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Abstract

Realistic facial synthesis is one of the most fundamental problems in computer
graphics, and has been sought after for approximately four decades. It is desired
in a wide variety of fields, such as character animation for films and advertising,
computer games, video teleconferencing, user-interface agents and avatars, and
facial surgery planning. Humans, on the other hand, are experts in identifying
every detail and every regularity or variation in proportion from one individual
to the next. The task of creating a realistic human face is elusive due to this, as well
as many other factors. Among which are complex surface details, spatially and
temporally varying skin texture and subtle emotions that are conveyed through
even more subtle motions.

In this thesis, we present the most commonly practiced facial content creation pro-
cess, and contribute to the quality of each of its steps. The proposed algorithms
significantly increase the level of realism attained by each step and therefore sub-
stantially reduce the amount of manual labor required for production quality fa-
cial content. The thesis contains three parts, each contributing to one step of the
facial content creation pipeline.

In the first part, we aim at greatly increasing the fidelity of facial performance cap-
tures, and present the first method for detailed spatio-temporal reconstruction of
eyelids. Easily integrable with existing high quality facial performance capture
approaches, this method generates a person-specific, time-varying eyelid recon-
struction with anatomically plausible deformations. Our approach is to combine
a geometric deformation model with image data, leveraging multi-view stereo,
optical flow, contour tracking and wrinkle detection from local skin appearance.
Our deformation model serves as a prior that enables reconstruction of eyelids
even under strong self-occlusions caused by rolling and folding skin as the eye
opens and closes.

In the second part, we contribute to the authoring step of the creation process.
We present a method for adding fine-scale details and expressiveness to low-
resolution art-directed facial performances. Employing a high-resolution facial
performance capture system, we augment artist friendly content, such as those
created manually using a rig, via marker-based capture, by fitting a morphable
model to a video, or through Kinect-based reconstruction. From the high fidelity
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captured data, our system encodes subtle spatial and temporal deformation de-
tails specific to that particular individual, and composes the relevant ones to the
desired input animation. The resulting animations exhibit compelling animations
with nuances and fine spatial details that match captured performances, while
preserving the artistic intent authored by the low-resolution input sequences, out-
performing current state-of-the-art in example-based facial animation.

The third part of the dissertation proposes to enrich digital facial content by
adding a significant sense of presence. Replacing the classic 2D or 3D display-
ing techniques of digital content, we propose the first complete process for aug-
menting deforming physical avatars using projector-based illumination. Physi-
cal avatars have been long used to give physical presence to a character, both in
the field of entertainment and teleconferencing. Using a human-shaped display
surface provides depth cues and multiple observers with their own perspectives.
Such physical avatars, however, suffer from limited movement and expressive-
ness due to mechanical constraints. Given an input animation, our system decom-
poses the motion into low-frequency motion that can be physically reproduced by
a robotic head and high-frequency details that are added using projected shading.
The result of our system is a highly expressive physical avatar that features facial
details and motion otherwise unattainable due to physical constraints.
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Zusammenfassung

Realistische Gesichtssynthese ist eines der fundamentalen Probleme in der Com-
puter Graphik, woran seit Jahrzehnten gearbeitet wird. Gesichtssynthese wird
in verschiedenen Gebieten angewendet, zum Beispiel in der Charakteranima-
tion für Filme und Werbung, Computer Spiele, Video Telekonferenzen, User-
Interface Agenten und Avatare und Gesichtsoperationsplanung. Menschen sind
Experten darin, jedes Detail und jede Irregularität in den Proportionen des Ge-
sichts zu erkennen. Somit ist die Aufgabe, ein realistische Gesicht zu kreieren,
sehr schwierig. Dazu gehören komplexe Oberflächendetails, räumlich und zeit-
lich sich verändernde Hauttexturen und subtile Emotionen, die durch sogar noch
subtilere Bewegungen übermittelt werden. In dieser Arbeit präsentieren wir den
gebräuchlichsten Prozess für das Kreieren von Gesichtern und leisten einen Bei-
trag zur Qualität für jeden Schritt. Die vorgeschlagenen Algorithmen verbessern
den Realismus in jedem Schritt erheblich und verringern somit die Handarbeit,
die nötig ist, um Produktionsqualität zu erreichen. Die Arbeit ist in drei Teile auf-
geteilt, wobei jeder Teil zu einem Schritt im Gesichtskreationsprozess beiträgt.

Der erste Teil zielt darauf, die Genauigkeit von Gesichtsdarbietungen erheblich
zu verbessern und präsentiert die erste Methode für eine detaillierte räumlich-
zeitliche Rekonstruktion von Augenlidern. Die Methode ist einfach integrierbar in
existierende Ansätzen für hochqualitative Gesichtsdarbietungen. Sie generiert ei-
ne personen-spezifische und zeitabhängige Rekonstruktion von Augenlidern mit
anatomisch plausiblen Deformationen. Unser Vorgehen besteht darin, ein geome-
trisches Deformationsmodell mit Bilderdaten zu kombinieren und dabei die Ste-
reoperspektive, optischer Fluss, Kantenverfolgung und Faltenerkennung auszu-
nutzen. Unser Deformationsmodell ermöglicht uns die Rekonstruktion von Au-
genlidern auch mit starken Selbstokklusionen, die durch rollende und faltende
Haut während das Auge sich öffnet und schliesst, entstehen.

Im zweiten Teil tragen wir zum verfassenden Schritt im Gesichtskreationsprozess
bei. Wir präsentieren eine Methode um feine Details und Ausdrucksfähigkeit zu
handgemachten Gesichtsdarbietungen mit nur tiefer Auflösung hinzuzufügen.
Wir benutzen ein hochauflösendes Gesichtsdarbietungsaufnahmesystem um
künstlerische Inhalte zu ergänzen. Das System unterstützt Inhalte, die von Hand
gemacht wurden mittels eines Rigs, markerbasierende Aufnahmen, durch ein-
passen eines wandelbaren Modells von einem Video erstellte Inhalte und Kinect-
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basierte Rekonstruktionen. Von den hochauflösenden Aufnahmedaten enkodiert
unser System subtile räumliche und zeitliche Deformationsdetails für das spe-
zifische Individuum. Die resultierenden Animationen zeigen überzeugende
Animationen mit Nuancen und feinen Details, die den Bewegungsaufnahmen
entsprechen. Dabei bleibt die künstlerische Absicht der tiefauflösenden Eingangs-
sequenzen erhalten. Sie übertreffen die zur Zeit modernsten beispielbasierten
Gesichtsanimationen.

Der dritte Teil der Dissertation befasst sich mit dem Bereichern von digitalen Ge-
sichtern durch hinzufügen eines signifikanten Präsenzgefühlts. Wir beabsichtigen
2D oder 3D Bildschirmtechnologien für digitalen Inhalt mit einem Prozess zur
Augmentation von deformierbaren physischen Avataren mit projektorbasierter
Illumination zu ersetzen. Physische Avatare werden schon lange verwendet, um
einem Wesen physische Präsenz zu verleihen, in der Unterhaltung sowie für Te-
lekonferenzen. Eine menschlich geformte Anzeige birgt Tiefenanhaltspunkte und
bietet mehreren Beobachtern eine eigene Perspektive. Jedoch leiden solche physi-
sche Avatare an eingeschränkter Bewegungsfreiheit und Ausdrucksfähigkeit auf-
grund mechanischer Beschränkungen. Unser System zerlegt die Eingangsanima-
tion in tieffrequente Bewegungen, welche ein Roboterkopf ausführen kann, und
hochfrequente Details, welche mit Projektion hinzugefügt werden. Das Resultat
ist ein hoch ausdrucksfähiger physischer Avatar, der Gesichtsdetails sowie Bewe-
gungen umfasst, die unerreichbar wären mit einem rein mechanischen Avatar.
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C H A P T E R 1
Introduction

1.1 Background

As humans, we are very sensitive to subtle properties of facial features and
actions [Smi+05; PE12]. We locate, identify and distinguish between faces
with very casual inspection. For example, this is one of the reasons early
postage stamps had human faces (of Queen Victoria) on them. It was as-
sumed that it would be easier to detect forgeries. Facial expressions pro-
vide information about emotions (such as fear, anger, enjoyment, surprise,
sadness, disgust), cognitive activity (such as perplexity, concentration, or
boredom), temperament, personality and much more [Ekm+93]. A careful
examination of facial expressions over time can also reveal leakage of con-
cealed emotions or truthfulness. In education, the teacher’s facial expres-
sions influence whether the pupils learn and the pupil’s facial expressions
can inform the teacher of the need to adjust the instructional message, even
in virtual environments [SJ13]. In business, facial expressions are important
in negotiations and personnel decisions. In medicine, facial expressions can
be useful in studies of the autonomic nervous system and the psychological
state of the patient. In man-machine interactions, facial expressions could
provide a way to communicate basic information about needs and demands
to computers or encourage specific reactions from an observer.

For these reasons and others, displaying and augmenting faces in a photo
realistic manner with computer graphics has been a central goal of the field
for over forty years [Par74]. A variety of notable efforts has been made to
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Introduction

create realistic digital actors over the last two decades, each leveraging nu-
merous advances in computer graphics technology and artistry, both in the
film industry (Final Fantasy (2001), Spider Man 2 (2004), The Polar Express
(2004), Beowulf (2007), The Curious Case of Benjamin Button (2008), A Christ-
mas Carol (2009), etc.) and by the academic graphics community [CP99;
Sif+06; Ale+10; Ale+13]. Methods that were used in these efforts include
traditional photography, highly accurate laser scanners and elaborate and
ever evolving light stages to capture the face geometry. Anatomically in-
spired physically based simulation, hand animated rigs and motion capture
were used to drive the motion.

