45)

to an equivalent problem

min

x,yi ,si

mX

i=1

ksikp
2

+±Fi (yi ) s.t si =¬i (x)°yi . (3.46)
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As detailed in Appendix A.1, the augmented Lagrangian method is an effective tool to
approach this constrained optimization. The augmented Lagrangian function for Equa-
tion 3.46 is defined as

LA =
mX

i=1

ksikp
2

+∏T
i ±i + µ

2

k±ik2

2

+±Fi (yi )

=
mX

i=1

ksikp
2

+ µ
2

k±i +∏i /µk2

2

° 1

2µk∏ik2

2

+±Fi (yi ), (3.47)

where ±i = ¬i (x)°yi ° si , ∏i is a vector of Lagrange multipliers, and µ> 0 is a penalty
weight. We can optimize this function by employing the Alternating Direction Method
of Multipliers (ADMM); see Appendix A.2. ADMM effectively decomposes this prob-
lem into three simple steps:

Step 1: si = argmin

si

ksikp
2

+ µ
2

ksi °hik2

2

(3.48)

Step 2: {x,y
1

, . . . ,ym} = argmin

x,yi

mX

i=1

k¬i (x)°yi °cik2

2

+±Fi (yi ) (3.49)

Step 3: ∏i =∏i +µ±i (3.50)

where hi =¬i (x)°yi +∏i /µ and ci = si °∏i /µ.

In Step 1, the problem is separable and each si can be optimized independently. Each
sub-problem can then be solved efficiently by applying the following shrinkage opera-
tor [137]:

si =
(

0 if khik2

∑ ˜hi

Øi hi if khik2

> ˜hi
(3.51)

The values of Øi and ˜hi are detailed in Appendix A.3. The shrinkage operator can be
interpreted as a classifier acting on the residual vector. For example, when p = 0, Øi

will always evaluate to one; this results in a binary classification: the operator either
rejects the value h or accepts it fully.

In Step 2, the optimization problem can be simplified to

x = argmin

x

mX

i=1

k(¬i (x)°ci )°PF (¬i (x)°ci )k2

2

, (3.52)

as yi = PF (¬i (x)°ci ). Therefore, this problem can be solved using one of the optimiza-
tion approaches described in Section 3.1.
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Face Tracking

Figure 4.1.: Our system captures and tracks the facial expression dynamics of the users
(grey renderings) in realtime and maps them to a digital character (colored
renderings) on the opposite screen to enable engaging virtual encounters in
cyberspace.

4.1. Foreword

Capturing and processing human geometry, appearance, and motion is at the core of
modern computer animation. Digital actors are often created through a combination of
3D scanning, appearance acquisition, and motion capture, leading to stunning results
in recent feature films. However, these methods typically require complex acquisition
systems and substantial manual post-processing. As a result, creating high-quality char-
acter animation entails long turn-around times and substantial production costs. Recent
developments in gaming technology, such as the Nintendo Wii and the Kinect system of
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Performing User Digitial Avatars2D/3D Data
Blendshape Weights

User-specific 
Expression Model

Probabilistic
Animation Prior

Acquisition AnimationTracking Algorithm

... ...

Temporal Coherence

Figure 4.2.: Overview of the online processing pipeline. The blendshape weights that
drive the digital avatar are estimated by matching a user-specific expres-
sion model to the acquired 2D image and 3D depth map. A probabilistic
animation prior learned from existing blendshape sequences regularizes the
tracking. Temporal coherence is exploited by considering a window of con-
secutive frames.

Microsoft, focus on robust motion tracking for compelling realtime interaction, while
geometric accuracy and appearance are of secondary importance. Our goal is to lever-
age these technological advances and create a low-cost facial animation system that
allows arbitrary users to enact a digital character with a high level of realism.

We emphasize usability, performance, and robustness. Usability in our context means
ease of deployment and non-intrusive acquisition. These requirements put severe re-
strictions on the acquisition system which in turn leads to tradeoffs in the data quality
and thus higher demands on the robustness of the computations. We show that even a
minimal acquisition system such as the Kinect can enable compelling realtime facial
animations. Any user can operate our system after recording a few standard expressions
that are used to adapt a facial expression model.

Contributions. Our main contribution is a novel face tracking algorithm that com-
bines 3D geometry and 2D texture registration in a systematic way with dynamic blend-
shape priors generated from existing face animation sequences. Formulated as a prob-
abilistic optimization problem, our method successfully tracks complex facial expres-
sions even for very noisy inputs. This is achieved by mapping the acquired depth maps
and images of the performing user into the space of realistic facial expressions defined
by the animation prior. Realtime processing is facilitated by a reduced facial expression
model that can be easily adapted to the specific expression space and facial geometry of
different users. We integrate these components into a complete framework for realtime,
non-intrusive, markerless facial performance capture and animation (Figure 4.1).
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Figure 4.3.: Acquisition of user expressions for offline model building. Aggregating
multiple scans under slight head rotation reduces noise and fills in missing
data.

4.2. Overview

Performance-driven facial animation requires solving two main technical challenges:
We need to accurately track the rigid and non-rigid motion of the user’s face, and map
the extracted tracking parameters to suitable animation controls that drive the virtual
character. Our approach combines these two problems into a single optimization that
solves for the most likely parameters of a user-specific expression model given the ob-
served 2D and 3D data. We derive a suitable probabilistic prior for this optimization
from pre-recorded animation sequences that define the space of realistic facial expres-
sions. Figure 4.2 gives an overview of our pipeline.

Blendshape Representation. To integrate tracking and animation into one opti-
mization, we represent facial expressions as a weighted sum of blendshape meshes. This
design choice offers a number of advantages: A blendshape model provides a compact
representation of the facial expression space, thus significantly reducing the dimension-
ality of the optimization problem. In addition, we can use existing blendshape anima-
tions, that are ubiquitous in movie and game production, to define the dynamic expres-
sion priors. The underlying hypothesis here is that the blendshape weights of a human
facial animation sequence provide a sufficient level of abstraction to enable expression
transfer between different characters. Finally, the output generated by our algorithm,
a temporal sequence of blendshape weights, can be directly imported into commercial
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Figure 4.4.: The Kinect simultaneously captures a 640 £ 400 color image and corre-
sponding depth map at 30 Hertz, computed via triangulation of an infrared
projector and camera.

animation tools, thus facilitating integration into existing production workflows.

Acquisition Hardware. All input data is acquired using the Kinect system, i.e. no
other hardware such as laser scanners is required for user-specific model building. The
Kinect supports simultaneous capture of a 2D color image and a 3D depth map at 30
frames per second, based on invisible infrared projection (Figure 4.4). Essential benefits
of this low-cost acquisition device include ease of deployment and sustained operability
in a natural environment. The user is neither required to wear any physical markers or
specialized makeup, nor is the performance adversely affected by intrusive light pro-
jections or clumsy hardware contraptions. However, these key advantages come at the
price of a substantial degradation in data quality compared to state-of-the-art perfor-
mance capture systems based on markers and/or active lighting. Ensuring robust pro-
cessing given the low resolution and high noise levels of the input data is the primary
challenge that we address in this section.

4.3. Facial Expression Model

A central component of our tracking algorithm is a facial expression model that provides
a low-dimensional representation of the user’s expression space. We build this model in
an offline preprocessing step by adapting a generic blendshape model with a small set
of expressions performed by the user. These expressions are captured with the Kinect
prior to online tracking and reconstructed using a morphable model combined with non-
rigid alignment methods. Figure 4.5 summarizes the different steps of our algorithm
for building the facial expression model. We omit a detailed description of previous
methods that are integrated into our algorithm. Please refer to the cited papers for
parameter settings and implementation details.
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Morphable Model,
Non-rigid ICP

Accumulated Scans

User-specific Expressions

Example-based
Facial Rigging

Generic Blendshapes

User-specific Blendshapes

...

...

...

...

Manual Markup Generic Template

blendshape
weights

Figure 4.5.: Offline pre-processing for building the user-specific expression model. Pre-
defined example poses of the user with known blendshape weights are
scanned and registered to a template mesh to yield a set of user-specific
expressions. An optimization solves for the user-specific blendshapes that
maintain the semantics of a generic blendshape model. The inset shows
how manually selected feature correspondences guide the reconstruction of
user-specific expressions.

Data Capture. To customize the generic blendshape rig, we record a pre-defined
sequence of example expressions performed by the user. Since single depth maps ac-
quired with the Kinect exhibit high noise levels, we aggregate multiple scans over time
using the method described in [188] (see Figure 4.3). The user is asked to perform a
slight head rotation while keeping the expression fixed. Besides exposing the entire
face to the scanner, this rotational motion has the additional benefit of alleviating re-
construction bias introduced by the spatially fixed infrared dot pattern projected by the
Kinect. We use the method of [182] to detect the face in the first frame of the acquisi-
tion and accumulate the acquired color images to obtain the skin texture using Poisson
reconstruction [139].
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Expression Reconstruction. We use the morphable model of Blanz and Vet-
ter [24] to represent the variations of different human faces in neutral expression. This
linear PCA model is first registered towards the recorded neutral pose to obtain a high-
quality template mesh that roughly matches the geometry of the user’s face. We then
warp this template to each of the recorded expressions using the non-rigid registration
approach of [109]. To improve registration accuracy, we incorporate additional texture
constraints in the mouth and eye regions. For this purpose, we manually mark features
as illustrated in Figure 4.5. The integration of these constraints is straightforward and
easily extends the framework of [109] with positional constraints.

Blendshape Reconstruction. We represent the dynamics of facial expressions us-
ing a generic blendshape rig based on Ekman’s Facial Action Coding System (FACS) [64].
To generate the full set of blendshapes of the user we employ example-based facial rig-
ging as proposed by Li et al. [111]. This method takes as input a generic blendshape
model, the reconstructed example expressions, and approximate blendshape weights
that specify the appropriate linear combination of blendshapes for each expression.
Since the user is asked to perform a fixed set of expressions, these weights are manually
determined once and kept constant for all users. Given this data, example-based facial
rigging performs a gradient-space optimization to reconstruct the set of user-specific
blendshapes that best reproduce the example expressions (Figure 4.5). We use the same
generic blendshape model with m = 39 blendshapes in all our examples.

4.4. Realtime Tracking

The user-specific blendshape model defines a compact parameter space suitable for re-
altime tracking. We decouple the rigid from the non-rigid motion and directly estimate
the rigid transform of the user’s face before performing the optimization of blendshape
weights. We found that this decoupling not only simplifies the formulation of the opti-
mization, but also leads to improved robustness of the tracking.

Rigid Tracking. We align the reconstructed mesh of the previous frame with the
acquired depth map of the current frame using ICP with point-plane constraints. To sta-
bilize the alignment we use a pre-segmented template (Figure 4.6, left) that excludes the
chin region from the registration as this part of the face typically exhibits the strongest
deformations. As illustrated in Figure 4.7 this results in robust tracking even for large
occlusions and extreme facial expressions. We also incorporate a temporal filter to ac-
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Figure 4.6.: The colored region on the left indicates the portion of the face used for rigid
tracking. The graph on the right illustrates how temporal filtering adapts to
the speed of motion.

count for the high-frequency flickering of the Kinect depth maps. The filter is based on
a sliding window that dynamically adapts the smoothing coefficients in the spirit of the
exponentially weighted moving average method [148] to reduce high frequency noise
while avoiding disturbing temporal lags. We independently filter the translation vector
and quaternion representation of the rotation. For a translation or quaternion vector ti

at the current time frame i , we compute the smoothed vector as weighted average in a
window of size k as

t?i =
Pk

j=0

w j ti° j
Pk

j=0

w j
(4.1)

where ti° j denotes the vector at frame i ° j . The weights w j are defined as

w j = e° j ·H ·maxl2[1,k]

||ti°ti°l ||
, (4.2)

with a constant H that we empirically determine independently for rotation and transla-
tion based on the noise level of a static pose. We use a window size of k = 5 for all our
experiments.

Scaling the time scale with the maximum variation in the temporal window ensures that
less averaging occurs for fast motion, while high-frequency jitter is effectively removed
from the estimated rigid pose (Figure 4.6, right). As shown in the video, this leads to
a stable reconstruction when the user is perfectly still, while fast and jerky motion can
still be recovered accurately.

Non-rigid Tracking. Given the rigid pose, we now need to estimate the blend-
shape weights that capture the dynamics of the facial expression of the recorded user.
Our goal is to reproduce the user’s performance as closely as possible, while ensuring
that the reconstructed animation lies in the space of realistic human facial expressions.
Since blendshape parameters are agnostic to realism and can easily produce nonsensi-
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Figure 4.7.: Robustly tracking the rigid motion of the face is crucial for expression re-
construction. Even with large occlusions and fast motion, we can reliably
track the user’s global pose.

cal shapes, parameter fitting using geometry and texture constraints alone will typically
not produce satisfactory results, in particular if the input data is corrupted by noise (see
Figure 4.8). Since human visual interpretation of facial imagery is highly sophisticated,
even small tracking errors can quickly lead to visually disturbing artifacts.

4.4.1. Statistical Model

We prevent unrealistic face poses by regularizing the blendshape weights with a dy-
namic expression prior computed from a set of existing blendshape animations A =
{A

1

, . . . , Al }. Each animation A j is a sequence of blendshape weight vectors ai
j ∈Rm that

sample a continuous path in the m-dimensional blendshape space. We exploit temporal
coherence of these paths by considering a window of n consecutive frames, yielding an
effective prior for both the geometry and the motion of the tracked user.

MAP Estimation. Let Di = (Gi , Ii ) be the input data at the current frame i consisting
of a depth map Gi and a color image Ii . We want to infer from Di the most probable
blendshape weights xi ∈Rm for the current frame given the sequence X i

n = xi−1

, . . . ,xi−n

of the n previously reconstructed blendshape vectors. Dropping the index i for nota-
tional brevity we formulate this inference problem as a maximum a posteriori (MAP)
estimation

x⋆ = argmax

x
p(x|D, Xn), (4.3)

where p(·|·) denotes the conditional probability. Using Bayes’ rule we obtain

x⋆ = argmax

x
p(D|x, Xn)p(x, Xn). (4.4)
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Assuming that D is conditionally independent of Xn given x, we can write

x? = argmax

x
p(D|x)

| {z }
likelihood

p(x, Xn)

| {z }
prior

. (4.5)

Prior Distribution. To adequately capture the nonlinear structure of the dynamic
expression space while still enabling realtime performance, we represent the prior term
p(x, Xn) as a Mixtures of Probabilistic Principal Component Analyzers (MPPCA) [173].
Probabilistic principal component analysis (PPCA) (see [174]) defines the probability
density function of some observed data x 2Rs by assuming that x is a linear function of
a latent variable z 2Rt with s > t , i.e.,

x = Cz+µ+≤, (4.6)

where z ªN (0, I ) is distributed according to a unit Gaussian, C 2 Rs£t is the matrix of
principal components, µ is the mean vector, and › ªN (0,æ2I ) is a Gaussian-distributed
noise variable. The probability density of x can then be written as

p(x) =N (x|µ,CCT +æ2I). (4.7)

Using this formulation, we define the prior in Equation 4.5 as a weighted combination
of K Gaussians

p(x, Xn) =
KX

k=1

ºkN (x, Xn |µk ,Ck CT
k +æ2

k I). (4.8)

with weights ºk . This representation can be interpreted as a reduced-dimension Gaus-
sian mixture model that attempts to model the high-dimensional animation data with
locally linear manifolds modeled with PPCA.

Learning the Prior. The unknown parameters in Equation 4.8 are the means µk ,
the covariance matrixes Ck CT

k , the noise parameters æk , and the relative weights ºk

of each PPCA in the mixture model. We learn these parameters using the Expectation
Maximization (EM) algorithm based on the given blendshape animation sequences A .
To increase the robustness of these computations, we estimate the MPPCA in a latent
space of the animation sequences A using principal component analysis. By keeping
99% of the total variance we can reduce the dimensionality of the training data by two-
thirds allowing a more stable learning phase with the EM algorithm. Equation 4.8 can
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input data without prior with prior

Figure 4.8.: Without the animation prior, tracking inaccuracies lead to visually disturb-
ing self-intersections. Our solution significantly reduces these artifacts.
Even when tracking is not fully accurate as in the bottom row, a plausi-
ble pose is reconstructed.

thus be rewritten as

p(x, Xn) =
K∑

k=1

πkN (x, Xn |Pµk +µ,PMPT
), (4.9)

where M = (Ck CT
k +σ2

k I) is the covariance matrix in the latent space, P is the princi-
pal component matrix, and µ the mean vector. Since the EM algorithm converges to
local minima, we run the algorithm 50 times with random initialization to improve the
learning accuracy. We use 20 Gaussians to model the prior distribution and we use
one-third of the latent space dimension for the PPCA dimension. More details on the
implementation of the EM algorithm can be found in [124].

Likelihood Distribution. By assuming conditional independence, we can model
the likelihood distribution in Equation 4.5 as the product p(D|x) = p(G|x)p(I |x). The
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two factors capture the alignment of the blendshape model with the acquired depth map
and texture image, respectively. We represent the distribution of each likelihood term
as a product of Gaussians, treating each vertex of the blendshape model independently.

Let V be the number of vertices in the template mesh and B 2 RV £m the blendshape
matrix. Each column of B defines a blendshape base mesh such that Bx generates the
blendshape representation of the current pose. We denote with vi = (Bx)i the i -th vertex
of the reconstructed mesh. The likelihood term p(G|x) models a geometric registration
in the spirit of non-rigid ICP by assuming a Gaussian distribution of the per-vertex
point-plane distances

p(G|x) =
VY

i=1

1

(2ºæ2

geo)

3

2

exp(°
||nT

i (vi °v§i )||2

2æ2

geo
), (4.10)

where v§i is the corresponding closest point in the depth map G , and ni is the surface
normal at v§i .

The likelihood term p(I |x) models texture registration. Since we acquire the user’s
face texture when building the facial expression model (Figure 4.3), we can integrate
model-based optical flow constraints [56], by formulating the likelihood function using
per-vertex Gaussian distributions as

p(I |x) =
VY

i=1

1

2ºæ2

im
exp(°

||rI T
i (pi °p§

i )||2

2æ2

im
), (4.11)

where pi is the projection of vi into the image I , p§
i is the corresponding point in the

rendered texture image, and rIi is the gradient of I at p§
i .

4.4.2. Optimization

In order to solve the MAP problem as defined by Equation 4.5 we minimize the negative
logarithm, i.e.,

x? = argmin

x
° ln p(G|x)° ln p(I |x)° ln p(x, Xn). (4.12)

Discarding constants, we write

x? = argmin

x
Egeo +Eim +Eprior, (4.13)
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where
Eprior =° ln p(x, Xn), (4.14)

Egeo =
1

æ2

geo

VX

i=1

||nT
j (vi °v§i )||2,and (4.15)

Eim = 1

æ2

im

VX

i=1

||rI T
i (pi °p§

i )||2. (4.16)

The parameters ægeo and æim model the noise level of the data that controls the em-
phasis of the geometry and image likelihood terms relative to the prior term. Since our
system provides realtime feedback, we can experimentally determine suitable values
that achieve stable tracking performance. For all our results we use the same settings
ægeo = 1 and æim = 0.45.

The optimization of Equation 4.13 can be performed efficiently using an iterative gra-
dient solver, since the gradients can be computed analytically (see the derivations in the
Appendix). In addition, we precompute the inverse covariance matrices and the deter-
minants of the MPPCA during the offline learning phase. We use a gradient projection
algorithm based on the limited memory BFGS solver [117] in order to enforce that the
blendshape weights are between 0 and 1. The algorithm converges in less that 6 itera-
tions as we can use an efficient warm starting with the previous solution. We then update
the closest point correspondences in Egeo and Eim, and re-compute the MAP estimation.
We found that 3 iterations of this outer loop are sufficient for convergence.

4.5. Results

We present results of our realtime performance capture and animation system and il-
lustrate potential applications. The output of the tracking optimization is a continuous
stream of blendshape weight vectors {xi } that drive the digital character. Figures 4.1
and 4.9 illustrates how our system can be applied in interactive applications, where the
user controls a digital avatar in realtime. Blendshape weights can be transmitted in re-
altime to enable virtual encounters in cyberspace. Since the blendshape representation
facilitates animation transfer, the avatar can either be a digital representation of the user
himself or a different humanoid character, assuming compatible expression spaces.

While we build the user-specific blendshape model primarily for realtime tracking, our
technique offers a simple way to create personalized blendshape rigs that can be used
in traditional animation tools. Since the Kinect is the only acquisition device required,
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input data tracked
expression model virtual avatars

blendshape base meshes

Figure 4.9.: The user’s facial expressions are reconstructed and mapped to different tar-
get characters in realtime, enabling interactive animations and virtual con-
versations controlled by the performance of the tracked user. The smile on
the green character’s base mesh gives it a happy countenance for the entire
animation.
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generating facial rigs becomes accessible for non-professional users.

Statistics. We use 15 user-specific expressions to reconstruct 39 blendshapes for the
facial expression model. Manual markup of texture constraints for the initial offline
model building requires approximately 2 minutes per expression. Computing the ex-
pression model given the user input takes less than 10 minutes. We pre-compute the
Gaussian mixture model that defines the dynamic expression prior from a total of 9,500
animation frames generated on the generic template model by an animation artist. De-
pending on the size of the temporal window, these computations take between 10 and
20 minutes.

Our online system achieves sustained framerates of 20 Hertz with a latency below 150
ms. Data acquisition, preprocessing, rigid registration, and display take less than 5 ms.
Nonrigid registration including constraint setup and gradient optimization require 45
ms per frame. All timing measurements have been done on a Intel I7 2.8Ghz with 8
GBytes of main memory and a ATI Radeon HD 4850 graphics card.

4.6. Evaluation

We focus our evaluation on the integration of 2D and 3D input data and the effect
of animation training data. We also comment on limitations and drawbacks of our
approach.

Geometry and Texture. Figure 4.10 evaluates the interplay between the geometry
and texture information acquired with the Kinect.

[Weise et al. 2009]     Kinect

Tracking purely based on geometry as proposed in [189] is
not successful due to the high noise level of the Kinect data.
Integrating model-based optical flow constraints reduces tem-
poral jitter and stabilizes the reconstruction. In our experi-
ments, only the combination of both modalities yielded sat-
isfactory results. Compared to purely image-based tracking
as e.g. in [44], direct access to 3D geometry offers two main

benefits: We can significantly improve the robustness of the rigid pose estimation in
particular for non-frontal views (see also Figure 4.7). In addition, the expression tem-
plate mesh generated during preprocessing much more closely matches the geometry of
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geometry only texture only geometry + textureinput data

Figure 4.10.: The combination of geometric and texture-based registration is essential
for realtime tracking. To isolate the effects of the individual components,
no animation prior is used in this example.

the user, which further improves tracking accuracy. Figure 4.11 shows difficult tracking
configurations and provides an indication of the limits of our algorithm.

Animation Prior. Figure 4.12 studies the effectiveness of our probabilistic tracking
algorithm when varying the amount of training data used for the reconstruction. The fig-
ure illustrates that if the training data does not contain any sequences that are sufficiently
close to the captured performance, the reconstruction can differ substantially from the
acquired data. With more training data, the tracked model more closely matches the
performing user. What the prior achieves in any case is that the reconstructed pose is
plausible, even if not necessarily close to the input geometrically (see also Figure 4.8).
We argue that this is typically much more tolerable than generating unnatural or even
physically impossible poses that could severely degrade the visual perception of the
avatar. In addition, our approach is scalable in the sense that if the reconstructed ani-
mation does not well represent certain expressions of the user, we can manually correct
the sequence using standard blendshape animation tools and add the corrected sequence
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vey fast motion

input data tracked
expression model

Figure 4.11.: Difficult tracking configurations. Right: despite the occlusions by the
hands, our algorithm successfully tracks the rigid motion and the expres-
sion of the user. Left: with more occlusion or very fast motion, tracking
can fail.

to the training data set. This allows to successively improve the animation prior in a
bootstrapping manner. For the temporal window Xn used in the animation prior, we
found a window size of 3 ≤ n ≤ 5 to yield good results in general. Longer temporal
spans raise the dimensionality and lead to increased temporal smoothing. If the window
is too small, temporal coherence is reduced and discontinuities in the tracking data can
lead to artifacts.

Limitations. The resolution of the acquisition system limits the amount of geometric
and motion detail that can be tracked for each user, hence slight differences in expres-
sions will not be captured adequately. This limitation is aggravated by the wide-angle
lens of the Kinect installed to enable full-body capture, which confines the face region
to about 160 × 160 pixels or less than 10% of the total image area. As a result, our sys-
tem cannot recover small-scale wrinkles or very subtle movements. We also currently
do not model eyes, teeth, tongue, or hair.

In our current implementation, we require user support during pre-processing in the
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form of manual markup of lip and eye features to register the generic template with
the recorded training poses (see Figure 4.5). In future work, we want to explore the
potential of generic active appearance models similar to [51] to automate this step of
the offline processing pipeline as well.

While offering many advantages as discussed in Section 4.2, the blendshape represen-
tation also has an inherent limitation: The number of blendshapes is a tradeoff between
expressiveness of the model and suitability for tracking. Too few blendshapes may
result in user expressions that cannot be represented adequately by the pose space of
the model. Introducing additional blendshapes to the rig can circumvent this problem,
but too many blendshapes may result in a different issue: Since blendshapes may be-
come approximately linearly dependent, there might not be a unique set of blendshape
weights for a given expression. This can potentially result in unstable tracking due to
overfitting of the noisy data. While the prior prevents this instability, a larger number of
blendshapes requires a larger training database and negatively affects performance.

4.7. Additions and Remarks

Enhancing the tracking performance using realtime speech analysis, or integrating sec-
ondary effects such as simulation of hair are further areas of future research that could
help increase the realism of the generated virtual performances. More fundamentally,
being able to deploy our system at a massive scale can enable interesting new re-
search in human communication and paves the way for new interaction metaphors in
performance-based game play. In this chapter we focused on facial acquisition and ig-
nore other important aspects of human communication, such as hand gestures, which
pose interesting technical challenges due to complex occlusion patterns. In [166] we
show that a similar optimization can be used for hand tracking. We present a robust
method for capturing articulated hand motions in realtime using a single depth camera.
Our system is based on a realtime registration process that accurately reconstructs hand
poses by fitting a 3D articulated hand model to depth images.We register the hand model
using depth, silhouette, and temporal information. To effectively map low-quality depth
maps to realistic hand poses, we regularize the registration with kinematic and temporal
priors, as well as a data-driven prior built from a database of realistic hand poses.
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input data 100% 75% 50% 25%

Figure 4.12.: Effect of different amounts of training data on the performance of the
tracking algorithm. We successively delete blendshapes from the input an-
imation sequences, which removes entire portions of the expression space.
With only 25% of the blendshapes in the training data the expressions are
not reconstructed correctly.

Animation prior using Gaussian Mixture Regression. In Section 4.4.1, we
formulate the inference problem as a maximum a posteriori estimation

x⋆ = argmax

x
p(D|x)p(x, Xn). (4.17)

Using Bayes’ rule this maximization can also be reformulated as

x⋆ = argmax

x
p(D|x)p(x|Xn). (4.18)

We can use Gaussian Mixture Regression [165] to create a Gaussian predictive distri-
bution

˜p(x|Xn) =N (x|E {p(x|Xn)},V {p(x|Xn)}), (4.19)

where E {p(x|Xn)} and V {p(x|Xn)} denote the expectation and the variance of x given
Xn . This expectation and variance can be estimated from the joint density built using
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the Gaussian Mixture model in Equation 4.9 (see [165] for more details). By using a
Gaussian predictive distribution as prior the minimization in Equation 4.13 only consists
of least-squares energies and the minimum can be computed efficiently using a direct
solver instead of BFGS [117] .
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Figure 5.1.: Realtime tracking and retargeting of the facial expressions of the user (in-
set) captured with an RGB-D sensor.

5.1. Foreword

Recent advances in realtime performance capture have brought within reach a new form
of human communication. Capturing dynamic facial expressions of a user and retarget-
ing these expressions to a digital character in realtime allows enacting arbitrary virtual
avatars with live feedback. Compared to communication via recorded video streams that
only offer limited ability to alter one’s appearance, such technology opens the door to
fascinating new applications in computer gaming, social networks, television, training,
customer support, or other forms of online interactions.

Successfully deploying such a technology at a large scale puts high demands on perfor-
mance and usability. Facial tracking needs to be accurate and fast enough to create plau-
sible and responsive animations that faithfully match the performance of the captured
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user. Ease-of-use affects both hardware and system handling. Marker-based systems,
multi-camera capture devices, or intrusive scanners commonly used in high-end anima-
tion production are not suitable for consumer-level applications. Equally inappropriate
are methods that require complex calibration or necessitate extensive manual assistance
to setup or operate the system.

Several realtime methods for face tracking have been proposed that require only a single
video camera [44, 5, 152] or consumer-level RGB-D camera, such as the Microsoft
Kinect [187, 7]. Video-based methods typically track a few facial features and often
lack fine-scale detail, which limits the quality of the resulting animations. Tracking
performance can also degrade in difficult lighting situations that commonly occur in a
home environment, for example. Additionally exploiting 3D depth information obtained
by active IR sensing improves tracking accuracy and robustness. This is commonly
achieved using a 3D template model [37, 178] or building a dynamic 3D expression
model (DEM) that represents the 3D geometry of the individual facial expressions of
the user [187]. The DEM allows formulating facial tracking as a non-rigid registration
problem in a low-dimensional parameter space, thus facilitating robust and efficient
tracking.

However, current methods have one major drawback: The DEM must be created a pri-
ori during a controlled training stage, where each user is scanned in several pre-defined
expressions. Manual corrections and parameter tuning is often required to achieve sat-
isfactory tracking results. While appropriate for professionals in animation content cre-
ation, such user-specific calibration is a severe impediment for deployment in consumer-
level applications. We propose an algorithm that addresses this problem.

Contributions. We introduce an adaptive DEM that combines a dynamic expres-
sion template, an identity PCA model, and a parameterized deformation model in a
low-dimensional representation suitable for online learning. We show how this generic
model can be adapted to a specific user on-the-fly without any manual assistance. Our
core algorithmic contribution integrates online DEM learning directly into the tracking
method. As more and more of the user’s expression space is observed during track-
ing, the generic DEM is progressively adapted to the facial features of the specific user,
which in turn will lead to more accurate tracking. Combined with state-of-the-art reg-
istration methods, our algorithm yields a fully automatic, realtime face tracking and
animation system suitable for consumer-level applications (see Figures 5.1 and 5.12).
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Figure 5.2.: Adaptive DEM. The user-specific blendshape model B is created using a
combination of identity PCA model, expression transfer from the template
model B§, and corrective deformation fields for each blendshape.

5.2. Overview.

The input to our system comes from a consumer-level RGB-D device, such as the Mi-
crosoft Kinect or the Asus Xtion Live, that provides a color image and 3D depth map of
640x480 resolution at 30 Hz. Due to the wide-angle lens, the face is confined to a region
of about 160x160 pixels. Our goal is to estimate expression parameters that accurately
capture the facial dynamics of the observed user in a representation that is appropriate
for animating digital avatars. Similar to previous work, e.g. [187, 91], we employ a 3D
blendshape model that offers a compact representation suitable for realtime tracking. In
our system we build the specific blendshape model of a user concurrently to the track-
ing optimization, requiring no preceding training or calibration stage. Starting from a
rough initial estimate, the dynamic expression model (DEM) is continuously refined as
tracking progresses. As soon as each blendshape has been observed sufficiently many
times, the DEM converges to a steady state.
We first describe our adaptive DEM that can be customized on the fly to the particular
expression space of the user (Section 5.3). Then in Section 5.4 we show how real-
time tracking can be achieved by registering the DEM with the observed image and
depth map data, while concurrently refining the DEM to match the geometry of the ob-
served user. Section 5.5 provides a detailed evaluation to demonstrate that our realtime
performance-based animation system achieves accurate tracking results.
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5.3. Adaptive Dynamic Expression Model

Blendshapes. We represent a DEM as a set of blendshape meshes B = [b
0

, . . . ,bn],
where b

0

is the neutral pose and the bi , i > 0 define specific base expressions. All
blendshapes have the same static mesh combinatorics and are represented by stacked
coordinate vectors. A new facial expression is generated as F(x) = b

0

+¢Bx, where ¢B =
[b

1

°b
0

, . . . ,bn °b
0

], and x = [x
1

, . . . , xn]

T are blendshape weights bounded between 0
and 1. The blendshape representation is well suited for realtime performance capture
because it reduces tracking to estimating the rigid head alignment and the n blendshape
weights for each frame. As an additional benefit, the blendshapes bi can be chosen to
match pre-defined semantics of common face animation controllers, e.g. mouth-open,
smile, frown, etc., which simplifies post-editing and animation retargeting.