Unfortunately, as accurate and human like as these virtual figures may be, it
is well known that when such characters approach realistic similarity to hu-
mans, they stop being likable and instead become eerie, frightening, repul-
sive—”uncanny”. Reports indicate that realistic animated characters, like
those in the movie The Polar Express (2004) had negative effects on view-
ers, who addressed to the uncomfortable realism of the characters [Gel08].
This phenomena was observed also with regard to robotic figures, such as
Gemenoids [NIH07b]. Indeed, Mori et al.[1970] hypothesized that as a ma-
chine acquires greater similarity to a human, it becomes more emotionally
appealing to the observer. However, when it becomes too similar to a human
there is a very strong drop in believability and comfort, before finally achiev-
ing full humanity and eliciting positive reactions once more. This drop is
what he coined as ”the Uncanny Valley”, and he introduced a hypotheti-
cal graph describing the relation between the level of realism and feeling of
pleasantness, or familiarity (see Figure1.1).

This phenomena is not yet fully understood, and is considered potentially
multi-dimensional [MI06]. The reasons of which this phenomena stems from
are also uncertain. Some suggest, based on theories by Sigmond Freud,
that human-like robots may be unnerving because they remind people of
death [MI06]. Indeed, horror tales throughout history have featured charac-
ters such as vampires, zombies and devils - all of which almost human but
lack the spark of life. Others suggest that this unnervingness is an evolution-
ary defense mechanism, designed to detect and avoid the ill. Facial features,
such as bizarre eyes, are also considered to be a cause [SN07]. Finally, some
claim that the cause is a perceptual mismatch - the appearance and motion
of a near-human agent do not match. Saygin et al. [2011] have conducted a
research where they had shown subjects three sets of videos: one of human-
like robots (or androids) performing everyday tasks, one of the same actions
as performed by the human on whom the android was modeled and one of
a stripped version of the android - without skin and eyes so that it could
no longer be mistaken for a human. Measuring brain activity during this

2



1.1 Background

Figure 1.1: Hypothesized response of humans to human likeness of characters. The un-
canny valley is the region of negative response to characters that seem highly
human-like (i.e., zombie and corpse). Movement is claimed to emphasize
the response for all characters and in particular within the uncanny valley
[MMK12]

process, the researchers have concluded that while the android used in the
study was often mistaken for a human at first sight, longer exposure and dy-
namic viewing have invoked the eeriness attributed to the uncanny valley.
This is in correlation with the well established hypothesis that the brain is
finely tuned to recognizing biological motions and distinguishing between
very subtle characteristics of this motion. In fact, it is believed that the sur-
vival of many species is dependent on their ability to recognize complex
movements (e.g., of predators, prey and potential mates) [GP03].

This phenomena stresses the fact that in order to achieve believable facial
realism, very high accuracy is required both in the spatial and the tempo-
ral domains. This could be achieved mainly in two ways. First, by using
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Figure 1.2: The facial content creation pipeline and our contributions to each of its steps

a physically and anatomically accurate model. Unfortunately to date, even
though the underlying physical models are quite well understood, the hu-
man face is an extremely complex bio-mechanical system that is very dif-
ficult to model, which largely limits the applicability of such an approach.
Traditionally, in order to alleviate such problems, data-driven methods are
employed. Data-driven methods offer an alternative to complex models, as
they exploit a system’s response under several example conditions to ap-
proximate its behavior in previously untrained states [Ota+12]. The second
approach to achieving the level of realism that crosses the uncanny valley
depends on highly accurate facial scanning.

1.2 Facial content creation process

In this thesis, we will explore the process of facial content creation using the
latter, more popular, approach. We will elaborate on each step and enhance
the realism of it. As depicted in Figure 1.2, the facial content creation process
consists of the following steps:

• Capture

• Augmentation

• Display

1.2.1 Capture

The first step to creating digital facial content is to capture both shape and
motion of the human face from real life performers. As discussed in Section
1.1, this is the case due to the complexity of the face and the human sensitiv-
ity to it, which render manual creation and animation impractical. For shape

4



1.2 Facial content creation process

capturing, many methods exist varying in technology and traits. The main
available techniques can be split into two groups: active or passive captures.

Active capture devices include an emitting part, which is then sensed by its
receiving counterpart, while passive ones consist only of a receiver. Most
common active capture methods employ laser scanners [BPG04], Time-
of-Flight (ToF) sensors [Bü+05], or structured light produced by projec-
tors [HZ04]. All of these methods emit light in a carefully designed way and
measure depth by the light that is reflected back to the sensors. These meth-
ods are typically very accurate, but suffer from a few inherent drawbacks.
First, active methods are less suited for dynamics scenes since they typically
require several iterations of emitting and receiving for complete depth mea-
surement. Second, active methods rely on the light that is reflected from the
measured object, which impairs accuracy in the case of translucent materi-
als, such as the skin. Third, texture has to be captured in a different way
since color is not captured by any of these devices.

Passive methods, also called passive stereo, employ only cameras. Depth
is computed by triangulating corresponding points in the captured images,
taken from slightly different points of view. Passive stereo acquires both tex-
ture and depth, potentially in only a single shot from each camera. many
dual and multi-view stereo methods exist, as summarized by Seitz et al.
[2006], however in this thesis we will be mainly building upon the approach
proposed by Beeler et al. [2011]. In this approach, a system to refine a coarse
multi-view stereo reconstruction by minimizing an error function that inte-
grates stereo, shading and smoothness terms is proposed. They exploit the
small-scale strength of shape-from-shading methods[BZK85], and explicitly
limit it to the spatial frequencies that are not captured by multi-view stereo.
Furthermore, they track skin movement over time in a robust way, yielding
a sequence of high resolution, high fidelity, fully corresponding dense facial
surfaces.

Despite the high-resolution quality of the aforementioned reconstruction ap-
proaches, current methods are unable to capture one of the most important
regions of the face - the eye region. In Chapter 3 we present the first method
for detailed spatio-temporal reconstruction of eyelids. Tracking and recon-
structing eyelids is extremely challenging, as this region exhibits very com-
plex and unique skin deformation where skin is folded under itself while
opening the eye. Furthermore, eyelids are often only partially visible and
obstructed due to self-occlusion and eyelashes. Our approach is to combine
a novel geometric deformation model with image data, leveraging multi-
view stereo, optical flow, contour tracking and wrinkle detection from local
skin appearance. Our deformation model serves as a prior that enables re-
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construction of eyelids even under strong self-occlusions caused by rolling
and folding skin as the eye opens and closes. The output is a person-specific,
time-varying eyelid reconstruction with anatomically plausible deforma-
tions. Our high-resolution detailed eyelids couple naturally with current
facial performance capture approaches. As a result, our method can largely
increase the fidelity of facial capture and the creation of digital content.

1.2.2 Augmentation

For most practical applications, such as films, video games and medical sim-
ulations, the captured surfaces described above are insufficient. Different
content is often required due to numerous reasons. The captured perform-
ers are typically restricted in motion due to the capture devices, which im-
pairs the quality of their performance. Exaggerated or almost non-human
expressions are often times more compelling than the realistic ones. Even the
performance itself is usually altered, changed or completely re-generated in
real time for games or post-production scenarios. For these reasons, tools
to augment facial performances are required. These tools must be artistic
friendly - fast, lightweight and provide powerful and yet intuitive control,
while maintaining the original quality of the captured faces. To this end,
a large variety of approaches have been pursued, which deform, augment
or blend a set of captured facial expressions and sequences to generate new
performances.

Such approaches include physically-based models, parametrization models,
and motion capture. Physically-based models approximate the mechani-
cal properties of the face such as skin layers, muscles, tissues, bones, etc.,
which are very computationally intensive, but have the potential to better
include collisions and external stimuli [SNF05]. Parametrization models (or
rigs) generate a facial pose as a (typically linear) combination of a number
of facial expressions. By varying the weights of the combination, a wide
range of facial expressions can be explored with little computation. Due
to their intuitive controls, facial rigs based on blendshape models are par-
ticularly popular among artists for creating realistic looking facial anima-
tions [Lew+14]. Motion capture methods track features, usually identified
by special makeup or markers, in space and over time and deform a cap-
tured expression to match the motion data [Gue+98].

In Chapter 4, we present a technique for adding fine-scale details and expres-
siveness to low-resolution art-directed facial performances, such as those
created manually using a rig, via marker-based capture, by fitting a mor-
phable model to a video, or through Kinect reconstruction using recent
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faceshift technology. We employ a high-resolution facial performance capture
system to acquire a representative performance of an individual in which
he or she explores the full range of facial expressiveness. From the cap-
tured data, our system extracts an expressiveness model that encodes subtle
spatial and temporal deformation details specific to that particular individ-
ual. Once this model has been built, these details can be transferred to low-
resolution art-directed performances. We demonstrate results on various
forms of input; after our enhancement, the resulting animations exhibit the
same nuances and fine spatial details as the captured performance, with op-
tional temporal enhancement to match the dynamics of the actor. Finally, we
show that our technique outperforms the current state-of-the-art in example-
based facial animation.

1.2.3 Display

As a last step of the facial content creation pipeline, the digital content is
displayed to the viewer. While the challenges discussed in the previous sec-
tions are crucial to the perception of realism for human faces, equally impor-
tant is the ability to display faces realistically. Over the last years, different
technologies were developed in order to enhance the realism and feeling of
immersion of digital content in general and digital facial content specifically.
The classic way of displaying digital content is on a 2D display. This requires
projecting the 3D content onto the 2D viewing plane, widely known as ren-
dering. The rendering of faces has long been and still is an active field of
research since human skin is particularly challenging [dLE07; Deb+00; JG10;
DI11]. This difficulty has two origins. First, human skin exhibits multiple
scattering effects, both on and inside the surface, which requires volumetric
simulation. Second, the skin’s reflectance varies both spatially and tempo-
rally. Through the contraction and dilatation of blood vessels the appearance
of the skin varies as the face changes in expressions. To make things worse,
the appearance of the face is also determined by a variety of small scale ef-
fects such as wrinkles, pores, and follicles.