We denote with B§ = [b§
0

, . . . ,b§
n] a template blendshape model that is given a priori, in

our case modeled by hand (see additional material for a complete list of blendshapes).
This template model defines the expression semantics that we want to transfer onto the
DEM of the tracked user during online model building as described in Section 5.4. Next,
we introduce the main ingredients to achieve this dynamic adaptation: an identity PCA
model, an expression transfer operator, and corrective deformation fields (Figure 5.2).

Identity PCA model. We capture variations of face geometry across different users
with a morphable model as proposed in [24]. Given a large set of meshes of different
human faces with one-to-one vertex correspondence in neutral expression, we build a
reduced representation using PCA on the stacked vertex coordinate vectors. Let m be
the resulting mean face and P = [p

1

, . . . ,pl ] the first l PCA eigenvectors. With such an
orthonormal basis, a specific face model in neutral expression can be approximated as
b

0

= m+Py with suitable linear coefficients y = [y
1

, . . . , yl ]

T .

Expression transfer operator. For a given neutral expression b
0

we define ap-
proximations for all other blendshapes using a variant of deformation transfer [164],
see also [111]. Using the template B§, we transfer the known deformation of the neutral
expression b§

0

to a specific blendshape expression b§
i , onto the neutral expression b

0

in
order to obtain bi . Our formulation defines bi as a linear transformation T§

i b
0

of the neu-
tral expression b

0

. Contrary to previous formulations of deformation transfer [164, 27],
the operator T§

i does not depend on b
0

, which allows the model refinement optimization
to be formulated as the solution to a linear system that can be computed efficiently and
robustly (see Section 5.4.2). A derivation of our expression transfer operator T§

i is given
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in the appendix.

Corrective deformation fields. The PCA model represents the large-scale vari-
ability of facial geometries in the neutral expression, but might not capture user-specific
details. Similarly, deformation transfer copies expressions from the template without
accounting for the particular facial dynamics of the user. We therefore apply additional
surface deformation fields to each reconstructed blendshape mesh bi 2 B to obtain a
more faithful reconstruction of the user’s facial expression space.
Per-vertex displacements are modeled using a spectral representation defined by the k
last eigenvectors E = [e

1

, . . . ,ek ] of the graph Laplacian matrix L computed on the 3D
face mesh, see [107] for more details. A smooth deformation field can then be de-
fined as a linear combination Ez, where z = [z

1

, . . . , zk ]

T are the spectral coefficients.
The spectral basis offers two main advantages in our setting: We can optimize for the
corrective deformations in a low-dimensional space, requiring only k variables to rep-
resent a deformation of a blendshape mesh. In addition, the built-in smoothness of the
low-frequency eigenvectors helps to avoid over-fitting when aligning the blendshapes
to noisy depth maps.

Parameterized DEM. With all this machinery in place, we can now define a pa-
rameterized DEM that can be adapted to a particular user (see Figure 5.2). The neutral
expression is given as b

0

= m+Py+Ez
0

, i.e., a combination of identity PCA model and
a corrective deformation field. The remaining blendshapes b

1

, . . . ,bn are parameterized
as

bi = T§
i b

0

+Ezi = T§
i (m+Py+Ez

0

)+Ezi ,

i.e., combining expression transfer of the template B§ to the neutral expression b
0

with
expression-specific deformation fields.

5.4. Optimization

The adaptive DEM described in the previous section is at the core of our tracking op-
timization algorithm. The goal of this optimization is to compute accurate tracking
parameters, while at the same time refining the user-specific DEM in realtime.

More precisely, our algorithm solves for

• the rigid alignment of the face model to the input depth map defined by a rotation
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Template 
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Blendshape
Weights

Rigid
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Image Depth Map

Figure 5.3.: Optimization pipeline. Each frame of the input data (color image and depth
map), is processed with our interleaved optimization that alternates tracking
and model refinement. The output are tracking parameters (rigid alignment,
blendshape weights) per frame that can be used to drive a virtual avatar in
realtime. Concurrently, the user-specific DEM is adapted according to the
facial characteristics of the observed user.

matrix R and a translation vector t at each frame t ,

• the blendshape weights x = [x
1

, . . . , xn]

T for each frame t ,

• the identity PCA parameters y = [y
1

, . . . , yl ]

T for the neutral face expression b
0

of
the user, and

• the deformation coefficients Z = {z
0

, . . . ,zn} for each blendshape bi , where zi =
[zi ,1

, . . . zi ,k ]

T .

We use superscripts to refer to specific time frames, e.g. xt denotes the blendshape
weights at frame t ∈ N, where t = 1 denotes the first frame. To simplify notation, we
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omit the superscripts when irrelevant or clear from the context.

The optimization alternates between two stages as shown in Figure 5.3. Stage I es-
timates the rigid alignment and blendshape weights, keeping the DEM fixed. Stage
II refines the user-specific DEM by solving for the PCA parameters y and deformation
coefficients Z, keeping the blendshape weights fixed. We bootstrap this alternating mini-
mization by initializing the DEM with the PCA reconstruction for the neutral expression
and deformation transfer of the template DEM as described next.

Initialization. Our system requires the user to enter the sensor’s field of view in a
neutral facial expression. We use the method of [182] to detect the face and crop the
depth map to obtain a 3D scan of the neutral expression. From this initial face scan, we
compute a first approximation of b

0

by aligning the parameterized neutral expression to
the depth map. This means that we solve for the PCA coefficients y and deformation
coefficients z

0

, as well as the rigid head pose (R,t), by minimizing the common ICP
energy with point-plane constraints [150]. More specifically, we solve for

argmin

R,t,y,z
0

kA
0

(Rb
0

+ t)°c
0

k2

2

+Ø
1

kDPyk2

2

+Ø
2

kDEz
0

k2

2

+Ø
3

kz
0

k2

2

. (5.1)

Here (A
0

,c
0

), is the matrix resp. right-hand side summarizing the ICP constraint equa-
tions in the first term of the objective function (see [187] for details). The remaining
summands are regularization terms with corresponding positive scalar weights Ø

1

, Ø
2

,
Ø

3

. The term DPy regularizes the PCA weights, where DP is a diagonal matrix contain-
ing the inverse of the standard deviation of the PCA basis. The term DEz

0

regularizes
the deformation coefficients by measuring the bending of the deformation. DE is the
diagonal matrix of eigenvalues corresponding to the eigenvectors in E of the Laplacian
matrix L [26]. The last summand penalizes the magnitude of the deformation vectors.

The optimization is solved using the Gauss-Newton method [120]. We initialize the
solver with y = z

0

= 0, the initial face location is retrieved from the face detector with
the user assumed to be front-facing. Given the reconstruction of b1

0

at the first frame
(t = 1), we initialize the additional blendshapes by applying the deformation transfer
operator, i.e. b1

i = T§
i b1

0

for i = 1, . . . ,n.
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5.4.1. Tracking

The tracking stage of the optimization assumes that the DEM is fixed and solves for the
rigid motion (R,t) and blendshape weights x at timeframe t .

Rigid motion tracking. We first estimate R and t by directly aligning the
static reconstructed mesh of the previous frame with the acquired depth map of
the current frame using ICP with point-plane constraints. To stabilize the rigid
motion, the constraints are only defined for the front head and nose region of the
reconstructed mesh as illustrated in blue on the right.

Estimating blendshape weights. Given the rigid pose and the current set
of blendshapes B, we now need to estimate the blendshape weights x that best
match the input data of the current frame. We formulate this problem as a com-
bined 2D/3D registration. The 2D registration is formulated using optical flow
constraints, while the 3D registration is using ICP as above. This yields a fitting
energy of the form

Efit = kA(b
0

+¢Bx)°ck2

2

, (5.2)

where (A,c) summarize the registration constraints on a subset of the face vertices as
indicated in blue on the left. For brevity we omit the specific formulas here, detailed
derivations of the constraint terms can be found in [187]. Our optimization iteratively
minimizes the following energy

argmin

x
Efit +∏1

Esmooth +∏2

Esparse. (5.3)

Two additional terms, Esmooth and Esparse with non-negative weights ∏
1

and ∏
2

, are
added for regularization. Temporal smoothness is enforced by penalizing the second-
order difference

Esmooth = kxt°2 °2xt°1 +xtk2

2

,

where t denotes the current timeframe. We also apply the 1-norm regularization

Esparse = kxk
1

on the blendshape coefficients. We found that this sparsity-inducing energy is very
important to stabilize the tracking (see Figure 5.4). Because the blendshape basis are
not linearly independent, the same expression could in principle be represented by dif-
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Figure 5.4.: Comparison between l
1

and l
2

regularization for the blendshape weight op-
timization of Equation 5.3. The l

1

regularization leads to a lower average
fitting error (denoted by f i t), but more importantly, significantly reduces
the number of non-zero blendshape weights. The red bars on the left show
the additionally activated blendshapes under l

2

norm regularization.

ferent blendshape combinations. Favoring a reconstruction with as few blendshapes
as possible avoids potential blendshape compensation artifacts and better matches the
blendshape weights a human animator would chose, which can be advantageous for
retargeting. In addition, the l

1

regularization leads to a significant speed-up of the sub-
sequent model refinement stage (Section 5.4.2), since blendshape refinement is only
performed on blendshapes with non-zero blendshape weight (see also Figure 5.6).
The optimization is performed using a warm started shooting method [69]. The blend-
shape weights x = [x

1

, . . . , xn]

T are bounded between 0 and 1 by projection over the
constraint set at each iteration.

5.4.2. DEM Refinement

The refinement stage of the optimization adapts the blendshape model by solving for the
PCA parameters y and deformation coefficients z

0

, . . . ,zn , keeping the rigid pose (R,t)

and the blendshape weights x computed in the previous stage fixed.

We rewrite the fitting energy in Equation 5.2 as

Efit = ∥A(b
0

+∆Bx)−c∥2

2

= ∥A[

¯xb
0

+
n∑

i=1

xi bi ]−c∥2

2

,
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Figure 5.5.: Effect of the temporal decay factor ∞ in Equation 5.5. Lower values lead to
faster reduction in fitting error, measured as the mean non-rigid ICP error
for each frame, but incur more variance, measured as the mean per-vertex
difference between consecutive frames.

where ¯x = 1°Pn
i=1

xi . With b
0

= m+Py+Ez
0

and bi = T§
i b

0

+Ezi , this term can then
be reformulated as Efit = k ¯Au° ¯ck2

2

, where

¯A = A[(

¯xI+
nX

i=1

xi T§
i )P, (

¯xI+
nX

i=1

xi T§
i )E, x

1

E, . . . , xnE],

u = [yT
,zT

0

, . . . ,zT
n ]

T
, and ¯c = c°A(

¯xI+
nX

i=1

xi T§
i )m.

As previously, we regularize the PCA coefficients y and deformation coefficients zi ,
leading to the model refinement energy

Eref = k ¯Au° ¯ck2

2

+Ø
1

kDPyk2

2

+
nX

i=0

(Ø
2

kDEzik2

2

+Ø
3

kzik2

2

). (5.4)

Temporal Aggregation. The optimization of the DEM should not only depend on
the current frame, but consider the entire history of observed expressions. However, di-
rectly optimizing over all frames would quickly become prohibitive in terms of memory
and computation overhead. We therefore introduce an aggregation scheme that keeps
the memory cost constant. The optimization is formulated as

argmin

y,z
0

,...,zn

tX

j=1

∞t° j

Pt
j=1

∞t° j
E j

ref, (5.5)

where t is the current frame and 0 ∑ ∞∑ 1 defines an exponential decay over the frame
history. E j

ref denotes the refinement energy of Equation 5.4 at time j . The optimal
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Algorithm 1: Blendshape Refinement at frame t

1 Initialization: M1 = 0, y1 = 0, s1 = 0

2 st = ∞st°1 +1

3 Mt = ∞ st°1

st Mt°1 + 1

st (

¯At
)

T
¯At

4 yt = ∞ st°1

st yt°1 + 1

st
¯

(A
t
)

T
¯ct

5 Output: ut =GaussSei del (Mt +D,yt
,ut°1

)
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Figure 5.6.: Optimization performance. Left: The number of blendshapes optimized
during DEM refinement gradually decreases as more blendshapes reach the
coverage threshold. Right: total computation time per frame as a function
of the number of blendshapes that are optimized in each frame.

solution of this minimization can be found by solving

(D+
tX

j=1

∞t° j

Pt
j=1

∞t° j
(

¯A j
)

T
¯A j

)u =
tX

j=1

∞t° j

Pt
j=1

∞t° j
(

¯A j
)

T
¯c j

, (5.6)

where D is a diagonal matrix containing the regularization terms of Equation 5.4. To
solve this system, we propose an online algorithm based on warm-started Gauss-Seidel
optimization [9]. Our algorithm allows optimizing over the entire history of frames with
a fixed memory overhead, as we do not need to store each frame separately (see Algo-
rithm 1).

Figure 5.5 illustrates the tradeoff between fitting error and temporal variance as a func-
tion of the parameter ∞. We found ∞= 0.9 to provide a good balance and use this value
for all our experiments.
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Figure 5.7.: Evaluation of the initial estimation of the neutral expression b
0

when vary-
ing the number of PCA basis in P and the number of Laplacian eigenvector
in E. The graph shows the mean non-rigid ICP error averaged over a se-
quence of 440 frames.

Blendshape coverage. In principle, DEM refinement could run indefinitely to
continuously optimize the blendshape model as tracking progresses. However, we can
improve computational performance with a simple heuristic. Blendshapes that have
been optimized sufficiently many times can be considered "saturated" and are removed
from the optimization. We define a coverage coefficient σi =

∑t
j=1

x j
i that measures how

well each blendshape bi has been observed until the current frame t . As soon as σi > ¯σ

for some fixed threshold ¯σ, the corresponding blendshape bi is considered saturated and
remains constant for the subsequent optimization. Since the neutral expression b

0

plays
a special role as the source for expression transfer, we always run the full optimization
until

∑t
j=1

max(

¯x j
,0) > ¯σ. In practice, this does not affect performance significantly,

since b
0

is the blendshape that is typically most often observed. Figure 5.6 gives an
indication of the computational overhead of DEM refinement. Since the computational
cost gradually decreases as more blendshapes reach their coverage thresholds, DEM
refinement quickly becomes negligible compared to the tracking stage of the optimiza-
tion.
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5.4.3. Implementation

In our current implementation, we employ a blendshape model of 34 blendshapes (see
additional material for a complete list). The identity PCA model is computed from the
dataset of [24] that consists of 100 male and 100 female head scans of young adults.
We use 50 PCA basis vectors to approximate the neutral expression for all our exam-
ples. The corrective deformation fields are represented by 50 Laplacian eigenvectors
for each coordinate (see also Section 5.5). We empirically determined the parameters
Ø

1

= 0.5, Ø
2

= 0.1, and Ø
3

= 0.001 for Equations 5.1 and 5.4, ∏
1

= 10 and ∏
2

= 20 for
Equation 5.3, and ¯æ= 10 for the coverage threshold, and use the same fixed settings for
all our examples.

Our software is implemented in C++ and parallelized using OpenMP. We use the Eigen
library for linear algebra computations and OpenCV for the face detector [182] and
image processing operations. In order to speed-up the system we do not optimize for
the unknowns of the blendshapes with 0 weight, keeping them fixed during the Gauss-
Seidel optimization. Another speed improvement is achieved by building (

¯At
)

T
¯At per

block as numerous blocks are similar up to a scalar factor, and blocks corresponding to
the blendshapes with 0 weights are 0.

To complete the face tracking algorithm, we have implemented a separate image-based
eye tracker. Since the rigid and the non-rigid alignment accurately determine the lo-
cation of the eyes in the color image, we can apply a k-nearest neighbor search in a
database of labeled eyes by cropping, rectifying and normalizing the input image. This
k-nearest neighbor search is implemented using the OpenCV library. The final result is a
weighted average of the labels of the k neighbors. The result of the eye tracker drives 14
supplementary blendshapes (see additional material) localized around the eyes. These
blendshapes are computed using expression transfer only and are not part of the model
refinement optimization.
Our system achieves sustained framerates of 25 Hz with a latency of 150 ms on a Mac-
Book Pro with an Intel Core i7 2.7Ghz processor, 16 GBytes of main memory, and an
NVIDIA GeForce GT 650M 1024MB graphics card.

5.5. Evaluation

In this section we present several experiments that we have performed to analyze our
optimization algorithm, and discuss limitations of our approach.
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Figure 5.8.: Effect of corrective deformation fields. PCA and expression transfer only
(top), additional deformation fields for both b

0

and the bi (middle), color-
coded vertex displacements due to the deformation fields Ezi (bottom).