At the same time, different technologies have been developed, aimed at
increasing the sense of immersion. Display devices capable of conveying
depth perception are the main ones. Such devices traditionally present off-
set images that are displayed separately to the left and right eye, and are then
combined in the brain to give the perception of depth, according to the prin-
ciple of stereopsis. These devices typically rely on anaglyph, polarization or
active shutter methods, see [MB13] for a survey of advantages and disad-
vantages of the different methods. Auto-stereoscopic displays offer a wider
range of visual cues to increase even more the sense of immersion [Ben+07].
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Lastly, when attempting to render the humans with conventional or stereo-
scopic displays, non-verbal cues such as head pose, gaze direction, and facial
expression are difficult to convey correctly to all viewers. Therefore, phys-
ical avatars have been used to give physical presence to a character, both
in the field of entertainment and teleconferencing. Using a head-shaped
display surface that intrinsically provides depth cues, simultaneously giv-
ing multiple observers their own perspectives. However, such physical
avatars’ movement and expressions are often limited due to mechanical
constraints. In Chapter 5, we propose a complete process for augmenting
physical avatars using projector-based illumination, significantly increasing
their expressiveness. Given an input animation, the system decomposes the
motion into low-frequency motion that can be physically reproduced by a
given animatronic head and high-frequency details that are added using
projected shading. At the core is a spatio-temporal optimization process that
compresses the motion in gradient space, ensuring faithful motion replay
while respecting the physical limitations of the system. We also propose a
complete multi-camera and projection system, including a novel defocused
projection and subsurface scattering compensation scheme. The result is a
highly expressive physical avatar that features facial details and motion oth-
erwise unattainable.

1.3 Publications

This thesis is based on the following accepted peer-reviewed publications:

[Ber+13] Amit H. Bermano et al. “Augmenting Physical Avatars Using
Projector-based Illumination”. In: ACM Trans. Graph. 32.6 (2013),
189:1–189:10. ISSN: 0730-0301.

[Ber+14a] Amit H. Bermano et al. “Facial Performance Enhancement Using
Dynamic Shape Space Analysis”. In: ACM Trans. Graph. 33.2 (2014),
13:1–13:12. ISSN: 0730-0301.

[Ber+15] Amit H. Bermano et al. “Detailed Reconstruction of Eyelids”. In: to
be published ACM Trans. Graph. (2015).

During the time period of this thesis, but not related, the following technical
peer-reviewed papers were published:

[Ber+12] Amit Bermano et al. “Shadowpix: multiple images from self shad-
owing”. In: Computer Graphics Forum. Vol. 31. 2pt3. Wiley Online Li-
brary. 2012, pp. 593–602.
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[BVG11] Amit H. Bermano, Amir Vaxman, and Craig Gotsman. “Online re-
construction of 3d objects from arbitrary cross-sections”. In: ACM
Transactions on Graphics (TOG) 30.5 (2011), p. 113.

[Var+15] Orestis Vardoulis et al. “Single breath-hold 3D measurement of
left atrial volume using compressed sensing cardiovascular mag-
netic resonance and a non-model-based reconstruction approach”.
In: Journal of Cardiovascular Magnetic Resonance 17.1 (2015), p. 47.
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C H A P T E R 2
Related Work

This thesis covers different fields in computer graphics and computer vision,
including face and eyes capturing, performance modeling and transfer, and
projection related issues. In order to summarize the works related to these
subjects, we structured this chapter according to the facial content creation
pipeline described in Section 1.2. Excluding projection related issues, which
is relevant only to Chapter 5, all of the following works are related to some
extent to all the projects that are discussed in this thesis (Chapters 3,4, and
5):

• Capture related methods are discussed in Section 2.1.

• Deformation, augmentation and modeling work is covered in Sec-
tion 2.2.

• Projection related approaches are addressed in Section 2.3.

2.1 Capture

Our work depends heavily on 3D face capture. Chapters 4 and 5 employ
existing methods and build upon them, while Chapter 3 aims to improve
them. The latter is particularly related to other techniques that are tailored
for reconstructing or modeling the eye region. In contrast to existing work,
we present in Chapter 3 the first method specifically designed to capture
person-specific eyelids, including the complex temporal behavior and self-
folding that occurs during opening and closing of the eyes. Our work nat-
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urally complements existing techniques for face and eye capture, forming a
more complete and realistic digital face.

Face Capture. There has been a lot of work on capturing the geometry
of human faces. Some methods focus on capturing high-resolution static
poses, both active and passive [Wey+06; Ma+07; Bee+10; Gho+11], that can
then be animated later with marker-based motion capture data [Wil90]. Oth-
ers use space-time stereo to capture low-resolution 3D models at interactive
rates [Bor+03; Wan+04a; Zha+04; ZH06]. Neither approach is capable of si-
multaneously capturing high-resolution spatial and temporal details. Bickel
et al. [2007] combine high-resolution static geometry with motion capture
data for large-scale deformations and add medium-scale expression wrin-
kles tracked in video. Huang et al. [2011] leverage motion capture and static
3D scanning for facial performance acquisition.

Recent approaches use high-speed cameras and photometric stereo to cap-
ture performance geometry [Wen+05; Jon+06; Ma+08]. Some of these tech-
niques use time-multiplexed illumination patterns and consequently require
an acquisition rate that is a multiple of the final capture rate. Wilson et
al. [2010] introduce a temporal upsampling method to propagate dense
stereo correspondences between frames to reconstruct high-resolution ge-
ometry for every captured frame. Bradley et al. [2010] use a completely pas-
sive system with high-resolution cameras.

Reduced hardware approaches such as binocular [Val+12] and monocu-
lar [Gar+13; SKSS14; Shi+14] facial capture methods often use shape from
shading approaches [Wu+11] to recover fine-scale facial details. Real-time
facial animation methods sacrifice quality in favor of reconstruction speed,
typically through the use of generic facial priors [Wei+11; Rhe+11; Cao+13;
BWP13; Li+13; CHZ14]. These techniques are able to animate generic shapes
that are part of the shape priors, but are unable to recover person-specific de-
tails.

In Chapters 3 and 4, We use an extended version of the passive system by
Beeler et al. [2011] to capture dynamic high-resolution 3D geometry for our
expression database (Chapter 4), and as bases for our eyelids reconstruction
(Chapter 3). The specifics of how the initial capture is performed in both
cases are not important, and a number of alternative methods could be used
as well, such as [Hua+11b; KH12].

Eyes and Eyelids. The important role that eyes play in computer graphics
applications has led to a number of research topics including eye motion and
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blink animation, iris and eyelid modeling, and high-quality eye capture. A
detailed survey of eye and gaze animation methods was recently presented
by Ruhland et al. [2014]. In the following we summarize the most related
methods.

Since the seminal work of Lee et al. [2002] on keeping a character’s eyes
”alive”, several models of eye motion and blinks have been derived from
motion capture and video data [DLN05b; WLO10; Tru+11; LMD12]. How-
ever, these approaches do not focus on detailed eyelid reconstructions that
would provide person-specific eyelid wrinkle formation.

On the topic of reconstruction, François et al. [2009] estimate the multilay-
ered shape and approximate scattering properties of the iris from a single
camera image. More complete and detailed reconstructions were recently
shown by Bérard et al. [2014], who use a multi-camera and multi-light setup
to capture all the visible components of the eye in very high-resolution. Note
that these methods are complementary to ours since they focus exclusively
on the eyes and we are considered with the skin surrounding it.

Our work is not the first to model eyelids. A method for modeling the eye
region has been presented by Sagar et al. [1994] in the context of surgical
simulation. The eyelids are modeled by a simple NURBS surface that is fit
to a single face scan and then manipulated by hand. In contrast, we recon-
struct temporally-varying high-resolution geometry, capturing the unique
wrinkling behavior of each individual eyelid.

2.2 Augmentation

Augmentation issues are discussed mainly in Chapter 4, covering facial ani-
mation, and performance transfer and synthesis. However, at a higher level,
the proposed method in Chapter 3 is akin to methods that model or gener-
ate wrinkle geometry for faces and clothing, and Chapter 5 address in part
performance transfer as well. In the following we discuss previous work in
these areas.

Wrinkle Modeling. One of the defining characteristics of eyelids is their
natural self-folding behavior, which can be considered an extreme case of
wrinkling. Bickel et al. [2007] decompose the face into multiple scales in or-
der to enhance low-resolution marker-based motion capture with fine-scale
wrinkles captured on the forehead and under the eyes, and then learn the
correspondence of skin-strain to wrinkle formation for real-time editing and
wrinkle transfer to virtual characters [Bic+08a]. Dynamic wrinkles are also
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captured by Ma et al. [Ma+08] and modeled as a polynomial displacement
map on top of a low-resolution face model. This approach of modeling wrin-
kles as a displacement map layer is very common in facial animation [K+̈02;
DMB11; Li+15]. Skin wrinkles can also be generated through physically-
based simulation of the face if the anatomy is sufficiently modeled [MT+02;
ZST05; WM14]. Other techniques to enhance low-resolution facial perfor-
mances with high-resolution wrinkles include mapping expressions into a
common shape space and transferring the high-frequency details [Ber+14b],
or manually specifying wrinkle curves with an artistic tool [BKN02; LC04].
While these methods target wrinkle modeling on the face, they do not ad-
dress the complex wrinkling behavior of eyelids.

For clothing, a similar trend has emerged to enhance low-resolution cloth
models with previously-generated fine-scale wrinkles [MC10; FYK10;
Wan+10; Roh+10; SSH12; Kim+13; ZBO13]. These methods typically as-
sume a coarse cloth simulation is available, which provides the underlying
motion of the surface, and thus are not well-suited for capture scenarios.
On the other hand, Popa et al. [2009] procedurally generate wrinkles for
captured garments. Starting with a reconstruction of the low-frequency gar-
ment shape [Bra+08], they introduce temporally coherent high-frequency
wrinkles that correspond to detected edges in the capture images. Such
an approach could also improve the shape of wrinkles on a captured face,
however the method does not consider wrinkles with strong self-occlusions
such as eyelids.

Facial Animation. Facial animation has a long history that goes back to
the early ’70s [Par74]. Some methods use models of facial anatomy [Wat87;
TW93] that can be combined with physical models of skin deforma-
tion [WKMT96; SNF05; VLR05; ZS05]. Another approach is to use de-
formable 3D face models [Bla+03; Vla+05] and fitting them to video
data [LRF93; Ess+96; DM96; PSS99; Dal+11]. Methods based on example
poses and shape interpolation (i.e., blendshapes) [LCF00; CB02; Lew+05;
Seo+11] are especially popular in the entertainment industry because of
their intuitive and flexible controls and can even be driven in real-time
from video [CXH03] or the Microsoft Kinect device [Wei+11]. Similar con-
cepts can also be applied to drive a set of hand-drawn faces for generating
performance-driven, ”hand-drawn” animation in real-time [Buc+00]. None
of these approaches reach the quality of high-resolution performance-driven
facial animation from person-specific captured data, and animation of subtle
facial details and dynamics are still elusive. Our approach in Chapter 4 tries
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to bridge the gap between traditional facial animation and high-quality 3D
face scanning.

Deformation and Detail Transfer. Static geometry can be enhanced with
details transferred from different models by means of simple displace-
ments (for small details) or differential coordinates (for substantial enhance-
ments) [Sor+04; Tak+11]; With such methods, the transferred detail is ex-
plicitly given, rather than being a function of the low-resolution pose. De-
formation transfer techniques [SP04] such as expression cloning [NN01;
Pyu+03] transfer vertex displacements or deformation gradients from a
source face model to a target face model with possibly different geome-
try. Similarly, data-driven approaches (e.g., based on Canonical Correlation
Analysis [FKY08] or Gaussian Process models [MLD09]) learn and transfer
facial styles. These techniques are typically applied to low-resolution geom-
etry or low-frequency deformations. Golovinskiy et al. [2006] add static pore
detail from a database of high-resolution face scans using texture synthesis.
Huang et al. [2011] train a collection of mappings defined over regions lo-
cally in both the geometry and the pose space for detailed hand animation.
Bickel et al. [2008] use radial basis functions to interpolate medium-scale
wrinkles during facial performance synthesis and transfer. Ma et al. [2008]
add high-resolution facial details to a new performance using a compressed
representation of vertex displacements. Notably, Alexander et al. [2010] use
high-resolution scans to generate a detailed blendshape rig. In contrast to
these methods, in Chapters 4 and 5 we present frameworks that enable both
spatial and temporal performance enhancement and transfer, which can be
applied to various forms of art-directed facial animation, augmenting the
high-resolution details and matching the dynamics of the particular target
face.

Temporal Performance Synthesis. The temporal aspects of facial perfor-
mances are very important for synthesis of new facial animations from
speech [BCS97; Bra99; EGP02; KT03; Cao+04; Ma+04; DLN05a]. Most of
these approaches record facial motion of speaking subjects and then recom-
bine the recorded facial motion from learned parametric models to synthe-
size new facial motion. Chai and Hodgins [2007] learn a statistical dynamic
model from motion capture data and generate animations from user-defined
constraints solving a trajectory optimization problem. However, none of
these methods take high-resolution spatial details into account. Instead of
learning a model, in Chapters 4 and 5 we use a simpler and more gen-
eral data-driven approach for performance synthesis of temporal and spa-
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tial details. Note that we do not specifically target temporal enhancement of
speech animation.

Performance Transfer. Acquiring the expression of real faces and apply-
ing them to computer-generated models is a central component for creating
lifelike performances [HPL06]. A common method of performance trans-
fer is encoding facial motion as a linear combination of target shapes and
transferring the weights. The basis shapes can represent facial action units
based on the facial action coding system [EF77] or learned from data [CB02;
BV99; LWP10]. For non-rigid mapping of the source performance to the
target model, alternatively the deformation field can be directly transferred
by establishing dense correspondence [NN01; LSP08]. Common to these
remapping techniques is that there is a static mapping between source and
target expression. However, as the motion gamut of the animatronic head is
very limited, we desire a dynamic, temporally local compression. Inspired
by the observation that the source and target movements should be simi-
lar, Seol et al. [2012] present a space-time facial animation re-targeting ap-
proach, interpreting movement as derivative in time and formulating the
re-targeting problem as a Poisson equation. In our setup, we represent the
motion of the robotic head in the constraint space of control parameters of
the head [Bic+12] and compute dense correspondences for transferring facial
details and spatio-temporal optimization of the animatronics’ head motion.
In contrast to Seol et al. [2012], we do not optimize for global blend shape
weights, but instead re-time the constrained coarse motion of the anima-
tronic head to match the input motion (Chapter 5) or input key-frames to
database sequences (Chapter 4).

2.3 Display

In Chapter 5, we propose a method to display digital facial content or anima-
tronics heads using projection. In this section we discuss previous solutions
proposed to solve problems that concern this matter.

Projected Avatars. Animated humanoid robots, called animatronics, are
an old field of research. While currently high-quality animatronics exist
that have a quite natural appearance [Ish06; NIH07a; Bic+12], their move-
ments and expressiveness are still limited and thus, while they appear al-
most like real humans, they are positioned in the deep dip of the uncanny
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valley. To overcome this problem, several research groups tried to use spa-
tially varying illumination provided by projectors to superimpose the hu-
manoid’s face with dynamic textures to give it a more natural and dynamic
appearance [Lin+09; MEB12; MIR12; Kur+11]. First described as a generic
principle in [Ras+01], these approaches use a uniform white generic face ge-
ometry and apply projective texture mapping to superimpose colors and
texture. While some of the heads are able to move rigidly, they are still
significantly limited in their physical motion range. In contrast to those,
in Chapter 5 we project onto a dynamic animatronic head having flexible,
pigmented silicone skin. Thus, the physical head alone already enables lim-
ited non-rigid movement and the projection is employed for adding detailed
shading on top.

Light-Transport-Based Projection Image Compensation Algorithms. The
usage of projectors to change or enhance surface appearance has been an ac-
tive research area for more than one decade. In [WB07], a light-transport-
based radiometric compensation method is described that extends local
methods (cf. [Bim+07] for an overview) to compensate for global illumina-
tion effects, such as defocus, refractions, diffuse, and subsurface-scattering
for a particular camera view within the bounds of the capabilities of the
used projector and camera. A quad-tree-based light transport measure-
ment [Sen+05] is used, which takes up to several hours and thus is not
practical for dynamic surfaces. This idea was recently extended in [Law+11;
Ali+12] to generate a high-quality multi-projector compensation. Projector-
camera systems can also be used to directly estimate the defocus of the pro-
jected pixels. If this defocus is measured and modeled as a point spread
function (PSF) between the projector and the camera, an adapted image can
be calculated which, up to a certain extent, compensates the projection defo-
cus to make the image appear less blurred. Several approaches use a camera
to evaluate the defocus on the surface and apply image filtering to generate a
compensation image [ZN06; OS08]. Multiple projectors were used in [BE06]
to generate a blended projection with pixel contributions from several pro-
jectors to minimize the defocus. As this approach requires overlapping pro-
jections, the overall contrast of the system is reduced because of summed
black intensity contributions. In [Gro+10], a programmable aperture was
integrated into the projector to generate a content-optimized image decon-
volution. All compensation approaches so far, however, correct the defocus
for a specific camera view and don’t consider the oblique blur that is gener-
ated by a surface point that is not parallel to the camera’s image plane. This
effect was considered in [NIS11], which uses multiple projectors together
with known geometry to calculate the camera-independent pixel contribu-
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tion. Our method applies a camera-independent compensation differently:
by analyzing and modeling the system’s defocus properties for a specific
projection volume independent of the dynamic projection surface. These
precomputed parameters are looked up for the given surface geometry and,
in combination with a description of its subsurface scattering, are used to
globally optimize the projection images for all used projectors.
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C H A P T E R 3
Eyelids Reconstruction

The human face is the most important part of a person for conveying identity
and emotion and therefore of central interest when creating realistic digital
humans for computer games and films (Section 1.1). For identifying emo-
tions, humans mainly use a consistent selective sampling of visual informa-
tion from the eye region and, to a lesser extent, the mouth region [Smi+05;
PE12]. Subtle details such as the twitch of an eyelid and the formation of
small wrinkles significantly contribute to the realism of human faces and
the perception of emotions. However, despite the important role of the eye
region, existing capture technology is usually not able to provide an ade-
quate level of geometric detail and motion to reproduce these subtleties. In
practice, achieving realistic eyelid motions and skin deformation of the sur-

Figure 3.1: Our method extends high-resolution facial performance capture with a recon-
struction approach that targets eyelids. We produce detailed, spatio-temporal
eyelid reconstructions, even during complex deformation and folding that
occur in the eye region. The result can be used to create high-fidelity digital
doubles, as shown on the right.
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rounding area requires significant manual modeling efforts by highly skilled
artists.

Acquiring this region is extremely challenging due to several reasons. In an
expressive performance, eyelids undergo extreme deformations and wrin-
kling. The skin rolls and folds inward when the eye opens, and stretches
over the eyeball when the eye is shut. Due to concavities and eyelashes,
there is significant self-shadowing, inter-reflections, and partial occlusions.
Even worse, in many facial expressions a significant part of the eyelid is
folded in and not visible at all. We desire an accurate performance capture
that delivers consistent geometry in correspondence over time whenever
visible, and deforms non-visible parts in a plausible way. Unfortunately, ex-
isting dense performance capture approaches cannot handle these extreme
deformations and occlusions.

In this Chapter, we aim to improve the first step in any facial content process
- capturing (Section 1.2), by addressing this problem and introducing a novel
reconstruction and tracking scheme that combines a geometric deformation
model with image-based data. The model is motivated by the physiolog-
ical behavior of the eye - skin interface and constrains the reconstruction
to anatomically plausible motions. This prior is required due to noise and
missing data in the depth information, inherently caused by eyelashes and
self-occlusions. In addition, we observe that wrinkles greatly change the
local appearance of the skin, and thus their location can be accurately de-
termined from images and local motion. This combination of anatomically
motivated priors, depth information, and image-based data, makes detailed
eyelid reconstruction feasible.