Dynamic expression model. Figure 5.7 shows how the optimization of the neu-
tral face depends on the number of basis vectors used for the identity PCA model and
the corrective deformation fields, respectively. Due to the limited number of input sam-
ples (200 head models total), we observed no significant improvement beyond 50 basis
vectors for the PCA model. For the deformation fields we found that 50 Laplacian
eigenvectors are sufficient to obtain accurate reconstructions while still enabling real-
time performance. The effect of the deformation fields is also shown for several blend-
shapes in Figure 5.8, where notable changes can be observed in the mouth region and
around the nostrils. In general, we found these per-vertex deformations to be important
to capture geometric detail, in particular the asymmetries common in many faces.

Tracking and DEM refinement. Figure 5.5 and Figure 5.9 show how the fitting er-
ror decreases over time as the DEM is refined concurrently to tracking. The correspond-
ing adaptation of the blendshapes is illustrated in Figure 5.10. Figure 5.11 provides
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Figure 5.9.: Dynamic adaptation of the DEM model for three different users. The verti-
cal spikes in fitting error indicate when a new user enters the field of view
of the sensor. The DEM quickly adapts to the new facial geometry. High
tracking accuracy is typically achieved within a second of using the system.

a comparison with a commercial software [66] that requires significant user-specific
training and manual assistance to create the DEM. As the plot illustrates, our approach
achieves comparable accuracy, while requiring no training or pre-processing.

Retargeting. The expression transfer operator (see Section 5.3 and Appendix), en-
sures that the user-specific DEM retains the blendshape semantics of the template model.
The blendshape weights computed during tracking can therefore be used directly to
drive a compatible face rig with the same blendshape configuration. This simple re-
targeting incurs no extra cost, which is particularly important for realtime applications.
Figures 5.1 and 5.12 show that virtual avatars with significantly different facial features
than the tracked user can be animated faithfully with our method.

Limitations. Our performance capture system is limited by the resolution and noise
levels of the input device. While future hardware developments are likely to improve
the performance of our system, tracking accuracy is inherently limited by the geometric
detail of the template blendshape model. This representation is built on the premise that
the location of facial features is spatially consistent across different users, an assump-
tion that is no longer valid at small scales. For example, wrinkles typically appear at
different locations for different people. As a consequence, such fine-scale features are
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Figure 5.10.: Progressive DEM refinement. Each row shows the temporal evolution
of a specific blendshape. The input image on the right is provided for
reference. For this experiment we omit the PCA initialization to illustrate
the robustness of the DEM refinement even when large deformations are
required to match the face geometry of the tracked user.

not modeled adequately with our current approach.

In general, the same dynamic expression template might not be optimal for all tracked
users. For example, children have significantly different facial dynamics than adults,
and it might be more appropriate to apply different template models to different age
groups. Since the identity PCA model of [24] that we currently use does not contain
any children or older people, we did not yet investigate this hypothesis further.

The template blendshape model we currently use has been created in an iterative, empir-
ical process. Starting with the most commonly used expressions, such as mouth open,
smile, etc., we successively extended the model to include more blendshapes to ob-
tain a more accurate expression space. This extension has been done with the advice
of professional animators in order to match the established conventions for blendshape
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Figure 5.11.: Comparison of average fitting error for different tracking methods. DEM
refinement significantly improves tracking accuracy compared to tracking
with the template only. After convergence of the DEM, our method is
comparable to the commercial software Faceshift Studio (FS) that depends
on user-specific training. For this test, FS requires 11 static face scans of
the user to create the expression model, as well as some manual work to
assist the reconstruction, while our approach is completely automatic.

controllers. However, what constitutes the optimal blendshape model for tracking is not
clear. A systematic study answering this question could be interesting future work.

5.6. Additions and Remarks

Future work will focus on further improving tracking accuracy. One interesting possi-
bility would be to integrate speech analysis for better lip synching.Another promising
avenue for future work is online avatar creation. The user-specific DEM that we build
automatically already constitutes a fully rigged geometric avatar. Adding reconstruction
of texture and other facial features such as hair would allow building complete digital
avatars that can directly be integrated into online applications. Finally, we would like
to investigate the application of similar online optimizations to other linear models such
as Active Appearance Models or Active Shape Models. In [94] we show an extension
of this work. We present a complete pipeline for creating fully rigged, personalized
3D facial avatars from hand-held video. Our system faithfully recovers facial expres-
sion dynamics of the user by adapting a blendshape template to an image sequence of
recorded expressions using an optimization that integrates feature tracking, optical flow,
and shape from shading. Fine-scale details such as wrinkles are captured separately in
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Figure 5.12.: Mimicry, an application case study using our approach. An observer can
simply step in front of the picture frame and the character depicted in
the virtual painting will start mimicking the person’s facial expression in
realtime. The sensor is embedded in the frame.

normal maps and ambient occlusion maps. From this user- and expression-specific
data, we learn a regressor for on-the-fly detail synthesis during animation to enhance
the perceptual realism of the avatars. Our system demonstrates that the use of appropri-
ate reconstruction priors yields compelling face rigs even with a minimalistic acquisi-
tion system and limited user assistance. This facilitates a range of new applications in
computer animation and consumer-level online communication based on personalized
avatars.
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Figure 6.1.: Our facial animation retargeting system learns a mapping from motion cap-
ture data to arbitrary character parameters.

6.1. Foreword

Creating realistic facial animations is a complex task that usually requires a significant
time commitment of highly skilled animators. Recent developments in facial motion
capture systems allow speeding up this process by accurately capturing the performance
of an actor, thereby shifting the complexity of facial animation towards retargeting.
However, mapping the captured performance onto a virtual avatar is a highly non-trivial
task, especially when the target character is not a close digital replica of the actor, as for
example in the movie King-Kong. Low-level automatic methods are bound to fail, since
establishing the correspondence between facial expressions of largely different charac-
ters requires high-level semantic knowledge of their expressions spaces. A common
strategy is thus to provide a set of explicit point correspondences between these two
spaces. For example, for a given recorded smile of the actor, an animator would create a
semantically matching smile of the virtual target character. Given a set of such labeled
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Figure 6.2.: Our algorithm learns a shared latent space Z from a space X of motion
capture parameters and a space Y of character parameters. Gaussian Process
Regressors (GPR) are used to model the mappings from the latent space
onto the observation spaces. In order to train the GPRs only few pairwise
correspondences between X and Y need to be specified. A key feature of
our algorithm is that we also incorporate unlabeled data points for which
no correspondence is given.

pairs, retargeting essentially becomes a problem of scattered data approximation, i.e.,
extrapolating the explicit correspondences into the entire expression space. The main
difficulty in this type of example-based retargeting is creating the examples. Typically
a large number of correspondences needs to be established to adequately capture the
subtleties of facial expressions. In addition, posing a character to match a recorded ex-
pression can be very difficult, as subtle motions, e.g. a slight raise of the eyebrows, are
often overlooked. These minor inaccuracies can quickly lead to noticeable disturbances
in the animations of the target character.

Contribution. In this section, we present a novel example-based retargeting ap-
proach that significantly reduces the number of required training examples. Our method
learns a shared latent space between motion capture and character parameters to repre-
sent their underlying common structure. Given a small set of manually specified cor-
respondences between actor performance and target character expressions, the latent
space is learned in a semi-supervised manner by using these labeled key poses, as well
as the complete actor performance and previous animations of the target character. By
adding this additional information we can increase the learning accuracy and stabil-
ity, while the number of required training examples is reduced. We demonstrate that
our system is resilient to noise and missing data, and can deal with high dimensional
representations common in production-level facial rigs.
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6.2. Learning

Classical example-based retargeting establishes a mapping from the source to the target
space by computing an interpolation function from the point-wise correspondences de-
fined by the labeled examples. Our method is based on one key observation: unlabeled
frames can provide valuable information to establish this mapping. With unlabeled
frames we mean poses in the captured sequence for which no corresponding expression
for the target has been specified. For motion capture data, these unlabeled data points
are abundant, since typically many hundreds of frames are recorded and only few are
manually labelled. The main advantage of incorporating unlabeled data is that they
provide important information about the local structure of the expressions space, which
leads to better alignment of source and target spaces when computing the mapping. We
can even go further and also incorporate unlabeled expressions of the target character,
which help to constrain the mapping function by defining the space of semantically cor-
rect expressions of the target. Unlabeled target character samples are often available in
the form of pre-existing animations that, for example, have been generated by an artist.

We employ shared GPLVM [63] to learn a mapping between motion capture and char-
acter parameters. The main hypothesis here is that both parameter spaces are (non-
linearly) generated from a common low-dimensional manifold. Shared GPLVM (sG-
PLVM) learns a shared latent space by training Gaussian Process Regressors (GPR) to
model the generative mappings from the latent space onto the observation spaces as il-
lustrated in Figure 6.2. Gaussian Process Regressors can be trained robustly from small
training sets and their parameters can be learned by maximizing the marginal likelihood
of the training data. This is more efficient than techniques that use cross-validation to
infer the parameter values when the training set is small, since the training dataset does
not need to be reduced further [145].

6.2.1. Shared GPLVM Learning

Assume we are given two sets of corresponding observations X =
h

x
1

, . . . ,xn

iT
and

Y =
h

y
1

, . . . ,yn

iT
, where xi 2 Rdx and yi 2 Rdy . In our retargeting system X represents

the space of source motion capture parameters and Y the space of target virtual char-
acter parameters. Let Z =

h
zi , . . . ,zn

iT
, zi 2 Rdz denote the corresponding (unknown)

shared latent points. We model the generative mapping from the latent space onto the
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ground truth our method sGPLVM GPR SVRinput

Figure 6.3.: Our method retargets accurately the facial expressions of the actor. With a
small number of labels SVR has tendency to damp the facial expressions.
In our examples, GPR gives results similar or slightly less accurate than
sGPLVM, which we further improve in our method by incorporating unla-
beled data.

observation spaces with Gaussian processes using the conditional probabilities

P (X|Z) = 1

√
2πndx |KZ,ΦX |dx

exp

(
−1

2

tr
(
K−1

Z,ΦX
XXT

))
, (6.1)

P (Y|Z) = 1

√
2πndy |KZ,ΦY |dy

exp

(
−1

2

tr
(
K−1

Z,ΦY
YYT

))
. (6.2)

The vector Φ= {θ
1

,θ
2

,θ
3

} defines the parameters of the kernel KZ,Φ given as

Ki , j
Z,Φ = kΦ(zi ,z j ) = θ

1

exp

(
−θ

2

2

||zi −z j ||2
2

)
+θ−1

3

δi , j , (6.3)

where Ki , j
Z,Φ is the element located at the i -th line and j -th column of the kernel matrix

KZ,Φ and δi , j is the Kronecker delta. Learning a shared GPLVM amounts to estimating
the latent positions and kernel parameters by maximizing

argmax

Z,ΦX ,ΦY

P (Z|X,Y) = argmax

Z,ΦX ,ΦY

P (X|Z)P (Y|Z)P (Z). (6.4)

Semi-supervised learning. An important benefit of the shared GPLVM is that it
can directly incorporate extra data points that do not need to be in correspondence.
We can thus learn the shared GPLVM using X =

[
XT

l ,XT
u ,◦

]T
and Y =

[
YT

l ,◦,YT
u

]T
,

where labeled pairs are denoted by Xl ∈ Rl×dx and Yl ∈ Rl×dy , and unlabeled samples
are given by Xu ∈Rm×dx , Yu ∈Rn×dy with the ◦ indicating the missing correspondences
(see Figure 6.2).
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Figure 6.4.: A quantitative comparison of different learning approaches shows the root
mean square (RMS) distance to the ground truth as a function of the number
of training examples.

By using smooth mappings from the latent space to the observation spaces, sGPLVM
ensures that close points in the latent space remain close in the observation spaces.
However, the inverse is not necessarily true, i.e., points close in the observation spaces
may be far apart in the latent space. In order to preserve the local topological structure of
X and Y in the latent space, we therefore define a prior based on local linear embedding
(LLE) [149] over the latent configurations. LLE assumes that each data point of the
observation spaces and its neighbors are close to a locally linear patch on the manifold.
The local geometry of these patches can then be encoded by linear coefficients wi j that
reconstruct each data point from its neighbors. By enforcing that the reconstruction
of each latent point from its neighbors follows the same set of coefficients than their
corresponding high dimensional point, the local structure of the observation spaces can
be preserved in the latent space. We model this concept with a prior over the latent
configuration using a Gaussian process

P (Z) = 1

p
2º(l+m+n)dz |L°1|dz

exp

µ
°1

2

tr
°
LZZT ¢∂

, (6.5)

where L = MT M+ I and M is a matrix in which each line encodes one reconstruction
constraint and is defined as

M =
h

(I°CX )

:,1:l
(I°CX )

:,(l+1):(l+m)

0

(I°CY )

:,1:l
0 (I°CY )

:,(l+1):(l+n)

i
. (6.6)

In the formulation above, A:,i : j denotes a block a the matrix A going from column i to
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column j and

Ci , j
U = cU (ui ,u j ) =

(
wi j if j 2 Ni ,

0 otherwise.
(6.7)

Ni are the indices of the k-nearest neighbor of ui and the coefficients wi j are defined
as

wi j = argmin

wi j

||ui °
X

j2Ni

wi j u j ||2
2

s.t.
X

j2Ni

wi j = 1. (6.8)

Incorporating this prior of the local structure of the observation spaces helps to better
constrain the position of the points with missing correspondences in the latent space.
We also found that it helps increase the robustness of the training to bad initialization
of the latent coordinates.

6.2.2. Computing the Mapping Function

The mapping from motion capture parameters to character parameters is done in two
steps. We first solve for the latent position z§k given the motion capture observation ˜xk .
We call this part source mapping. Given the latent position z§k , the subsequent target
mapping part solves for the character parameters y§

k .

Source mapping. The source mapping not only solves for the latent position z§k , but
also for the most likely capture parameters x§

k given the observation ˜xk , the optimized
motion capture parameters x§

k°1

of the previous frame, and the training data X and Z.
Thus we optimize

argmax

x§k ,z§k

P (x§
k ,z§k |x

§
k°1

,

˜xk ,X,Z). (6.9)

We approximate the above probability density function by assuming that z§k is indepen-
dent of x§

k°1

, ˜xk , X, and Z. This allows us to reformulate the optimization as

argmax

x§k ,z§k

P (x§
k |z

§
k ,x§

k°1

,

˜xk ,X,Z)P (z§k ), (6.10)
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which can be extended to

argmax

x§k ,z§k

P (x§
k ,x§

k°1

,

˜xk |z§k ,X,Z)P (z§k ). (6.11)

By further assuming that ˜xk and x§
k°1

are independent of z§k , X, and Z given x§
k , and ˜xk

is independent of x§
k°1

given x§
k , we obtain our final optimization objective

argmax

x§k ,z§k

P (x§
k |z

§
k ,X,Z)P (

˜xk |x§
k )P (x§

k°1

|x§
k )P (z§k ). (6.12)

The likelihoods P (

˜xk |x§
k ) and P (x§

k°1

|x§
k ) represent closeness to the observation and tem-

poral smoothness, respectively, and are modeled by two Gaussian distributions as

P (

˜xk |x§
k ) =N (

˜xk |x§
k ,æ2

c I), (6.13)
P (x§

k°1

|x§
k ) =N (x§

k°1

|x§
k ,æ2

t I). (6.14)

The two probabilities P (x§
k |z

§
k ,X,Z) and P (z§k ) act as priors over motion capture param-

eters and latent position and are defined as

P (x§
k |z

§
k ,X,Z) =N (x§

k |µ,æ2

p I), (6.15)

µ= K°1

Z,©X
Xk©X (z§k ), (6.16)

æ2

p = k©X (z§k ,z§k )°k©X (z§k )

T K°1

Z,©X
k©X (z§k ), (6.17)

where k©(z§k ) is a vector whose i -th element is k©(z§k ,zi ) and P (z§k ) = N (z§k |0,I). One
advantage of this formulation is that missing dimensions of ˜xk can be retrieved during
the optimization by setting æ2

c =1 in Equation 6.13 for these dimensions.

Target mapping. The second step of the mapping process is to find the character
parameters y§ given the latent position z§ by maximizing

argmax

y§k

P (y§
k |z

§
k ,Y,Z) = K°1

Z,©Y
Yk©Y (z§k ). (6.18)

Implementation. In our implementation, we first mean center the observation spaces
and rescale them by dividing by their maximum variance. For the learning phase, we
empirically found © = {1,1,100} to be good initial kernel parameters for the optimiza-
tion for all our examples. We fix æ2

c and æ2

t by estimating the noise level of the motion
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Figure 6.5.: Unlabeled data points help to increase retargeting accuracy, in particular
when working with few training examples.

capture system [187] and chose k = 8 nearest neighbors for LLE and 8 dimensions for
the latent space. The latent coordinates are initialized using the semi-supervised man-
ifold alignment technique presented in [86]. For the mapping phase, we initialize x§

k
with the motion capture observation ˜xk and z§k with the latent position corresponding to
the closest xi to ˜xk . We use scaled conjugate gradient [126] as optimizer and minimize
the negative logarithm of the probabilities.