Such an approach has several advantages. We obtain a single, consistent
mesh over time, which allows our result to be directly combined with ex-
isting facial performance capture approaches, or to be used to create a data-
driven blendshape rig. Our method provides plausible deformations even
for regions that are occluded. We are able to capture the dynamic effects of
eyelids, which is important because the location and shape of wrinkles is
not only dependent on the current state of the eye region but also its his-
tory, a phenomenon referred to as hysteresis. As our method is agnostic to
the capture approach, it can be easily integrated into any performance cap-
ture pipeline, be it passive or active, that records sufficiently high-resolution
footage of the eye region. As we demonstrate with several results, our sys-
tem allows the reconstruction of an expressive, dynamic model of the eye
region at a quality level that has never before been possible, increasing the
fidelity of this very important facial component in the creation of digital
doubles.
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Figure 3.2: Overview of the system. Starting from passively acquired image data, we
compute for each frame depth information, optical flow, track the contours of
the eye-skin interface, and the probability where wrinkles are forming (Sec-
tion 3.2). Based on this data, our tailored deformation model deforms the
eyelids over time, accurately tracking the actors performance (Section 3.3).
Finally, the eyelid meshes are integrated with the reconstructed facial perfor-
mance to provide a complete face model.

Figure 3.3: The setup (left) consists of seven cameras, where the three central ones are
zoomed in. LED strips mounted around the actor and diffused by frosted
paper provide a flat illumination. An exemplary dataset for one frame is
shown on the right.
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3.1 Method Overview

Our system, schematically depicted in Figure 3.2, starts by capturing a
performance of the eyes using off-the-shelf cameras, as described in Sec-
tion 3.2.1. The images are then analyzed to remove eyelashes and gener-
ate a spatiotemporal reconstruction of the face shape along with per frame
depths maps (Section 3.2.2). Optical flow computed frame by frame is mis-
led by the skin wrinkling and needs to be corrected (Section 3.2.5) using
wrinkle probability maps which indicate where wrinkles are most likely to
form (Section 3.2.4). Finally, we also track accurate eyelid contours over time
(Section 3.2.6) to ensure faithful reconstruction of the visually important in-
terface between the eyelid and the eye.

For all four eyelids, we manually create template meshes (Section 3.2.3)
which will be continuously deformed from frame to frame. As shown in
the lower part of Figure 3.2, eyelid tracking starts by deforming the visible
part of the eyelid using constraints from optical flow, tracked eyelid contours
and the surrounding face mesh (Section 3.3.1). We then reconstruct the parts
of the eyelid which were subject to wrinkling and are thus not visible. The
reconstruction produces plausible wrinkles that are visually pleasing (Sec-
tion 3.3.2). Lastly, we use the eyelid templates as control meshes to deform
the face mesh (Section 3.3.3) resulting in a complete facial performance with
accurately tracked eyelids as shown in the bottom right corner of Figure 3.2.

3.2 Data Preparation

In this section we describe how to generate and prepare the input data re-
quired for eyelid reconstruction.

3.2.1 Data Acquisition

The image data is acquired using a multi-view setup consisting of seven
synchronized video cameras, each providing roughly 40 frames per second
at about 1MP. Three cameras are zoomed in to get higher resolution on the
eye region and the other four are split in pairs of two to capture the full
face. As illumination, we mount LED strips on a cage around the actor and
diffuse them with frosted paper. Figure 3.3 shows the setup on the left and
the images captured at one point in time on the right.
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Figure 3.4: Eyelashes pose problems for the reconstruction as they occlude the underly-
ing skin (a) and confuse stereo methods, leading to noisy geometry (c). We
adopt the inpainting approach proposed by Beeler et al. [2012a] to remove
the eyelashes (b), which improves the reconstructed geometry substantially
(d).

3.2.2 Face Mesh Reconstruction

From the acquired images, we reconstruct the spatio-temporal shape of the
face using the method of Beeler et al. [2011], which provides high-resolution
per-frame tracked meshes in dense correspondence. In addition to the
tracked meshes, we also compute per-frame depth maps D using Beeler et
al. [2010], which contain information in areas not covered by the tracked
meshes, such as the eyes. One major problem for stereo-based reconstruction
methods are the eyelashes, which occlude the underlying skin and confuse
stereo matching, causing considerable artifacts in the reconstructed depth
maps. Therefore we adopt the inpainting approach proposed by Beeler et
al. [2012] to remove the eyelashes from the input images before reconstruc-
tion, which greatly improves the reconstruction quality as can be seen in
Figure 3.4.

3.2.3 Eyelid Initialization

We manually create a template mesh for each of the four eyelids (upper and
lower, left and right) once per actor. Per Section 3.3, the template meshes
should consist of a regular grid of vertices vi,j, in which the rows i are aligned
with the predominant wrinkle orientation and the columns j run orthogonal
across the wrinkles. This structure allows to efficiently process the eyelid
area to detect and reconstruct wrinkles (Section 3.3.2). One way to create
the template meshes would be to model them in 3D. This, however, would
require the user to be familiar with 3D modelling. Instead we propose a
simpler means to generate the template meshes by drawing a few curves on
a closed-eye image of the actor (see Figure 3.5, left). From these curves a 2D
regular grid is created (center) and lifted to 3D using the computed depth
maps D to generate the eyelid (right). In our experiments, we have traced 10
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curves for each eye, loosely approximating wrinkle flow lines, from which a
grid of size 120× 100 vertices is generated. We found that the best expression
to use is one where the eyes are closed and the eyebrows are raised, since the
entire eyelid is visible and the skin is least compressed. We will refer to this
as the rest pose later on.

The user also initializes a reference coordinate frame, approximately in the
center of the eye socket, with the z-axis pointing forward and the y-axis
up (Figure 3.5, right). This coordinate frame follows the rigid head motion
computed by rigid stabilization [BB14] and is used both to reconstruct the
eyelid wrinkles (Section 3.3.2) and to compute the wrinkle probability map
described in the next section.

3.2.4 Wrinkle Probability Map

The wrinkle probability map encodes the likelihood that a pixel is part of
a wrinkle, and is computed for each frame from the inpainted and his-
togram normalized images using oriented kernels. Specifically we employ
anisotropic difference of Gaussians N (σx, σy, θ)−N (σx) for seven different
orientations θ in the range of ±20◦, where we set σx = 8 and σy = 0.1σx,
and record the maximum response in the wrinkle map. Other oriented ker-
nels, such as Gabor, could also be applied. While this identifies wrinkles it
also captures a lot of noise caused by areas of similar appearance. To im-
prove the signal-to-noise ratio we propose the following three steps. First,
since the wrinkles we are interested in tend to form concentrically around
the center of the eyes in the images, we rotate the oriented kernel based on
the relative position to the closest eye center. Second, we employ spatio-
temporal hysteresis [Can86], which keeps only pixels whose probability is
either higher than a given threshold ξu, or which are connected to such pix-
els in space or time via some other pixels with probabilities no lower than
ξl. We use ξu = 0.05, ξl = 0.01 for all results. Third, since the inpainting
might have missed a few eyelashes, which can happen if they cluster, we
consolidate wrinkle maps from multiple views and filter wrinkle probabili-
ties where the views do not agree.

3.2.5 Optical Flow

To be able to track the eyelid over time, we compute optical flow F from
one frame to the next using the method of Brox et al. [2004] on the inpainted
images. A source-sink map S encodes the density of the optical flow and is
computed by accumulating the inbound flow vectors for every pixel. Areas
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where the flow vectors diverge are considered a source and appear dark in
the visualization, and areas where they converge are considered a sink and
they appear bright (see Figure 3.6). While generally very reliable, optical
flow performs poorly at the wrinkles. Despite the motion of the eyelid sur-
face during wrinkle formation, the appearance around the wrinkle remains
similar due to shading, and this can confuse the flow computation. The in-
correct flow vectors become very apparent when inspecting the source-sink
map (Figure 3.6, top row). As we can see, the flow compresses on both sides
of the wrinkle and not inside of it, which would be the correct sink.

We devise a method to correct the optical flow. Using guidance from the
source-sink map S, the wrinkle probability map W (Section 3.2.4) is diffused
smoothly to spread out the probabilities. As we do not intend to reduce ex-
isting probability but just spread it out, we iteratively update the probability
map using

Ŵk+1 = max
(

Ŵk,N
(

Ŵk
) )

, (3.1)

where Ŵk denotes the diffused wrinkle probability map at the k-th itera-
tion, Ŵ0 = W and N is a Gaussian filter of size 7× 7 (and an eye region
is approximately 400 pixels wide in the image). The number of iterations
required is determined by the distance of the sink to the true wrinkle loca-
tion, which we found to be consistent in our examples and thus the same
number of iterations (30) were applied to all frames, leading to a smoothed
map as shown in Figure 3.7.c. The gradient of this map ∇Ŵ (Figure 3.7.d)
indicates the direction towards the closest wrinkle and will be used to cor-
rect the flow in a two-step process. First, we diffuse the source-sink map
S (Figure 3.7.e) towards the wrinkle center, as this will determine the area
in which the flow needs to be corrected. To do so we employ a variant of
anisotropic diffusion [PM90]:

Ŝk+1 = Ŝk + λψ
(

c
(
∇Ŵ

)
∇Ŝk

)
, (3.2)

where Ŝk denotes the diffused source-sink map at the k-th iteration and Ŝ0 =
S. Instead of preventing smoothing along the gradient as was the goal in
Perona and Malik [1990] we control the diffusion to spread predominately in
the positive direction of the gradient. As diffusion coefficient c, we therefore
choose

c
(
∇Ŵ

)
=

∣∣∣∣e−(∇Ŵ
κ +1

)∣∣∣∣
0,1

, (3.3)
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where κ (0.01) controls the sensitivity and |·|0,1 clamps to the range of [0, 1] to
warrant the maximum principle. The retaining function ψ(x) attenuates the
decay by multiplying x with a user given parameter (0.1) whenever x < 0,
thus spreading this information to a larger region. The timestep λ was set to
1/8 and the diffusion is run for 60 iterations leading to the result shown in
Figure 3.7.f.

We employ Ŝ to attenuate diffusion of the flow field outside of the wrinkle
neighborhood by including it in the diffusion coefficient as

c
(
Ŝ,∇Ŵ

)
=

∣∣∣∣Ŝe−
(
∇Ŵ

κ +1
)∣∣∣∣

0,1
(3.4)

and then diffuse the flow field F using Equation 3.2. To prevent flow vectors
from overshooting the wrinkle location, we only update them if the wrinkle
probability gradients at the origin and destination of the flow vector point
in the same direction, i.e. the flow remains on the same side of the wrinkle.
Figure 3.6 shows how the original flow and source-sink map (top row) are
corrected by this approach (bottom row).

3.2.6 Eyelid Contours

The time-varying 2D eyelid contours are invaluable constraints for recon-
structing accurate eyelid deformation. For this reason we also pre-compute
contour curves for each frame. The contours are tracked in image space
from a single front view using a two step method. First, we compute an
initial contour shape estimate using the regression framework proposed by
Cao et al. [2012]. This framework has shown to work well on related prob-
lems [Cao+13; CHZ14] but any similar system, such as active appearance
trackers [CET01], may be employed. We then refine the contour position in
image space using optical flow.

For each actor we choose a small set of frames in which we manually trace
the eyelid contour (Figure 3.8.a). Each of these reference contours is repre-
sented by a set of landmarks, placed equidistantly along the contour from
the inner to the outer eye corner. From these samples we then train an
eye-specific contour tracker. In our experiments, we used a reference set
of 20− 30 contours, and 20 landmarks. For convenience, the reference set
was constructed by starting with an initial blink sequence, and was then it-
eratively expanded by adding frames that caused tracking failures (up to at
most 3 iterations).
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To track the contours over the sequence, we apply the contour tracker on the
frames taken from the same view. Each frame’s tracking result is used to ini-
tialize tracking in the next frame. The tracking results provide a good initial
estimate of the contour shape and position (Figure 3.8.b), but are not suffi-
cient to accurately constrain the eyelid reconstruction, and thus need to be
further refined. For each frame we retrieve the most similar reference frame
by comparing the shape of the predicted contour to the reference contours.
We then compute optical flow [Bro+04] between the reference image and
the current image and use the flow vectors to deform the reference contour
into the current frame yielding subpixel-accurate registration to the refer-
ence frame (Figure 3.8.c).

However, sequential frames may be matched to different reference frames,
which could lead to temporal jitter since the reference contours themselves
exhibit some inaccuracies as they are hand-drawn. We thus smooth the con-
tours temporally over the entire sequence using optical flow computed be-
tween frames to produce accurate, temporally smooth eyelid contours.

3.3 Eyelid Reconstruction

In this section, we describe our eyelid deformation model and our method
for robust eyelid reconstruction. Our goal is to evolve the eyelid created
in Section 3.2.3 over time t. The eyelid is represented by a template mesh
L, which consists of regularly sampled vertices vi,j along the horizontal di-
rection j corresponding to the dominant main wrinkle orientation and the
orthogonal vertical direction i, as explained in Section 3.2.3 and illustrated
in Figure 3.5. Our deformation model follows a two-step process: first, as de-
scribed in detail below, we deform the skin based on optical flow and tracked
contour data. This provides the desired behavior in areas visible both in the
current and previous frames and undergoing moderate deformation, but op-
tical flow is unreliable in more challenging cases. Even though the flow cor-
rection described in Section 3.2.5 improves the reliability in regions visible in
both frames, it is unable to guide the deformation of the occluded mesh re-
gions. Thus, for newly occluded regions, vertices will be compressed at the
wrinkle location (see Figure 3.9 (left)). To address this challenge we identify
wrinkle regions and propose a dedicated wrinkle model that is parameter-
ized with a small set of distinctive feature points. These feature points can
be efficiently estimated from the acquired data and allow plausible recon-
struction even in regions with extreme skin deformations.
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3.3.1 Visible Skin Deformation

The first step of our deformation model is driven by the visible areas of the
skin - we deform the eyelid using optical flow where it can be trusted, while
respecting tracked boundary conditions from the surrounding face. The ex-
treme deformations occurring around the wrinkle areas are handled in a
second step, described in Section 3.3.2.

Close inspection of the eyelid reveals that the eye-eyelid interface transforms
mostly rigidly, as it fits tightly around the eye shape while sliding over it.
Consequently, this area preserves its shape based on the underlying eye and
mostly just rotates when the lid opens – unlike the rest of the eyelid, which
undergoes strong wrinkling. To reflect this we combine two linear thin-shell
energies [BS08] to deform the eyelid (ES, EI), guided by three different data
terms (EC, EB, EF). Figure 3.10 illustrates the spatial distribution of these en-
ergies on the mesh. The first energy regularizes the deformation based on
the shape of the lid at the previous frame Lt−1 and is given as

ES = ∑
V

∥∥∥∆Lt−1(vt
i,j − vt−1

i,j )
∥∥∥2

, (3.5)

where ∆Lt−1 is the discrete Laplace-Beltrami operator for the eyelid mesh
Lt−1 and V denotes all vertices of the mesh. The second energy reflects the
deformation driven by the rigidly transforming region at the eye-eyelid in-
terface V I . It seeks to deform this region to match the rest pose, up to a
global rotation Rt:

EI = ∑
V I

∥∥∥∆L0(Rtvt
i,j − v0

i,j)
∥∥∥2

, (3.6)

where ∆L0 is again the discrete Laplace-Beltrami operator, this time com-
puted from the rest pose. Note that the two Laplace-Beltrami operators only
differ in the cotangent weights, which is required to account for skin com-
pression while the lid opens. Figure 3.10.a depicts the regions regulated by
these energies.

The eye-eyelid interface itself does not transform purely rigidly, but under-
goes some deformation due the shape of the underlying eye. We account for
this by incorporating the contours computed in Section 3.2.6 as an energy
term

EC = ∑
VC

‖P(vt
i,j), Ct‖2

` , (3.7)
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where ‖·, ·‖` denotes the point-line distance in image space computed by
projecting vt

i,j into the camera image using the camera projection matrix P.
The contour imposes constraints on the vertices VC at the eye-eyelid inter-
face of the eyelid mesh L. The remaining boundary should deform such that
it is compatible with the face mesh M to alleviate integration later on (Sec-
tion 3.3.3). For the vertices VB in the outer two rings at these boundaries, we
wish to constrain the motion to be similar to the motion of the correspond-
ing points CB on the face mesh. A correspondence cB

i,j ∈ CB is computed as
the closest point in rest pose to the eyelid vertex v0

i,j ∈ VB. Encoding the
correspondence in barycentric coordinates of the adjacent triangle allows to
propagate it in time consistently with the face mesh. The boundary energy
term is then

EB = ∑
VB

∥∥∥vt
i,j − cB,t

i,j

∥∥∥2
, (3.8)

The valid vertices in the interior of the eyelid vt
i,j ∈ VF,t at time t are con-

strained by optical flow. We compute positional constraints cF,t
i,j ∈ CF,t for

these vertices by projecting them into the main camera’s image plane, ad-
vecting them using the optical flow F and elevating them back into 3D using
the depth maps D. A vertex is considered to be valid if it is (1) visible from
the main camera, (2) does not exhibit a high enough wrinkle probability,
and (3) is sufficiently far from the boundary (we use a 5-ring margin from
the border in all our experiments). The flow energy term

EF = ∑
VF,t

γi,j

∥∥∥vt
i,j − cF,t

i,j

∥∥∥2
(3.9)

where γi,j is a confidence weight indicating how much the constraint can be
trusted. The confidence is provided by the multi-view geometry reconstruc-
tion method and is a measure of how similar the neighborhood of this vertex
looks in the different views. This helps overcome outliers caused, for exam-
ple, by occluding eyelashes. Note that the vertex set VF,t associated with
EF may change over time. The vertex sets associated with all other energy
terms remain constant throughout the sequence. Figure 3.10.b illustrates the
mesh regions contributing to each data term.

Combining the individual terms together yields the total energy

E = λFEF + λBEB + λCEC + EI + ES, (3.10)
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where λF,B,C are user parameters. In our experiments we fixed λF = λB = 30
and λC = 300.

Unfortunately, the rotation Rt used in EI (Equation 3.6) is also unknown
and needs to be estimated as well. Following Sorkine and Alexa [2007] we
interleave estimation of deformation and rotation and iterate both of them
three times, starting with estimating the deformation.

3.3.2 Wrinkle Reconstruction

After deforming the visible parts of the eyelid, we process the hidden and
newly occluded areas. For these areas flow computation is not possible and
the best the flow correction (Section 3.2.5) can do is to compress the prob-
lematic vertices into the wrinkle area. Figure 3.9.b depicts schematically
how the vertices from Figure 3.9.a are aggregated at the wrinkle location.
The problem is further aggravated since the multi-view stereo method can-
not accurately reconstruct small scale details (Figure 3.9. (right)) and as a
consequence the geometry in the wrinkle area cannot be trusted. In this
section we describe how we create an anatomically plausible wrinkle shape
and move these vertices into the wrinkle valley in a physically meaningful
manner (Figure 3.9.c).

We start by projecting the wrinkle probability map Wt onto the eyelid Lt

and assign a wrinkle probability wt
i,j to every vertex. The eyelid mesh has

been designed such that it allows to efficiently identify distinctive wrinkle
feature points from which we can construct the hidden part of the wrinkle.
Figure 3.11 illustrates the extracted feature points schematically. Traversing
a wrinkle cross-section from top to bottom will sequentially produce the top
of wrinkle (vtop), the front-buckle (p1), the back-buckle top (p2), the back-buckle
bottom (p3) and the bottom of wrinkle (vbottom). Note that vtop and vbottom cor-
respond to actual vertices of the mesh, where p1, p2, and p3 are points in
space. The individual feature points are computed as follows:

1. Top of wrinkle (vtop): First vertex with wrinkle probability wt
i,j > ξ

when traversing the vertices vt
i,j of a column j from top to bottom.