6.3. Evaluation

For our evaluation experiments, we use the faceshift tracking system (www.faceshift.com).
Given a recorded sequence of a human actor, this system produces an animated 3D mesh
represented in a blendshape basis that matches the actor’s performance. We select a set
of vertices on the mesh as marker positions to generate motion capture input and per-
form a retargeting of these marker points onto the blendshape basis of the animated
target character. This setup allows measuring and comparing the performance of our al-
gorithm since the blendshape parameters provided by the tracking system can be treated
as ground truth for the evaluation. Note that all other retargeting sequences use target
characters (the models shown in Figure 6.1, see also video) for which no such ground
truth data is available.

82



6.3. Evaluation

Figure 6.6.: Resilience to noise. Our learning approach is able to compute accurate
marker positions (bottom row) by automatically correcting the noisy input
points (top row).

Comparison. We compare our algorithm with Support Vector Regression (SVR)
[62], Gaussian Process Regression (GPR) [190] and the supervised shared GPLVM
(sGPLVM) [63]. We recorded sequences of approximatively 2000 frames of different
actors. The different algorithms are applied 20 times over those sequences by random
selection of labelled and unlabeled points, using 100 unlabeled data points for both
observation spaces. The averaged results shown in Figures 6.3 and 6.4 demonstrate
that our algorithm improves the retargeting accuracy by up to 20%, especially when the
number of labeled expression correspondences is small. Our algorithm also preserves
motion dynamics significantly better than the other approaches.

Unlabeled points. Figure 6.5 illustrates the effect of using unlabeled points for es-
tablishing the retargeting mapping function. As the curves indicate, when using about
50 unlabeled points we can achieve the same retargeting accuracy with 20 training ex-
amples as with 30 examples and no additional unlabeled points. Compared to the time-
consuming and error-prone labeling, the latter come essentially for free, allowing for
significant savings in manual labor. Unlabeled points are particularly useful for small
sets of manually specified examples as the given correspondences do not span the full
animation space.

Noise and missing data. One advantage of our formulation is its robustness to
noise (Figure 6.6) and missing data (Figure 6.7). Our system models a probability
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Figure 6.7.: Missing markers can be handled by our retargeting system. The optimiza-
tion jointly retrieves the location of the missing markers (green) and the
target character parameters.

distribution function over motion capture parameters and latent positions allowing to
retrieve the most probable set of markers given the possible noisy or incomplete input
observation.

Character posing. The resilience of our algorithm to missing data is not limited
to the input space. We can exploit the regularization of our probabilistic framework
to also complete missing data in the target space, which offers a simple but effective
approach to character posing. The animator can specify only a subset of the target
animation parameters and our algorithm will automatically infer the most probable pose
matching the specified values (see Figure 6.8). This type of guided character posing is
particularly advantageous for complex animation models, where many parameters only
induce subtle pose variations that are thus difficult to specify, but nevertheless important
for the expression.

Discussion and Limitations. When the number of examples is small, example-
based retargeting methods have a tendency to infer a wrong correlation between parts
of the face as for example mouth open and eyebrows up. This effect is reduced in our
approach by taking into account unlabeled data. One additional solution is to split the
face (e.g. upper part and lower part) and to learn the retargeting independently for those
parts, similar to recent linear 3D face models [167].

In our work, we use a set of key poses, rather than sequences, to learn the retargeting
function. Learning a latent dynamical system as in [186] with different motion style is
challenging especially with a small set of sequences. Nevertheless, motion sequences
can additionally be used in our approach by taking into account temporal closeness
when building the matrix in Equation 6.6.
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Figure 6.8.: Character posing can be simplified by optimizing for the missing animation
parameters. In these examples, the animator only needs to specify 2-3 ani-
mation parameters (left) and the system automatically infers the most likely
pose matching this input (right), activating about 20 additional blendshape
parameters.

A drawback of the Gaussian Process Regressor model is its time complexity, which is
O(N 3

) for the training phase and O(N 2

) for evaluating the mapping, where N is the
number of points in the training data. Sparse approximations [103, 105] allow to reduce
the training complexity to a more manageable O(k2N ) where k is the number of active
points retained in the sparse representation. In practice, our current implementation
supports realtime retargeting for a training set of a few hundred data points for each
observation space. The training time of our system for 40 examples and 100 unlabeled
points is around 1-2 minutes and the mapping between 30 to 40ms.

In our current implementation the dimension of the latent space is chosen empirically.
Recent works in non-linear dimensionality reduction [74, 151] introduced a rank prior
that allows to automatically determine the dimension of the latent space. This work
should also be applicable for our approach.

6.4. Additions and Remarks

We believe that the main features of our approach will be applicable in other retargeting
applications and see several avenues for future research. A promising idea is to further
explore manifold alignment algorithms [194, 184, 197] to define a prior over latent con-
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figurations and for the initialization of the shared GPLVM. Our statistical framework is
also well suited for active learning. We expect further improvements in retargeting accu-
racy when automatically suggesting new poses for labeling based on an online analysis
of the uncertainty of the current retargeting mapping function.

Active learning. A side-benefit of our approach is that it supports active learning.
For each set of motion capture parameters xi in X we can compute a corresponding latent
position zi as explained in the Section 6.2.2. We can then compute the Gaussian prob-
ability distribution P (y§

i |z
§
i ,Y,Z) where the variance provides a quantitative estimate of

the uncertainty of the mapping from the latent position to the character parameters. We
can thus apply a greedy strategy to iteratively propose to the animator the next pose
for labeling. We simply select the captured expression xi with most uncertain mapping
and request the animator to create the corresponding target pose. We then update the
mapping taking this new example into account to reduce the overall uncertainty.
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Figure 7.1.: We propose a new “projection-based” implicit Euler integrator that sup-
ports a large variety of geometric constraints in a single physical simula-
tion framework. In this example, all the elements including building, grass,
tree, and clothes (49k DoFs, 43k constraints), are simulated at 3.1ms/itera-
tion using 10 iterations per frame.

7.1. Foreword

Physics-based simulation of deformable material has become an indispensable tool in
many areas of computer graphics. Virtual worlds, and more recently character anima-
tions, incorporate sophisticated simulations to greatly enhance visual experience, e.g.,
by simulating muscles, fat, hair, clothing, or vegetation. These models are often based
on finite element discretizations of continuum-mechanics formulations, allowing highly
accurate simulation of complex non-linear materials.

Besides realism and accuracy, a number of other criteria are also important in computer
graphics applications. By generality we mean the ability to simulate a large spectrum of
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behaviors, such as different types of geometries (solids, shells, rods), different material
properties, or even art-directable extensions to classic physics-based simulation. Ro-
bustness refers to the capability to adequately handle difficult configurations, including
large deformations, degenerate geometries, and large time steps. Robustness is espe-
cially important in real-time applications where there is no “second chance” to re-run a
simulation, such as in computer games or medical training simulators. The simplicity of
a solver is often important for its practical relevance. Building on simple, easily under-
standable concepts – and the resulting lightweight codebases – eases the maintenance
of simulators and makes them adaptable to specific application needs. Performance is
a critical enabling criterion for realtime applications. However, performance is no less
important in offline simulations, where the turnaround time for testing new scenes and
simulation parameters should be minimized.

Current continuum mechanics approaches often have unfavorable trade-offs between
these criteria for certain computer graphics applications, which led to the development
of alternative methods, such as Position Based Dynamics (PBD).

Due to its generality, simplicity, robustness, and efficiency, PBD is now implemented
in a wide range of high-end products including PhysX, Havok Cloth, Maya nCloth, and
Bullet. While predominantly used in realtime applications, PBD is also often used in
offline simulation. However, the desirable qualities of PBD come at the cost of limited
accuracy, because PBD is not rigorously derived from continuum mechanical principles.

We propose a new implicit integration solver that bridges the gap between continuum
mechanics and PBD. The key idea is to introduce energy potentials with a specific struc-
ture. More precisely, our potentials consist of a convex quadratic distance measure from
a constraint. The constraints are general nonlinear functions that express the desired
state of an element, for example, that the volume of a tetrahedron must remain within
given bounds. The distance measure quantifies how much individual constraints are
violated in a given deformed configuration. While our solver can handle arbitrary ge-
ometric constraints, we propose a specific set of constraints derived from continuous
deformation energies. These continuum-based constraints are very practical because
they considerably simplify parameter tuning especially when dealing with meshes of
different resolutions and non-uniform tessellation.

The main advantage of our constraint-based potentials is that their structure enables
an efficient local/global optimization (block coordinate descent). Specifically, the local
step consists of projecting every element onto the constraint manifold, i.e., solving a
small nonlinear problem per element. The global step combines the results of individ-
uals projections, finding a compromise between all of the individual constraints, while
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also taking into account global effects such as inertia and external forces.

The local/global approach allows us to formulate an implicit integration solver that is
guaranteed to weakly decrease the energy in every iteration without requiring any spe-
cific precautions. This contrasts with classical Newton’s method which requires line
search strategies and safeguards against singular or indefinite Hessians to guarantee ro-
bustness.

Furthermore, with a fixed set of constraints, we can pre-factor the linear system of the
global step, which greatly reduces computation time.

The local steps consists of small independent optimization problems, which can be all
executed in parallel.

To our knowledge, our method is the first to apply local/global optimization to simulate
general dynamical systems. We demonstrate that this solution provides a robust and
efficient approach to implicit integration, often significantly outperforming the classical
Newton method. The connection between PBD and our solver reveals new insights on
how PBD relates to traditional approaches based on finite element methods and Newto-
nian mechanics.

Contributions. Since the pioneering work of Terzopulous and colleagues [169],
models derived from continuum mechanics play an important role in physics-based
animation. The basic principle is that the resistance of an elastic object to deforma-
tions is quantified using an elastic potential energy – a scalar function whose variational
derivative leads to the elastic force [156]. Unfortunately, the elastic forces are usually
non-linear even for basic material models, which complicates time integration of the
resulting equations of motion.

The simplest time integration schemes used in computer graphics are explicit and very
fragile to large time steps [143]. Implicit Euler methods significantly improve robust-
ness [8], but at the cost of solving a system of non-linear equations at every step. As
shown in [122], this can be equivalently formulated as a non-convex optimization prob-
lem that operates directly on elastic potentials instead of forces. One of the main short-
comings of implicit Euler integration is artificial numerical damping. This motivated
the development of symplectic integrators [85, 99] and mixed implicit-explicit methods
(IMEX) [38, 162], featuring better energy conservation properties. Another approach
is energy budgeting [163] which enforces energy conservation explicitly. However,
implicit Euler integration continues to be one of the popular choices in applications
of physics-based animation where robustness is an important criterion and numerical
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damping is not a major concern. Our solver is derived from the variational form of
implicit Euler integration [122] as it gives an intuitive way of thinking about time in-
tegration in our framework – simply by adding another constraint to the system. This
further allows us to draw connections between PBD and the implicit Euler integration
scheme and results in a robust and efficient approach that is stable under large time
steps.

Regardless of the particular flavor and formulation of implicit integration, Newton’s
method remains the computational workhorse for solving the system of non-linear equa-
tions. However, its robust implementation requires precautions such as conservative line
search procedures and safeguards against indefinite Hessians [36]. From a performance
standpoint, a serious drawback of Newton’s method is the fact that the Hessian matrix
and the gradient change at every iteration. Quasi-Newton methods therefore employ
approximate Hessians, trading faster linear system solves for suboptimal descent direc-
tions (and therefore slower convergence) as demonstrated by [60, 83]. A similar strat-
egy, explored in the context of co-rotated elasticity, is to use carefully scheduled updates
of sparse Cholesky factorization [88]. Recently, Liu and colleagues [115] presented
a method for efficient implicit time integration of mass-spring systems by introducing
auxiliary variables that enable alternating local/global optimization. This approach, also
known as block coordinate descent, has been previously used with great success in ge-
ometry processing [160, 29]. We also employ local/global alternation in our approach,
but contrary to [115], which is limited to mass-spring systems and assumes only linear
springs (Hooke’s law), we show how to generalize this concept employing projection
onto constraint sets to simulate general nodal dynamical systems.

Our constraint-based formulation bears some similarity with recent non-traditional ap-
proaches based on constraint projection. The idea of constraint projection is central to
the Nucleus system [161] and Position Based Dynamics [128, 15]. In contrast to our
solution, these methods do not treat the constraints in a global manner, but iteratively
project onto them in a (non-linear) Gauss-Seidel-like fashion [128]. While the result-
ing algorithm is very easy to implement, this approach has a number of shortcomings:
the Gauss-Seidel optimization does not converge very rapidly, the material stiffness de-
pends on the number of iterations, and the result depends on the traversal order. In
contrast, our method uses constraints to formulate elastic potentials that are rigorously
combined with inertial terms as dictated by Newton’s laws of motion. Our solver first
computes all constraint projections separately and then finds the best compromise be-
tween them, which makes the solution independent of the order of constraints. To obtain
faster convergence, constraints are expressed using differential coordinates, which often
yields satisfactory results after just a few iterations. Furthermore, our solver converges
to a true implicit Euler solution with our elastic energy, in contrast to Position Based
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Dynamics which converges to completely inelastic behavior.

Another closely related concept is shape matching [129, 147] where, in contrast to our
method, constraint projections are used to directly build elastic forces instead of po-
tentials to simulate deformable objects. Constraint projections were also used in strain
limiting [144, 76, 172, 185, 132] not as a standalone simulation technique but rather as a
way to improve handling of stiff systems with standard time integration methods. In our
approach we can also perform strain limiting but it is directly included in the implicit
solver.

7.2. Continuum Mechanics View

In this section we introduce the special structure of our potentials that form the basis
of our method. We start with the implicit time integration of FEM-discretized elastic
models.

7.2.1. Implicit Euler Solver

Let us briefly review the variational form of implicit Euler integration [122]. We assume
a mesh consisting of m vertices with positions q 2 Rm£3 and velocities v 2 Rm£3. The
system evolves in time according to Newton’s laws of motion through a discrete set
of time samples t

1

, t
2

, . . .. At time tn , the system is defined as {qn ,vn}. The sum of
the external forces is defined as fext and the sum of internal forces as fint. We consider
position dependent internal forces such that fint(q) = °P

i rWi (q), where Wi (q) is a
scalar potential energy function. Implicit Euler time integration results in the following
update rule:

qn+1

= qn +hvn+1

(7.1)
vn+1

= vn +hM°1

(fint(qn+1

)+ fext) (7.2)

where M is the mass-matrix and h represents the simulation step size. Note that fext and
M are held constant for any given time step. Using these equations we can derive

M(qn+1

°qn °hvn) = h2

(fint(qn+1

)+ fext). (7.3)
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This system can be converted to an optimization problem

min

qn+1

1

2h2

k(qn+1

°sn)k2

M +
X

i
Wi (qn+1

), (7.4)

where sn = qn +hvn +h2M°1fext and k.kF denotes the Frobenius norm. Intuitively, this
minimization problem describes the compromise between the momentum potential

1

2h2

kqn+1

°snk2

M, (7.5)

which states that the solution should follow its momentum (plus external forces), and
the elastic potential, that requires the solution to minimize the elastic deformation. The
corresponding weighting terms, i.e., the mass distribution in M, the time step h and the
material stiffness of W , determine which potential has more importance in this balance.
Furthermore, according to Noether’s theorem, linear and angular momenta are always
conserved when the elastic potential is rigid motion invariant.

The minimization of Equation 7.4 is commonly performed using careful implementa-
tions of Newton’s method [122]. However, this is quite costly because at each iteration
a different linear system needs to be solved, as the Hessian changes from one iteration
to the next. To simplify notation, we will drop below the subscript in qn+1

and just use
q.

7.2.2. Nonlinear Elasticity

We analyze the classical form of FEM-based nonlinear elastic energies to reveal how we
can restrict the elastic potentials in Equation 7.4 to a structure that will allow deriving
our novel solver.

Nonlinear elastic potentials. In nonlinear continuum mechanics the deformation
from a rest state is measured using a discrete, elemental strain E(q), e.g., the quadratic
Green’s strain [96]. Numerous elastic potentials used in practice are formulated as a
function of the strain using a (often nonlinear) material model ™(·), resulting in elas-
tic potentials W (q) = ™(E(q)). From a geometric point of view, we can observe that
E(q) = 0 defines a constraint manifold of all possible undeformed configurations, while
™(E(q)) measures how far the deformed configuration is from this manifold (level sets
in Figure 7.2). Our key observation is that these two concepts can be decoupled; the
distance metric does not have to be a complicated nonlinear function because the non-
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E(p) = 0

q

p d(q,p)

™(E(·))

Figure 7.2.: The function™(E(·)) defines both the constraint manifold E(·) = 0 as its zero
level set and the elastic potential given by its isolines. By introducing a pro-
jection variable p in the manifold, we can decouple the manifold definition
from the elastic potential, modeled as the distance function d(q,p).

linearities are already captured by the constraint manifold.

Decoupling distance measure and constraint manifold. We introduce po-
tential functions W that make use of an auxiliary variable p as

W (q,p) = d(q,p)+±E(p). (7.6)

Here, ±E(p) is an indicator function that evaluates to zero if E(p) = 0 and to +1 oth-
erwise, and formalizes the requirement that p should lie on the constraint manifold.
The function d(q,p) then measures a distance between q and p. Minimizing Equa-
tion 7.6 over p corresponds to a projection of q onto the constraint manifold, as illus-
trated in Figure 7.2. An elastic potential analogous to ™(E(q)) can therefore be defined
as ˜W (q) = minp W (q,p).

Quadratic distance measures. With this separation in mind, we can build a
solver that alternates between distance minimization and projection. An important ad-
vantage of this formulation is that the distance measure can be freely chosen. The
constraint nonlinearity (also known as geometric nonlinearity) is already taken care of
by the projection on the constraint set, so the distance metric can be kept simple, trad-
ing general material nonlinearity against efficiency and robustness. Specifically, we
consider distance metrics leading to the following potentials:

W (q,p) = w
2

kAq°Bpk2

F +±C(p), (7.7)
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Algorithm 2: Projective Implicit Euler Solver
1 sn = qn +hvn +h2M°1fext
2 qn+1

= sn

3 loop solverIteration times
4 forall the constraints i do
5 pi = Pr o j ectOnConstr ai ntSet (Ci ,qn+1

)

6 end
7 qn+1

= Sol veLi near Sy stem(sn ,p
1

,p
2

,p
3

, . . .)

8 end
9 vn+1

= (qn+1

°qn)/h

where A and B are constant matrices and w is a nonnegative weight. The distance to
the constraint set is thus modeled by a quadratic function in q and p, which allows
us to deploy an efficient solver. Moreover, we are not restricted to Green’s strains but
can use any constraint definition C(q) = 0 for the set of desired configurations [8], e.g.,
describing desired bending angles between triangles, goal volumes for tetrahedrons, or
boundary conditions, as discussed below.

7.2.3. Projective Implicit Euler Solver

Using simplified potentials as given in Equation 7.7, we can reformulate the implicit
integration defined in Equation 7.4 as the minimization of

1

2h2

kM
1

2

(q°sn)k2

F +
X

i

wi

2

kAi Si q°Bi pik2

F +±Ci (pi) (7.8)

over q and the auxiliary variables pi , where Si is a constant selection matrix that selects
the vertices involved in the i th constraint. We minimize Equation 7.8 using a local/-
global alternating minimization technique.

Local solve. First, we minimize Equation 7.8 over the auxiliary variables keeping
the positions fixed. Since each constraint has its own set of auxiliary variables pi , the
minimization can be performed independently for each constraint as

min

pi

wi

2

kAi Si q°Bi pik2

F +±Ci (pi ), (7.9)

which allows massive parallelization of the local step. We will discuss specific con-
straint types in Section 7.4.
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7.2. Continuum Mechanics View

Global solve. Second, we minimize Equation 7.8 over the positions, keeping the
auxiliary variables fixed. Since Equation 7.8 is quadratic in the unknowns q, we can
minimize it with a single linear solve. Requiring that the gradient vanishes at the critical
point leads to the linear system

(

M

h2

+
X

i
wi ST

i AT
i Ai Si )q = M

h2

sn +
X

i
wi ST

i AT
i Bi pi . (7.10)

The system matrix is constant as long as the constraints are not changing and therefore
can be prefactored at initialization, allowing for very efficient global solves. The right
hand side requires recomputation in each iteration after the projection variables have
been updated in the local step. Note that the objective is bounded below and that both
local and global steps are guaranteed to weakly decrease it, even for non-convex sets.
Consequently, the optimization converges, making safeguards unnecessary.

Algorithm. We summarize our optimization procedure in Algorithm 2. On line 2

we warm start the optimization using the momentum estimate sn . We observe that
this is favorable when using only few solver iterations, leading to less damped systems
than when using the last time step’s solution as starting point. After solving multiple
local/global iterations the velocities are updated in line 9.

Choice of A and B. If we choose Ai = Bi = I, Equation 7.7 measures the squared
Euclidean distance from Si q to its closest point on the constraint set. With diagonal
matrices, the Hessian of the global solve ends up being diagonal as well, leading to a
trivial linear system to solve. However, this choice corresponds to working directly with
absolute positions, which results in a poor convergence rate because changes propagate
slowly through the (usually locally) coupled points [29].

The convergence can be greatly improved if we make use of the fact that internal phys-
ical constraints are translation invariant (i.e., applying a common translation to all in-
volved points in the constraints does not change the values of the constraints). In this
case, we can choose Ai = Bi as differential coordinate matrices (global translation in
their null space). Various such matrices can be used, for example one can subtract the
mean [29] or simply one of the vertices involved in the constraint [115]. Note that the
choice of Ai and Bi only impacts the numerical solution procedure and does not affect
the conservation of momentum.

Using such differential coordinates greatly improves the convergence speed of the re-
sulting local/global solver [29]. However, without further precautions, the resulting
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Ci

C j

Ci

C j

Gauss-Seidel Jacobi

Figure 7.3.: Gauss-Seidel vs. Jacobi. The Gauss-Seidel algorithm used in PBD con-
secutively projects the current estimate on each constraint set (Ci and C j

in this case). If there is no feasible solution, i.e., the constraint sets do
not overlap, the Gauss-Seidel algorithm will oscillate between the different
constraints (between the two red points). On the contrary, the Jacobi algo-
rithm projects the current estimate on each constraint set in parallel (green
points) and reaches a consensus in a second step. This allows the Jacobi
algorithm to converge (red point).

behavior is tessellation and resolution dependent. We show in Section 7.4 that in cer-
tain cases the Ai and Bi matrices can be derived from continuum formulations in order
to avoid these shortcomings.

7.3. Position Based Dynamics View

While [115] hint at the similarity between general variational implicit Euler and PBD,
in this section, we derive the exact relationship not just between implicit Euler and
PBD, but also between the local/global formulation and PBD, for general constraints.
This analysis highlights the close connections of PBD to our solver, but also identifies
fundamental differences that explain the higher accuracy of results obtained with our
approach.

7.3.1. Gauss-Seidel Solver

A classical PBD solver [128] performs three steps. In the first step, the positions are
initialized by an explicit Euler step, ignoring internal forces. In the second step, the po-
sitions are updated by projecting the current configuration consecutively on each con-
straint set respecting the mass weighting. In the last step, the velocities are updated as
vn+1

= (qn+1

°qn)/h.
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12ms/frame 61ms/frame 121ms/frame 240ms/frame

Figure 7.4.: For a piece of cloth with 19683 DoFs and 19360 edge constraints, PBD
exhibits different material stiffness depending on the allowed time budget
for a time step (top). Due to the additional momentum term and the differ-
ential coordinate formulation, our simulation behaves consistently even for
different number of iterations (bottom).

We can show that the constraint resolution strategy of PBD actually implements a
Gauss-Seidel type minimization on the energy

1

2

X

i
kM

1

2

i (Si q°pi )k2

F +±Ci (pi ), (7.11)

using a lumped mass matrix Mi only involving the constraint’s points. A Gauss-Seidel
approach minimizes this energy by optimizing each summand sequentially, i.e., mini-
mizing potentials of the form 1

2

kM
1

2¢qk2

F +±C (q+¢q) where we introduce corrections
¢q = p°q to simplify the derivation. Using Lagrange multipliers for the linearized
constraint C (q)+ tr(rC (q)

T¢q) = 0, we can define the Lagrangian

1

2

kM
1

2¢qk2

F +∏
°
C (q)+ tr(rC (q)

T¢q)

¢
. (7.12)

Using the critical point condition w.r.t. ¢q, we find the optimal direction¢q =°∏M°1rC (q).
The Lagrange multiplier ∏ can then be found by requiring that the linearized constraint
vanishes in this direction, i.e., C (q)°∏kM° 1

2rC (q)k2

F = 0, leading to the final update

¢q =°M°1rC (q)

C (q)

kM° 1

2rC (q)k2

F

, (7.13)

corresponding exactly to the mass-weighted update rule of PBD [15].
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Discussion. Theoretically, Gauss-Seidel has good convergence, however only for
feasible constraint sets. For non-feasible sets, lacking a global view on the optimization
problem, Gauss-Seidel will oscillate between the incompatible sets (see Figure 7.3).
As an example, when simulating the compression of an elastic material with stretch
constraints and boundary conditions or collisions, the constraints can become unfeasible
and thus the solution will oscillate and not converge.

More severely, the same is true for the momentum estimation performed in the first step,
which consists of first solving the constraint given in Equation 7.5. If added as a true
constraint to the optimization, it could lead to completely incompatible constraint sets
and make convergence even worse. By solving the momentum constraint first with the
initial explicit Euler step, it is possible to maintain the linear momentum of the entire
object, however the individual momenta of the points are washed away the longer the
optimization iterates – contrary to finding a compromise between momentum and inter-
nal elasticity as suggested by the Implicit Euler solver that we propose (see Figure 7.4).

7.3.2. Jacobi Solver

In the view of Equation 7.11, we can solve these issues in a straightforward manner
by performing two steps. First, we replace the Gauss-Seidel by a Jacobi solver (see
Figure 7.3) that is able to deal with incompatible constraints. Jacobi solvers have in
general slower convergence than Gauss-Seidel solvers [172]. However, they allow the
use of differential coordinate representations for faster convergence and efficient paral-
lelization of the constraint projections that resolve this shortcoming. Second, we intro-
duce the momentum constraint into the optimization to take into account the inertia of
each point. As seen in the continuum mechanics view, to achieve a correct behavior we
need to add back the inertia of each point by integrating the momentum constraint term
defined in Equation 7.5

1

2h2

kM
1

2

(q°sn)k2

F +
X

i

wi

2

kM
1

2

i (Si q°pi )k2

F +±Ci (pi ). (7.14)

The Jacobi solver then becomes a two-step optimization: In the local step, the current
solution q is first projected onto the constraints independently by solving Equation 7.11
for all pi . Then, a consensus can be reached between the different solutions by solving
the global step over q.
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7.4. Continuum-Based Constraints

Figure 7.5.: For a given continuous surface, discretizing our continuum based con-
straints on piecewise simplicial approximations of different resolutions re-
sults in very similar qualitative behaviors.

Connection to Projective Implicit Euler. At this stage, we can see how close this
Jacobi solver is to our projective implicit solver procedure presented in the last section
– we recover this solver by choosing Ai = Bi = M

1

2

i . By deriving constraints from a
continuum principle in the next section we furthermore achieve better independence on
mesh tessellation and convergence than with the simpler mass-based weighting used in
PBD (see Figure 7.5).

7.4. Continuum-Based Constraints

Differential representations are important for our local/global solver to improve conver-
gence. In geometry processing the gradient and the Laplace-Beltrami operators play
an essential role in the design of efficient and robust models. In this section we will
present a set of continuous energies based on these operators that allow the control of
the differential properties of the material under deformation. We will show that their
discretizations will have a form similar to Equation 7.7 that allow for correct behavior
under mesh refinement and non-uniform discretizations. The local optimization of the
discrete potentials will be discussed in Appendix D.1.
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Figure 7.6.: Starting from the same mesh, strain limiting allows simulating material that
can undergo small to moderate amount of stretching. From left to right,
we use strain limits of [-10%, +10%], [-20%, +20%] and [-30%, +30%].
Notice how the cloth stretches and how the folds get absorbed when the
limit increases.

7.4.1. Strain

Continuous energy. Strain energies are important for simulating materials that can
stretch. We first discuss 2-manifold surfaces and then extend the results to volumes and
curves. Let the undeformed surface be a differentiable 2-manifold surface S embedded
in R3. We define the piecewise linear coordinate function of the undeformed surface by
g : S ! R3 and its deformed counterpart by f : S ! R3. Introducing a set M of desired
point-wise transformations T, we formulate an energy measuring the change of local
variation between the deformed and the undeformed surface as

E(f,T) = w
2

Z

S
krSf°TrSgk2

F +±M (T) dA, (7.15)

where rS is the gradient operator defined on the manifold surface S. The choice of M
determines all allowed rest configurations TrSg. If M is the set of rotation matrices
SO(3), we are simply measuring the local deviation from a rigid motion. In this case
this energy is identical to the deformation model presented by Chao et al. [46]. If M is
the set of matrices with bounded singular values æmin <æ<æmax, we can also achieve
isotropic strain limiting similar to Wang et al. [185]. This could be further extended to
anisotropic material by using reference frames following Hernandez et al. [89].

Discrete potential. If S is a 2-manifold simplicial complex this energy can be dis-
cretized over triangles using a piecewise linear hat basis [26]. The integral is then
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7.4. Continuum-Based Constraints

transformed to a sum of per triangle potentials of the form

W (q,T) = w
2

AkXfX°1

g °Tk2

F +±M (T), (7.16)

where A is the triangle area, Xf = [q j °qi ,qk °qi ] 2R2£2 contains the triangle edges of
the current configuration isometrically embedded in 2D, and similarly Xg contains the
triangle edges of the rest configuration. Note that this discrete potential has the same
form as the one in Equation 7.7 where A is a function of the rest state edges and the area
and B only depends on the rest state area. Figure 7.6 shows the strain limiting constraint
applied to a curtain example.

Volumes and curves. This potential can be defined in a similar way for volumes:
If S is a 3-manifold simplicial complex the energy can be discretized over tetrahedrons
replacing the areas of the triangles by the volumes of the tetrahedrons and having 3£3

edge matrices. Note that if we perform a 1D discretization of this energy over a set of
edges, we arrive at a model similar to the fast simulation of mass spring models of Liu
et al. [115] where, in addition, the edge potentials are now properly weighted by the
edge length.

7.4.2. Area and Volume Preservation

Area and volume preservation is important for simulating incompressible materials. Us-
ing the continuous energy of Equation 7.15 we can define M as the set of matrices
with bounded determinants æmin < det(T) <æmax, effectively enabling us to control the
amount of volume change. If æmin < 1 the modeled material allows for compression
and similarly if æmax > 1 then the material allows for expansion. Figure 7.7 shows the
combination of volume preservation and strain constraints.

7.4.3. Example-Based

Example-based simulation allows modeling artistic elastic material behavior by supply-
ing a few deformation examples that the material should follow [122, 101, 98]. We use
an energy comparable to Equation 7.15 defined on 3-manifold surfaces as

E(f,R,w) = w
2

Z

S
krSf°RrSh(w)k2

F +±SO(3)

(R) dV. (7.17)
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Figure 7.7.: Varying weight combinations of volume preservation and strain constraints
allow the simulation of different types of materials for volumetric objects.

where h(w) is a parametrized rest shape defined by the examples. We formulate the rest
shape as h(w) = g+P

i wi (Ri gi °g), where the gi define the piecewise linear coordinate
functions of the examples and Ri are precomputed rotation matrices defined point-wise
such that it rotates gi locally to best align with the undeformed configuration g, similar
in spirit to Koyama et al. [101].

We can discretize this continuous energy using a piecewise linear hat basis leading to a
sum of per tetrahedron potentials

W (q,R,w) = w
2

V kXfX°1

g °RXh(w)X°1

g k2

F +±SO(3)

(R), (7.18)

where Xh(w) = Xg +
P

i wi (Ri Xgi ° Xg). Note that the example weights w can either
be defined locally per element or globally, resulting in local or global coupling of the
deformation, respectively. An example of three colliding cars using this constraint can
be found in Figure 7.8.