We set ξ = 0.1 for all our results.

2. Bottom of wrinkle (vbottom): Last vertex with wrinkle probability
wt

i,j > ξ. The vertices between vtop and vbottom denote the wrinkle
segment (vtop to vbottom) (Figure 3.11.a).

3. Front-buckle (p1): Computed by projecting the weighted average p̂1
of all visible vertex positions in the wrinkle segment onto the ex-
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tended plane from vtop (Figure 3.11.b). The weighted average is
computed as p̂1 = ∑ wt

i,jv
t
i,j/∑ wt

i,j over all vertices in the wrinkle
segment, where wt

i,j is the wrinkle probability associated with ver-
tex vt

i,j.

4. Back-buckle top (p2): From human anatomy it is reasonable to assume
the wrinkle folds inwards on an orbit around the eye. To compute p2
we thus rotate p1 inwards around the eye center by half the geodesic
distance from vbottom to the vertex closest to p1 computed in the rest
pose. See Figure 3.11.c for a schematic depiction. The skin com-
presses due to micro-wrinkles. We account for this by adjusting the
rotation magnitude by the area ratio between neighboring visible
skin in the current frame and in the rest pose.

5. Back-buckle bottom (p3): Computed analogously to p2 by rotating
vbottom instead of p1.

Next we want to create the wrinkle as a membrane (Figure 3.11.d) that
smoothly transitions into the visible part of the lid defined by the two ver-
tices vtop,bottom and also closely approximates the three inner feature points
(p1,2,3) defined above. To resolve the compression problem shown in Fig-
ure 3.9.b, vertices are allowed to move freely on the membrane surface, in
order to relax and slide into the wrinkle. We achieve this by alternating be-
tween two stages. The first stage relaxes the vertices in the wrinkle area by
applying one iteration of Laplacian smoothing, which optimizes the surface
to reduce stretching. This moves vertices into the wrinkle, but also poten-
tially pulls them away from the intended wrinkle shape. We therefore apply
a second stage, where we find the nearest vertex on the membrane for every
feature point and constrain their positions to the feature points, while again
solving for the membrane energy. This second step pulls the surface back
towards the desired shape. For both stages we use Neumann boundary con-
ditions at the border of the wrinkle area to ensure a smooth transition into
the visible part of the eyelid. We repeat the two stages six times after which
we found the vertices to have relaxed inside the wrinkle.

Self-Intersection Handling. The aforementioned process is not guaranteed
to be free of self-intersections. Specifically, the formed wrinkle might pro-
trude out from the visible part of the eyelid, or the smoothing might cause
the wrinkle to intersect with itself. Figure 3.12.a shows an extreme case for
illustration. Our main concern is to prevent any visually distracting arti-
facts and thus we wish to resolve self-intersections that are visible from the
outside. To efficiently test for and correct self-collisions we can leverage the
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anatomy of the eyelid. The wrinkles form in such a way that skin farther
away folds over skin closer to the eye. In terms of our eyelid model this
means that vertices further down a cross-section should never occlude ver-
tices which are higher up. Our algorithm sequentially traverses the vertices
in the wrinkle area from vbottom to vtop, where the vertex indices decrease
from bottom to top (bottom > i > top). For every vertex vi, the method tests
if vi is occluded by a lower part of the eyelid (i.e. a triangle that contains at
least one vertex vk,j with k > i). If the vertex is occluded, it is moved in front
of the occluding triangle. Visibility is determined from the point of view of
the main camera. Figure 3.12.b depicts two possible scenarios: while the
method will not report a self-intersection for v1 since it is only occluded by
higher up parts, it will correctly identify and correct v2, which is occluded
by lower parts. Once all vertices of the eyelid have been processed, we re-
verse the order and evaluate the vertices relative to the center of the eye
(Figure 3.12.c). The vertices are now traversed from vtop to vbottom and the
method checks if a vertex is occluded by parts higher up. We alternate be-
tween these two steps until no more occluded vertices detected, which is
typically within 3 iterations. The resulting wrinkle is now guaranteed to be
behind the visible surface (Figure 3.12.d).

3.3.3 Integration

Finally, we integrate the tracked eyelid with the full face, which is provided
by Beeler et al. [2011]. Their method uses the concept of anchor frames, which
states that during a facial performance certain expressions will re-occur and
they thus propose to pick a reference frame that is similar enough to the an-
chor frames to be able to track directly to them. This concept is also very use-
ful in our scenario, as we found that tracking from closed eyelids is prefer-
able. We therefore pick a frame with a neutral expression and closed eyelids
as reference frame and construct the eyelid mesh from this frame to facilitate
the integration with the face mesh (Figure 3.5). The lid is naturally aligned to
the face mesh and we can establish dense correspondences between the two.
We then use the eyelid to drive the deformation of the face mesh in this area.
Since we made sure that the boundary of our eyelid deforms in a compatible
manner to the face mesh (Section 3.3.1) the integration is seamless.

As there are many eyelid wrinkles at the micro- and mesoscopic scales dur-
ing deformation, we apply mesoscopic optimization and temporal smooth-
ing following Beeler et al. [2011] to produce temporally consistent high fre-
quency details seamlessly across the full face including the eyelids.
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3.4 Results

Eyelids are extremely unique and can produce extremely different wrinkles.
This variance is not only visible from person to person but the shape and
temporal deformation of the eyelids also differ substantially between the
left and right eye of the same person. To demonstrate this variance we cap-
tured both left and right eyelids of three subjects. We show a selection of
wrinkle reconstructions in Figure 3.13, which includes both single and dou-
ble wrinkles of varying intensity. The shape of the eyelid does not just differ
due to wrinkling but also depends on the underlying eyeball, as can be seen
in Figure 3.13.e, where the corneal bulge of the eye is visible on the eyelid,
even though the eye is fully closed. We further demonstrate the variation of
eyelids within the same person in Figure 3.15. Notice for both actors B and C
that one eyelid has two wrinkles while the other has only one. Additionally
we illustrate in Figure 3.15 that our eyelid reconstructions naturally com-
plement high-resolution facial capture methods, as the eyelids fit seamlessly
into the face, increasing the reconstruction fidelity.

In addition to the intricate shape details of static eyelids, eyelid wrinkles also
exhibit strong variation in their temporal formation. Figure 3.14 shows how
a wrinkle is formed over time. During wrinkling, skin is folded in a rolling
manner, which can be best seen in the accompanying video.

The accurate location where wrinkles form is essential for faithful repro-
duction. Figure 3.16 shows an overlay of the eyelid onto the input image
and demonstrates how well the formed wrinkles coincide with the captured
data.

As a last example, we demonstrate how the captured eyelids may be used
in the creation of a digital double for an actor. The result of our system is
combined with the eyes of the actor provided by Bérard et al. [2014] and we
manually complete the model by sculpting the interface between the eye-
lid and eye as well as adding eyelashes and eyebrows. The renders shown
in Figure 3.17 were created using Renderman with built-in shaders.

Our experiments were run on a Windows i7 machine with 32GB RAM and
input images of 1176× 864, an eyelid template mesh of approximately 12,000
vertices and a face mesh of roughly 1 million vertices. For this setting, our
average computation times per frame were 24.7 seconds per camera for the
wrinkle probability map creation, 26.8 seconds per camera for flow correc-
tion, 5.2 seconds per eye for contour tracking, 11.3 seconds per eyelid for the
deformation and 24.5 seconds per eyelid for the integration step.
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3.5 Conclusion

We have presented the first method for detailed spatio-temporal reconstruc-
tion of eyelids. Our approach combines a geometric deformation model with
image data, leveraging multi-view stereo, optical flow, contour tracking and
wrinkle detection from local skin appearance. Our results demonstrate that
the model is able to provide a high-resolution mesh that deforms over time,
reflecting detailed dynamic skin features and plausible deformations even
for regions that are occluded or undergo extreme deformations. As the eye
region is essential for conveying emotions, we believe that our method is
an important step towards capturing expressive facial performances and the
creation of realistic digital doubles.

Limitations and Future Work. Currently, our pipeline is not fully auto-
matic and relies on a few manual steps, such as initializing the contour
tracker with a few hand-drawn contours, and specifying the principal di-
rection of the wrinkles when creating the eyelid mesh. While these manual
steps can be done in a few minutes and do not require artistic skills, we plan
a fully automatic pipeline for the future. By design, we can only reconstruct
wrinkles that are identified by the wrinkle probability map, which in turn
depends on the underlying image quality. Low resolution, motion blur or
low contrast can cause detection to fail and a more sophisticated means of
computing and extracting the wrinkles would be required.

Some expressions such as extreme grinning or squinting can cause wrinkle
formations that our method does not handle well. For example, wrinkles in
the radial direction may be filtered out by our wrinkle detection scheme (Fig-
ure 3.18.a). Figure 3.18.b depicts a case in which the skin under the wrinkle
is compressed and bulges outwards rather than inwards, contradicting the
assumptions of our model. In the future, we would like to extend our model
to handle such cases. The ability to separate wrinkles depends on resolution,
both of the wrinkle map and the proxy geometry. Figure 3.18.c demonstrates
how very close wrinkles may be incorrectly merged if insufficient resolution
is used.

Furthermore, as we compute several data terms, such as the eyelid contours,
relative to the front camera, we can only handle minor head rotations. While
this is sufficient for many capture scenarios, such as helmet cameras, extend-
ing the method to allow for large head rotations could be an interesting av-
enue for future research. Finally, our system so far focuses on performance
capture and replay. For future work, an interesting avenue would be to add
animation control, use our data to automatically create convincing eyelid
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rigs, and investigate performance and detail transfer of the eye region to vir-
tual characters different than the actor, thereby bringing the expressiveness
of virtual characters to a new level.
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Figure 3.5: The eyelid mesh is generated by manually drawing a few curves on the rest
pose frame (left). From these contours a 2D grid is created (center) with the
origin v0,0 in the top left corner, rows i running down and columns j to the
right. From this grid the 3D eyelid mesh L is created using the depth maps
and a reference coordinate frame is established (right).