7.4.4. Bending

Continuous energy. Thin shells and thin plates are commonly simulated using a
bending energy based on dihedral angles across edges [78]. More recently, efficient
models for bending of inextensible surfaces relating the Laplace-Beltrami operator to
the mean curvature normal have been presented [17, 72]. We introduce a bending energy
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7.4. Continuum-Based Constraints

Figure 7.8.: Adding the deformation examples (top) to the simulation using the
example-based constraint allows the simulation of complex artistic mate-
rials. In this scene, three cars collide and react in a cartoonish manner
following the prescribed examples (bottom).

measuring the squared difference of absolute mean curvatures

E(f) = w
2

Z

S
(|Hf|° |Hg|)2 dA, (7.19)

where Hf and Hg are the mean curvature functions of the deformed and undeformed
surface, respectively. For an isometric deformation (inextensible surface) we can then
rewrite the energy using auxiliary rotation matrices as

E(f,R) = w
2

Z

S
k¢Sf°R¢Sgk2

2

+±SO(3)

(R) dA, (7.20)

where ¢S is the Laplace-Beltrami operator defined on the manifold surface S. This
is because the mean curvature vector is equal to the surface’s Laplace-Beltrami op-
erator applied to the coordinate function. For an isometric deformation the Laplace-
Beltrami operator does not change and therefore can be defined on the undeformed sur-
face. Please notice how similar Equation 7.20 is to Equation 7.15 replacing the gradient
by the Laplace-Beltrami. It could therefore be interesting to apply the strain limiting
and example-based concepts to the bending energy as well.
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Figure 7.9.: Simulation of a thin shell cylinder using increasing bending weights from
left to right. When the cylinder is compressed, buckling patterns of different
frequencies appear.

Discrete potential. If S is a 2-manifold simplicial complex Equation 7.20 can be
discretized using a piecewise linear hat basis leading to per vertex potentials of the form

W (q,R) = w
2

AkXfc°RXgck2

2

+±SO(3)

(R), (7.21)

where A is the Voronoi area of the vertex, and Xf and Xg contain the one-ring edges
of the vertex for the current configuration and for the rest configuration, respectively.
The vector c stores the common cotangent weights divided by the Voronoi area [26].
An example of the bending constraint can be found in Figure 7.9. As can be seen in
the appendix this bending constraint allows for a very efficient local solve as it can
be implemented just as a simple normalization of the mean curvature vector of the
deformed configuration.

7.5. Discrete Constraints

The constraints derived from continuous energies presented in the previous section al-
low modeling a large variety of elastic bodies. For practical animation systems addi-
tional constraints are equally important. We model these directly as discrete constraints.

Positional constraints. As seen earlier, individual DoFs can be directly constrained
by simply choosing Ai = Bi = I in Equation 7.7. Dirichlet boundary conditions can then
be realized by defining the constraint set as the desired goal positions, in order to fix
objects or create interactive handles.
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Collisions. Handling collisions in an implicit manner fits naturally into our gen-
eral solver and allows respecting the equilibrium of momentum and internal constraints
during the collision resolution. When detecting a collision, we dynamically add new
unilateral plane constraints. As for positional constraints, we again choose Ai = Bi = I
in Equation 7.7. For a colliding point qc we first find the closest surface point b with
normal n, defining a collision plane, such that the constraint set C is defined by the half
space nT

(q°b) ∏ 0. The projection into this half space in the local step is trivial as it is
either a plane projection or the identity map. Note that defining the collision constraint
unilaterally allows us to overcome the commonly known sticking problems in implicit
collisions handling. Similar to PBD, we handle friction and restitution by changing the
velocities of colliding vertices when updating velocities. A simple damping model can
also be implemented by filtering velocities [128].

More constraints. General types of geometric constraints, as for example bending
constraints using hinge angles [15], can be easily incorporated into our solver. The local
solve can be performed in a general manner by minimizing Equation 7.7 over the auxil-
iary variables. For many geometric constraints closed-form solutions for this minimiza-
tion can be found [29]. If no closed-form solutions exist, the optimization can be solved
using sequential quadratic programming (SQP) [134]. As shown in Section 7.3.1, for
the case of A = B = M

1

2 one step of SQP is similar to the PBD update [15].

7.6. Results

7.6.1. Generality

Our solver does not rely on any particular type of constraint and is able to deal with any
variety of geometric constraints within the same setup, making it possible to simulate
complex sceneries using a single solver and to also handle object interactions robustly
in an implicit manner. In Figure 7.1 we show such a complex scene with different
constraint types, where the objects are also coupled together. For example, the tree and
the house are modeled with volumetric strain constraints whereas the washing line, the
cloth, the grass and the leaves use edge strain and bending constraints.

Cloths and shells. In Figure 7.10 we simply use edge strain constraints to model
the behavior of a pirate flag. Wind forces are added as a function of wind direction
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Figure 7.10.: Even under extreme wind forces our projective implicit solver remains
stable. The solver weakly decreases the energy at each iteration making
any safeguards unnecessary (top). The pirate flag is torn by the wind in
real-time using dynamic updates of the constraints (bottom).

and triangle normal. When the wind forces are too strong, the pirate flag is torn. This is
realized by removing edge constraints when the strain exceeds a certain threshold. More
complex cloths that can undergo small to moderate amounts of stretching can also be
modeled using a limit on the triangle strain in combination with bending constraints (see
Figure 7.6). By varying the weights of the strain and bending constraints other types of
materials such as thin plates and thin shells can be simulated. In Figure 7.9 we can see
an example of a thin cylinder compressed from the top and showing different buckling
patterns due to different ratios of strain and bending constraint stiffnesses.

Solids and exampled-based simulation. We simulate solids by using a com-
bination of strain and volume constraints applied on tetrahedral meshes. As shown in
Figure 7.7, different type of materials can be modeled by varying the weights combin-
ing these constraints. While we cannot model arbitrary non-linear materials, we are
able to approximate some non-linear behaviour by combining weak strain constraints
with stronger strain limiting constraints. Then, the material is soft for small defor-
mations while becoming stiffer when the deformation reaches the strain limit and the
second constraint becomes active – a behavior commonly modeled by nonlinear mate-
rial models. Combining different quadratic potentials has been used earlier for collision
handling in [87] but also suits very well our framework to model non-linear material
behavior.

106



7.6. Results

1 iteration
3.3ms/frame

10 iterations
31.7ms/frame

20 iterations
62.6ms/frame

Newton converged solution
420ms/frame

Figure 7.11.: This volumetric hippopotamus with 7161 DoFs and 8406 strain constraints
is simulated with 1, 10, and 20 iterations of our local/global solver. It is
interesting to notice that already after 10 iterations our approach looks
very similar to the converged solution computed using Newton’s method
for a fraction of the computational cost.

Example-based simulation of volumetric meshes is also possible in our formulation.
This allows an artistic control over the physical simulation. In Figure 7.8 three cars
deform in a cartoonish manner following the input examples after colliding. Similar
to [122] the car surface is embedded into a volumetric mesh, which is then deformed
using our solver.

7.6.2. Robustness and Simplicity

One important advantage of our approach is numerical stability. In Figure 7.10 we show
that even under extreme forces our solver stays robust. Similarly, our method remains
reliable in situations where the mesh elements degenerate. The only requirement of
our approach is that the mesh elements of the input model are well behaved in order to
compute the discretization of the gradient and Laplace-Beltrami operators of the original
manifold.

We illustrate the simplicity of our approach by laying out our optimization procedure
in Algorithm 2. By removing line 7 and changing pi to qn+1

in line 5, we are able
to completely recover the structure of the original PBD algorithm [128]. Moreover,
notice that introducing a new constraint only requires the definition of the constraint
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Figure 7.12.: By comparing the decrease of the relative error with respect to the iter-
ation count, we observe that Newton’s method converges faster than our
local/global approach. However, this does not reflect the cost of each it-
eration as for each Newton iteration a changing linear system needs to
be solved. Looking at the decrease of the relative error with respect to
the computation time, we notice that our local/global approach exhibits
a better performance up to a relative error of 10

°10 making our approach
particularly attractive for interactive applications. In these curves, the rela-
tive error is defined as the normalized error relative to the optimal solution
(≤(qi )°≤(q§

))/(≤(q
0

)°≤(q§
)) and measured for a twisting bar example (left)

with 4290 DoFs and 4099 tetrahedral strain constraints.

projection used in the local solve (either exact if known or the general approximate
projection scheme given in [128] if not) and the definition of suitable quadratic distance
metrics (matrices Ai and Bi ).

7.6.3. Accuracy and Performance

Comparison with Newton. In Figure 7.12 we compare the performance of our lo-
cal/global solver to Newton’s method when solving the discretization of Equation 7.15
for M = SO(3) similar to [46]. As shown in Figure 7.12 the local/global approach con-
verges slower in number of iterations. This is perfectly logical as Newton’s method ex-
hibits quadratic convergence while local/global solvers (block coordinate descent meth-
ods) have linear convergence. However, when looking at the convergence in terms of
computational time, we notice that our approach is faster than Newton’s method for in-
teractive applications. For 1 Newton iteration approximatively 30 local/global iterations
can be performed.This is due to the fact that at each Newton iteration the Hessian needs
to be recomputed and therefore a new linear system needs to be solved.

Moreover, in Figure 7.11 we observe that with approximatively 10 iterations the simu-
lation looks visually similar to the converged one using Newton’s method making our
scheme a better choice for realtime applications where high accuracy is not the main

108



7.7. Implementation

focus. This type of behavior has already been observed in some of the previous lo-
cal/global solvers used in geometry processing and simulation [130, 115]. Note that
implementing Newton’s method for the continuous energies presented in Section 7.4 is
nontrivial as one needs to differentiate SVD [123] and new Hessian matrices have to be
computed in each time step. Moreover, some safeguards need to be integrated in the
optimization as the Hessian matrix may become indefinite and a line search procedure
is also needed to avoid overshooting.

Comparison with Position Based Dynamics. We also compared our approach
to PBD using edge strain constraints. As explained in Section 7.3, PBD does not include
the momentum constraints making the material stiffness dependent of the number of
iterations. This can be seen in Figure 7.4, where for different number of iterations the
stiffness of the material simulated by PBD drastically changes. This is not the case
in our approach where the material stiffness is much less dependent of the number of
iterations.

Meshing independence. In Section 7.4 we presented a set of new constraints de-
rived from continuous energies. As shown in Figure 7.5, these new constraints allow
our solver to maintain the deformation behavior under different piecewise simplicial
approximations of the same underlying surface. This is an important property for com-
puter graphics applications and interactive environments where mesh resolutions can
frequently change during development and where geometric levels of detail are widely
employed to increase performance. The lack of convergence of PBD approaches makes
it difficult to handle geometric level of detail properly due to the dependence of the
material behavior on the underlying meshing and of the number of iterations [82].

7.7. Implementation

The complete framework presented in this section is implemented in C++. We use
OpenMP to parallelize the local step and we solve the global step in parallel for the x,
y and z coordinates by prefactorizing the linear system using sparse Cholesky factor-
ization and performing three times back-substitution in parallel. Dynamic constraints
are handled by rank updates and downdates of the linear system. The Eigen library
(eigen.tuxfamily.org) is used for dense and sparse linear algebra. We use either the
standard simplicial mass discretization [92] or its lumped version to compute the mass
matrix without any noticeable difference.
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Timing. For simulation of medium sized models (< 30K constraints and < 30K
DoFs), 5-10 iterations are usually sufficient. At 1-6ms per iteration, this enables real-
time simulation on a MacBook Pro 2.7 GHz Intel Quad-core i7 with 16GB of memory.

7.8. Limitations and Future Work

While our implicit Euler solver is efficient and robust, it exhibits implicit damping. In
the near future we plan to extend our approach to symplectic integrators [99] which
provide better energy behavior. Damping can also be observed when the optimization is
terminated early. This is due to the fact that external forces may not be able to propagate
fully through the mesh if the optimization is not run for enough iterations. This effect
is accentuated in large meshes as more iterations are needed until convergence. As a
future work, we would like to improve the speed of our solver by implementing a GPU
version of our code and focus on topological changes (cutting, fracturing) that result in
dynamically changing constraints. While the local steps remain simple to solve on the
GPU, the global system is changing, making it even more involved to solve efficiently.
This problem becomes even more accentuated if we want to extend our approach to
fluid simulation similar to [119] where neighborhood relations always change.

We are trading hard constraints for simplicity and efficiency. Treating all constraints
in a soft manner allows us to handle them in a unified and effective manner. How-
ever, in certain situations, being able to enforce hard constraints, such as for collision
handling or boundary conditions, would be advantageous. Hard constraints can still be
approximated by increasing the weight of the constraints. However, this can degrade
the conditioning of the linear system and can result in locking artifacts.

Another interesting area of further research is enlarging our set of constraints. One
direction we want to explore is modeling more complex deformation behaviors such
as in anisotropic and non-linear materials. Furthermore, it would also be attractive to
integrate rigid bodies into the same simulation framework.

7.9. Additions and Remarks

We introduce a new implicit constraint-based solver for real-time simulation. Our ap-
proach is based on an abstract, constraint-based description of the physical system mak-
ing our method general in its use to simulate a large variety of different geometries and
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materials. To solve the constraint problem, we apply a local/global solver that is guar-
anteed to weakly decrease the energy making any safeguards unnecessary and giving
us robustness. Our simple constraint-based formulation only requires the definition of
a projection operator for a given constraints (local solve), making it very easy to im-
plement and to introduce new models into the solver. Furthermore, the global solve
only requires solving a linear system, where the system matrix is constant if the num-
ber of constraints is kept fixed, leading to efficient computation. Due to the indepen-
dence of the local solves, the approach is also very well suited for parallelism, further
boosting performance. We derive a broad set of constraints directly from continuous
energies using proper discretization that make the solver robust to non-uniform mesh-
ing with different resolutions. With these qualities in mind we believe that our approach
strikes the right balance between the simplicity, generality, robustness and performance
of position-based simulations with the rigor and accuracy of continuum mechanics. We
believe this makes our method suitable for many applications in both realtime and of-
fline simulation in computer graphics.

Stiff constraints. As mentioned in Section 7.8, hard constraints can be approxi-
mated by increasing the weight of the constraints. However, this can degrade the con-
ditioning of the linear system and can result in locking artifacts. This problem can be
partially overcome by using the robust penalty approach presented in [77]. Recall that
our global solve consists in solving

M

h2

(q°sn)+
X

i

1

µi
ST

i AT
i (Ai Si q°Bi pi ) = 0, (7.22)
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wi
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This results in a symmetric linear system
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For stiff constraints, i.e., when the µi vanish, this linear system does not suffer from the
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Chapter 7. Physics-Based Animation

ill conditioning present in the direct solution of Equation 7.22 [77]. It is interesting to
note that when the µi vanish the ∏i are in fact equivalent to Lagrange multipliers. This
linear system becomes indefinite for very stiff constraints and can be prefactored and
solved using sparse LDLT Cholesky factorization.
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Chapter8
Conclusion

This thesis presents a complete pipeline for realtime facial tracking and animation. We
have demonstrated that high-quality facial animation can be done in realtime using a
simple low-cost RGB-D sensor and showed the potential of our system for applications
in virtual reality, human interaction, live virtual TV shows, and computer gaming [66].

In Chapter 4, robust realtime tracking is achieved by building suitable user-specific
blendshape models and exploiting the different characteristics of the acquired 2D im-
age and 3D depth map data for registration. We found that learning the dynamic ex-
pression space from existing animations is essential. Combining these animation priors
with effective geometry and texture registration in a single MAP estimation is our key
contribution to achieve robust tracking even for highly noisy input data. While fore-
seeable technical advances in acquisition hardware will certainly improve data quality
in coming years, numerous future applications, e.g. in multi-people tracking, acquisi-
tion with mobile devices, or performance capture in difficult lighting conditions, will
produce even worse data and will thus put even higher demands on robustness. Our
algorithm provides a systematic framework for addressing these challenging problems.

The main drawback of this tracking approach in the context of consumer applications
is the need for an offline user-specific training. In Chapter 5, we have demonstrated
that online model building can replace user-specific training and manual calibration for
facial performance capture systems, while maintaining high tracking accuracy.

In Chapter 6, we have introduced a novel statistical approach to high-quality facial
animation retargeting that achieves better results than other non-linear regression tech-
niques. By leveraging the information contained in unlabeled data, a key novelty in
our retargeting approach, we can reduce the number of required training examples. We
have shown that our approach is well suited to retargeting facial animations from motion
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capture data, as posing a character is time consuming, while unlabeled data is easily ob-
tained by tracking the actor. Since our method implicitly learns a low-dimensional rep-
resentation, our system has no difficulty dealing with complex, high-dimensional input
or output data commonly used in studio productions. At the same time, the robustness
of our approach to noise and missing data makes the method particularly suitable for
low-cost motion capture systems [66]. In addition, our method can simplify character
posing by exploiting the correlation between the different character parameters.

In Chapter 7 we presented a novel implicit solver for realtime physics-based animation.
We believe that our approach strikes the right balance between accuracy, simplicity,
generality, robustness and performance. This makes our method suitable for realtime
applications and a good candidate to complement our realtime facial animation system.
Muscles, fat, hair, or flesh could be simulated to enhance the animated avatars with
secondary effects. Moreover, our solver could be used to include contact and collision
of the face with external objects.

The research progress outlined in this thesis brings performance-based facial animation
within reach of consumer level applications. However, a number of principle and fun-
damental problems remain, and the uncanny valley [127] poses numerous challenges
when aiming for realistic human avatars.

Our current facial tracking system uses a simple blendshape representation [108] trading-
off tracking accuracy in return for increased performance. Because of the linearity of
the blendshape model, reproducing non-linear motions is difficult. It is currently an
open question as to which parametric face model would have the best trade-off between
accuracy and performance. One promising path of research is on the automatic adap-
tation of a high resolution, anatomically accurate face model (bones, tendons, flesh,
muscles and skin) to motion sequences captured from a subject [3, 201]. Not only the
anatomical model could be adapted to the user’s face but muscle activations could be
digitized [157]. This approach would complicate the tracking process but would provide
non-linear behaviors not captured by approaches that linearly blend basis functions. To
achieve realtime performance, our implicit solver [30] could be used instead of a com-
plex nonlinear finite element method [157].

While accurate digitization of static facial geometry has seen a tremendous increase in
quality in the last few years [11, 12, 16], dynamic face models have still a long way to
go to become indistinguishable from reality. Creating a fully rigged avatar of a person
is currently a highly complex process that requires a complicated acquisition setup and
significant manual work [2, 1]. The approach described in this thesis [34], and its exten-
sion presented in [94], allow to model a fully rigged model of the face. However, we do

114



not model hair, teeth or tongue. Unfortunately, these details are crucial to generate a re-
alistic avatar of a person and are currently missing in our system. Modeling and tracking
fine scale details using a low-cost device is a challenging task and an interesting topic
of future research.

We presented a novel implicit solver allowing for the realtime simulation of a large
range of deformable materials, e.g., muscles, fat, hair, flesh. One of the main chal-
lenges we are facing is to create an accurate anatomical face model suitable for physics
simulation. Creating such a model is complex and necessitates precise facial mea-
surements (e.g., facial soft tissue thickness) and significant manual work [157]. These
measurements could be done using MRI or CT scans [157, 3, 13]. Numerous studies
examine facial tissue depth in different populations and report precise facial measure-
ments with average thickness values for different landmarks as well as standard devi-
ations [93, 81, 39, 138]. An interesting avenue of future work is to create a statistical
model from these databases to build an adaptable and accurate face model suitable for
physics simulation.

To conclude, this thesis proposes a complete system for realtime facial tracking and
animation. We believe that our system will enable a variety of new applications in
human communication, such as in-game puppetry, virtual avatars for social networks,
or computer-assisted realtime training applications, and will be the basis for substan-
tial follow-up research. There is still a large number of problems and open questions
that need to be solved before being able to seamlessly communicate with 3D avatars.
These problems not only matter for communication and virtual reality, but solving such
a principle problem than accurately capturing the motions and appearances of humans
would enable numerous other applications in robotics, security, human-computer inter-
action, and medical. In the future, 3D acquisition and display technologies will become
smaller, cheaper and more accurate, compute power will keep increasing, and we will
see numerous advances in computer graphics, computer vision and machine learning al-
gorithms. When virtual reality technologies will be ready, we will be able to experience
whatever we want, in any places we can imagine, with anyone in the world. This will
change everything about the way we live and communicate.
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AppendixA
Robust Optimization

A.1. Augmented Lagrangian Method (ALM)

We briefly discuss constrained optimization methods to provide a suitable background
for the optimization approach taken in this paper. Consider the equality-constrained
optimization problem having x 2Rk :

min

x
f (x) subject to ci (x) = 0 i = 1. . .n. (A.1)

Given a vector of Lagrange multipliers ∏ 2Rn and µ 2R+, we can transform the problem
into an unconstrained optimization expressed by the augmented Lagrangian function

LA(x,∏,µ) = f (x)+
nX

i=1

∏i ci (x)+ µ

2

nX

i=1

c2

i (x). (A.2)

A close inspection of this expression reveals that it is a combination of a linear penalty
typical of dual ascent methods [137, Ch. 2] and a quadratic one from penalty methods
[134, Ch. 17]

L (x,∏) = f (x)+
nX

i=1

∏i ci (x) Q(x,µ) = f (x)+ µ

2

nX

i=1

c2

i (x).

Intuitively, dual ascent methods exploit the fact that the Lagrange dual function g (∏) =
minx L (x,∏) is a lower bound on the primal problem [36, pp. 216]. A gradient as-
cent w.r.t. ∏ of appropriate size gradually closes the duality gap, effectively optimiz-
ing Equation A.1 as shown in Equation A.4. Conversely, penalty methods gradually
increase the penalty parameter µ, resulting in progressively increased constrain satis-
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faction. Unfortunately, both approaches suffer severe limitations; dual ascent methods
place strong assumptions on the problem, like strict convexity and boundedness of g (.);
penalty methods offer limited control on constraint satisfaction, running into numer-
ical issues as µ is increased to very large values. These issues are addressed by the
augmented Lagrangian approach; the optimization involves an algorithm strongly re-
sembling dual ascent:

Step 1: xt+1

:=argmin

x
L (x,∏t

,µ) (A.3)

Step 2: ∏t+1

i :=∏i +µ ci (xt+1

) i = 1. . .n (A.4)

providing an asymptotic approximate constraint satisfaction in the form [134, Thm 17.2]

ci (x) º (∏§
i °∏i )/µ. (A.5)

Consequently, constraints can be satisfied by either increasing µ, or alternatively by
providing multipliers ∏ having values close to the optimal ∏§; note that this is achieved
by the Lagrange multiplier ascent step inherited from dual ascent; see Equation A.4.

A.2. Alternating Direction Method of Multipliers

The ADMM method is an extension of the augmented Lagrangian method to optimize
a compound problem f (x) = ˜f (

˜x)+ ˆf (

ˆx) by decoupling it into simpler sub-problems [35].
Under appropriate conditions [137, Ch. 3], as the optimizer is separated in x = [

˜x,

ˆx], the
problem can be approached by iteratively solving the following three steps:

Step 1: ˜xt+1

:=argmin

˜x
L ([

˜x,

ˆxt
],∏t

,µ) (A.6)

Step 2: ˆxt+1

:=argmin

ˆx
L ([

˜xt+1

,

ˆx],∏t
,µ) (A.7)

Step 3: ∏t+1

i :=∏t
i +µ ci (xt+1

) i = 1. . .n (A.8)

Note that alternately looping over Steps 1/2 until convergence would simply correspond
to a block coordinate descent decomposition of the joint minimization in Equation A.3.
Consequently, ADMM can be interpreted as applying a single step of block coordinate
descent optimization applied to the augmented Lagrangian problem.
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A.3. Shrink operator for f (z) = kzkp
2

+ µ
2

kz°hk2

2

A.3. Shrink operator for f (z) = kzkp
2

+ µ
2

kz°hk2

2

The minimization of f (z) can be simplified into a scalar problem by noticing that z can
be expressed as z =Æh (see Appendix A.4) leading to

min

Æ
kÆhkp

2

+ µ
2

kÆh°hk2

2

= min

Æ
khkq°2

2

|Æ|p + µ
2

|Æ°1|2. (A.9)

As proven in [121], the optimal Æ§ is given by:

Æ§ =
(

0 if khk
2

∑ ˜h
Ø if khk

2

> ˜h
(A.10)

where the threshold ˜h is computed as

˜h =Æa + p
µÆ

p°1

a , Æa =
≥

2

µ (1°p)

¥ 1

2°p
. (A.11)

Ø is found by using the following update scheme

Øt+1

= 1° p
µkhkp°2

2

Ø
p°1

t (A.12)

by initializing Ø
0

2 [Æakhk°1

2

,1]. Similarly to [121], we noticed that this scheme con-
verges in two or three iterations. The optimal z is then given by z§ =Æ§h.

A.4. Scalar version of f (z) = kzkp
2

+ µ
2

kz°hk2

2

The minimization of f (z) can be re-interpreted into a simpler scalar problem where the
optimal solution can be expressed as z§ =Æ§h, Æ 2R. We verify this by expressing z as a
linear combination of a component Æh lying in the space defined by h, and ∑ orthogonal
to it, that is, ∑T h = 0. All that is necessary is to prove that 8∑ 2R3

, f (Æh+∑) ∏ f (Æh). This
can be verified by checking that both of the two following inequalities kÆh+∑kp

2

∏ kÆhkp
2

and kÆh+∑°hk2

2

∏ kÆh°hk2

2

hold. We can easily convert the first of these into one
involving quadratic exponents only. We first raise both sides to the power 2/p and then
expand the norm as an inner product obtaining (Æh+∑)

t
(Æh+∑) ∏ kÆhk2. As h and ∑ are

orthogonal we get kÆhk2

2

+k∑k2

2

∏ kÆhk2

2

; this is always verified as k∑k2

2

∏ 0. To verify the
second expression, we again expand the norm as an inner product, then, after removing
khk2

2

from both sides, we obtain kÆh+∑k2

2

° (Æh+∑)

T h ∏ kÆhk2

2

° (Æh)

T h. Similarly to
what we did before, we expand the norm and exploit orthogonality, simplifying the
expression to k∑k2 ∏ 0, that, again, is always verified.
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Face Tracking

B.1. Gradients

We derive the gradients for the optimization of Equation 4.13. The energy terms for
geometry registration Egeo and optical flow Eim can both be written in the form

f (x) = ||Ax°b||2
2æ2

(B.1)

hence the gradients can easily be computed analytically as

@ f (x)

@x
= AT

(Ax°b)

æ2

. (B.2)

The prior term is of the form

Eprior =° ln

KX

k=1

ºkN (x, Xn |—k ,ßk ), (B.3)

where ßk is the covariance matrix. The Gaussians N (x, Xn |—k ,ßk ) model the com-
bined distribution of the current blendshape vector x 2 Rm and the n previous vectors
Xn , hence the ßk are matrices of dimension (n + 1)m £ (n + 1)m. Since we are only
interested in the gradient with respect to x, we can discard all components that do not
depend on this variable. We split the mean vectors as µk = (µ1

k ,µn
k ), corresponding to x
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and Xn , respectively. We can write the inverse of ßk as

ß°1

k =

2

6664

Ak Bk

Ck Dk

3

7775=

2

6664

(m £m) (m £nm)

(nm £m) (nm £nm)

3

7775 (B.4)

with Bk =C T
k . We then obtain for the gradient of the prior energy term

@Eprior

@x
= (B.5)

PK
k=1

ºkN (x, Xn |—k ,ßk )[(x°—1

k )

T Ak + (Xn °—n
k )

T Ck ]

PK
k=1

ºkN (x, Xn |—k ,ßk )

.

The complete gradient is the sum of the three energy gradients derived above

g (x) =
@Egeo

@x
+ @Eim

@x
+
@Eprior

@x
. (B.6)
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Face Modeling

C.1. Expression Transfer

In this section we describe our formulation of deformation transfer that we use to de-
form the neutral expression b

0

to an expression bi by transferring the deformation from
the neutral expression b§

0

to the expression b§
i of a template model. We first compute

the set of affine transformations {S§
1

, . . . ,S§
p } deforming the p triangles of b§

0

to the cor-
responding ones of b§

i . As an affine transformation is not fully characterized by the
deformation of a triangle we instead use tetrahedrons to compute the affine transfor-
mations where the fourth vertex is added in the direction perpendicular to the trian-
gle [164]. The affine transformation S§ of a tetrahedron {v§

01

,v§
02

,v§
03

,v§
04

} of b§
0

to the
corresponding tetrahedron {v§i 1

,v§i 2

,v§i 3

,v§i 4

} of b§
i is computed as S§ = S§

i S§(°1)

0

, where
S§

i = [v§i 2

°v§i 1

,v§i 3

°v§i 1

,v§i 4

°v§i 1

] and S§
0

= [v§
02

°v§
01

,v§
03

°v§
01

,v§
04

°v§
01

]. The deformation
transfer problem can then be formulated as

argmin

bi

pX

j=1

kS§
j t

0 j ° ti jk2

2

+µkF(bi °b
0

)k2

2

,

where ti j = [vi 2

°vi 1

,vi 3

°vi 1

] j represents two edges of the triangle j of bi , F is
a diagonal matrix defining the vertices that need to be fixed between b

0

and bi

shown in blue on the left, and µ is a weight factor that we fix to µ= 100 for all
our computations. This optimization can be reformulated as
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Appendix C. Face Modeling

Deformation transfer of [Sumner and Popovic 2004]

Expression template model

Our expression transfer operator

0 3mm 0 1mm 0 1.5mm 0 0.5mm

b∗
0

b∗
i

b
0

T∗
i

T∗
i b

0

Figure C.1.: Expression transfer from a template model (top) to the user-specific model
(middle). Our approach gives comparable results to the method of [Sumner
and Popovic 2004] (bottom), but can express the transfer operation as a
linear transformation.

argmin

bi

∥H∗
i Gb

0

−Gbi∥2

2

+µ∥F(bi −b
0

)∥2

2

, (C.1)

where G is a matrix transforming vertices to edges and H∗
i is a matrix containing the

affine transformations mapping each edge of the template neutral expression b∗
0

to the
template expression b∗

i . The optimal solution of this problem is bi = T∗
i b

0

where T∗
i =

(GT G+F)

−1

(GT H∗
i G+F) is a linear operator defining the transformation from the neutral

expression b
0

to an expression bi that matches the transformation of b∗
0

to b∗
i . The

main difference of our formulation compared to previous approaches proposed in [164]
or [27] is that T∗

i does not depend on b
0

. Effectively, our formulation uses a graph
Laplacian instead of a cotan Laplacian, which avoids the weighting factor of triangle
areas of b

0

in T∗
i , which would make T∗

i b
0

non-linear with respect to b
0

. Since our face
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C.1. Expression Transfer

meshes are uniformly tessellated, this simplification has little effect on the resulting
deformations (see Figure C.1). However, it allows the DEM refinement optimization
to be formulated as a simple linear system (see Equation 5.4) which makes it fast and
robust to solve.
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AppendixD
Physics-Based Animation

D.1. Local Solves

Strain. When minimizing over T while keeping q fixed in the local step

min

T
kXfX°1

g °Tk2

F +±M (T), (D.1)

the optimization can be reformulated as

min

˚§
k˚° ˚§k2

F s.t. æmi n ∑ ˚§i i ∑æmax , (D.2)

where XfX°1

g = U˚VT and T = U˚§VT . The optimal solution can be computed as ˚§

being the singular values ˚ clamped between æmi n and æmax . For tetrahedrons, if
det(X f X°1

g ) < 0, the last singular value is negated to avoid reflections.

Area and Volume. Similar to the strain constraint the local minimization of the
volume constraint can be reformulated as

min

˚§
k˚° ˚§k2

F s.t. æmi n ∑
Y

i
˚§i i ∑æmax . (D.3)

This problem can be further transformed in

min

D
kDk2

2

s.t.
Y

i
(˚i i +Di ) =æ, (D.4)
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Appendix D. Physics-Based Animation

with ˚§i i = ˚i i +Di and where æ=æmi n when
Q

i ˚§i i <æmi n and æ=æmax when
Q

i ˚§i i >
æmax . This constrained minimization can be solved by iteratively solving a quadratic
programming problem by linearizing the constraint leading to a simple update rule

Dk+1 = rC(Dk
)

T Dk °C(Dk
)

krC(Dk
)k2

2

rC(Dk
), (D.5)

where C(D) =Q
i (˚i i +Di )°æ.

Example-Based. We solve the optimization

min

R,w
kXfX°1

g °RXh(w)X°1

g k2

F +±SO(3)

(R), (D.6)

using a local/global approach by minimizing over R and w iteratively. The minimization
over R is solved using SVD following [160] and solving over w corresponds to solve a
simple linear system.

Bending. The local solve of the bending constraint can be formulated as

min

R
kv f °Rvgk2

2

+±SO(3)

(R), (D.7)

where v f = X f c and vg = Xg c. This corresponds in finding a rotation R such that the
rotated vector vg matches best the vector v f . While R could be found using SVD [160]
this problem has an easier closed form solution where Rvg can be replaced by v f kvg k2

kv f k2

.
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