Figure 3.6: Wrinkling poses problems for optical flow since the appearance changes and
parts become occluded. The original flow shown in the top row is inaccurate
around the wrinkle and compresses on both sides of the wrinkle, as shown in
the source-sink map. Correcting the flow provides the desired behavior where
the flow converges into the wrinkle instead. A second example with a double
wrinkle is shown in the last column.
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Ŵ ŜS
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Figure 3.7: To correct the flow maps we employ different variants of diffusion (Sec-
tion 3.2.5). First the wrinkle probability map (b) is diffused isotropically
with retention (c). The gradient of the diffused map (d) encodes the direc-
tion to the closest wrinkle and is employed to diffuse the source-sink map (e)
anisotropically with retention (f) and finally the flow as shown in Figure 3.6.

Figure 3.8: Eyelid contour tracking pipeline: (a) subset of reference contours used for
training, (b) initial tracking produces an estimate of the contour shape, but
is not accurate enough for good localization, (c) the reference contour clos-
est to the initial estimate is deformed using optical flow to refine the initial
estimate.
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a b c

Figure 3.9: Left: During wrinkling vertices are compressed from their initial position
(a) into the wrinkle location (b) since they become occluded. Section 3.3.2
describes how the proposed deformation model moves them into the wrinkle
in an anatomically plausible way (c). Right: Estimated depth (blue line) is
inaccurate at the wrinkle location since the multi-view stereo method cannot
resolve small scale details given the input image resolution.
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Figure 3.10: (a) The visible skin deformation is regulated by two thin-shell energies: ES
regulates most of the eyelid for temporal smoothness, and EI regulates the
eye-eyelid interface for rigidity relative to the rest pose. (b) Regions con-
tributing to each data term: tracked contours contribute to EC, the interface
with the face mesh to EB, and visible interior regions contribute to the flow
term EF.
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Figure 3.11: (a) The top and bottom vertices bounding a wrinkle area in the cross section
are defined as vtop,bottom. These are the last vertices where we rely on the re-
sult from Section 3.3. (b) The front-buckle p1 is computed by projecting the
weighted average p̂1 of all visible vertices in the wrinkle area along the ray
to the main camera onto the extension from vtop. (c) The two back-buckle
points p2,3 are computed by rotating p1 and vbottom around the eye cen-
ter. (d) The wrinkle is constructed as membrane from these feature points
allowing the vertices in the wrinkle area to relax into the wrinkle.

v 1

v 2

v 3

a b c d

v bottom

v top

v 1

v 2

Figure 3.12: The constructed wrinkle is not guaranteed to be free of self-intersections (a).
The proposed method resolves self-intersections leveraging the fact that it
is always the upper part of the lid folding over the lower. Thus we traverse
the wrinkle area from bottom to top testing for occlusions by lower parts
(b). We then move the occluded vertices in front of the occluding surface
and reverse the procedure from top top bottom testing for occlusions with
respect to the eye (c). Alternating these steps several times produces an
intersection free wrinkle (d).
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Figure 3.13: We are able to reconstruct complex eyelids including a) thick wrinkles, b)
thin wrinkles, c) double wrinkles close together, d) multiple distant wrin-
kles, and e) as an eye closes and wrinkles disappear completely, notice the
subtle bulge on the lid caused by the cornea.

Figure 3.14: Looking closely at the formation of a wrinkle we see the complex temporal
dynamics of an eyelid. Our method is able to capture the skin folding under
and creates a plausible eyelid shape, as seen from front (top) and from a side
view cut-away (bottom).
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Figure 3.15: Left: Eyelids can vary in shape quite substantially between people, as well
as within the same person - notice the double wrinkles in one eye and single
wrinkle in the other for both actor B and C. Right: Our reconstructed
eyelids blend seamlessly with high-resolution captured faces.

Figure 3.16: We demonstrate the accuracy of our reconstructed eyelids by overlaying
the mesh on an input image. The alignment of the wrinkles indicates the
accuracy of the results.
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Figure 3.17: Our eyelid reconstructions can be used to make high-fidelity digital dou-
bles. Here we sculpted the thin interface to the eye, and added eyelashes,
eyebrows, and eyes.

ca

b

Figure 3.18: A challenging grinning expression (left), the corresponding wrinkle map
(center) and the reconstructed geometry (right). This expression pushes
the limits of our method as radial wrinkles (a) are filtered out during the
wrinkle map extraction, a skin crease is incorrectly modeled as an eyelid
wrinkle (b) and very close wrinkles are merged during the geometry recon-
struction (c).
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C H A P T E R 4
Performance Enhancement

As explained in Chapter 1, realistic face modeling has long been considered
a grand challenge in the field of computer graphics, for numerous reasons.
Overcoming this challenge is also difficult since human faces can accommo-
date such a large range of expressiveness, from the most subtle hint of emo-
tion to exaggerated exclamations. In real-life communication, subtle changes
in facial deformation and dynamics can have a significant impact on the per-
ceived expression and meaning conveyed by an individual. For example, a
genuine smile may differ from a forced smile only in the slight tensing of
one’s cheeks. These subtle changes also contribute to the individuality that
makes any particular person’s face unique. Two different individuals may
have a vastly different range and style of facial expressiveness.

A great deal of progress has been made toward solving this grand challenge,
including sophisticated facial rigs, skin rendering algorithms, facial motion
capture devices, and animation interfaces. However, despite these signifi-
cant research contributions, creating synthetic facial performances that are
as compelling and as expressive as a real actor’s performance remains an
elusive task. As the desired level of realism increases, animators must spend
increasing amounts of time to incorporate the nuances of deformation that
are characteristic of a particular actor’s performance. At some point, the
details become so subtle that they even elude the most skilled animators.
Facial motion capture techniques based on marker-tracking, depth cameras
like the Kinect, and fitting parametric models to video, also have a limited
spatial and temporal resolution. Fine-scale details may escape the fidelity of
the capture technology, especially when head-mounted devices are required.
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These missing details contribute to an unfortunate result: many attempts at
realistic facial animation fall prey to the “uncanny valley” effect (Section 1.1)
and are perceived as eerie and lifeless.

In this Chapter, we contribute to the second step in the facial content cre-
ation pipeline - Augmentation (Section 1.2) - by targeting the subtle details
of deformation and timing that escape both hand animation and motion
capture systems and render an individual’s facial performance unique and
compelling. To this end, we propose a novel data-driven technique to en-
hance the expressiveness of facial geometry and motion. We start by record-
ing a highly-detailed representative performance of an individual in which
he or she explores the full range of facial expressiveness. From this data,
our system extracts a model of expressiveness that encodes the subtleties
of deformation specific to that individual. Once built, this model is used
to automatically transfer these subtleties to lower-resolution facial anima-
tions that lack expressive details. The input animation will be augmented
with the subtle deformations particular to the individual’s face, increasing
the perceived expressiveness and realism. Our system also takes advantage
of the timing information in our database by enhancing facial keyframe in-
terpolation so that the nonlinearities of expression formation exhibited by
the real actor’s performance are reflected in the interpolated and enhanced
result. We demonstrate the robustness of our approach by enhancing a va-
riety of input animations, including hand-animated facial rigs, face models
driven by low-resolution motion capture data, morphable models animated
using video data, and performance reconstructions generated with a Kinect
using recent faceshift technology1. After our enhancement, the resulting an-
imations exhibit the nuances and fine details of the original performance.
Finally, we show that our algorithm outperforms the current state-of-the-art
approach for data-driven facial performance synthesis [Ma+08].

In summary, the main contributions of this Chapters are:

• A framework for data-driven spatial enhancement of low-resolution
facial animations, using a compressed shape space.

• A novel method for enhancing facial keyframe interpolation of tem-
poral performances.

• Validation of our framework on four different types of input facial
animations, with a direct comparison to state-of-the-art.

1www.faceshift.com
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Figure 4.1: Our spatial enhancement approach takes as input a low-resolution anima-
tion and a high-resolution performance database, and enhances the input
animation with actor-specific facial details.

4.1 Overview

Our goal is to enhance low-resolution facial performances by adding subtle
facial features such as small wrinkles and pores, and/or temporal re-timing
to match the dynamics of a real actor. The resulting animations should re-
spect the underlying artistic content and enhance the expressiveness of the
intended performance. This is achieved through the use of a high-resolution
temporally coherent performance database, as illustrated in Figure 4.1.

Preprocessing. We intend to process low-resolution animation sequences
that contain the creative intent of the animator or actor, but lack facial ex-
pressiveness and fine-scale details. In order to enhance the details, for a
given actor, we build a dense performance capture database D, consisting
of |D| ≈ 1000 frames of facial geometry with consistent connectivity, cap-
tured using a high-resolution (e.g., pore-level detail) performance capture
technique [Bee+11]. The database D is encoded into a shape space, which
enables matching, projection and interpolation. This shape space is defined
using the polar decompositions of the deformation gradients [SP04] with re-
spect to a neutral frame d0, and thus effectively represents the stretching and
rotation of each triangle (Section 4.2).

Spatial Performance Enhancement. Given an input animation A, our en-
hancement algorithm (Section 4.3) combines its low-frequency components
with the high-frequency components of corresponding frames from D. For
performance enhancement, each input frame is projected onto the shape
space spanned by D, and the relevant high-frequency components are in-
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terpolated. These high-frequency details are then composed with their low-
frequency counterparts, originating from the input frame, to generate the
augmented mesh. The result is an upsampled version of the input anima-
tion, retaining the art-directed performance but enhanced with actor-specific
expressiveness and details.

Temporal Performance Enhancement. Often, art-directed facial animations
are created by hand, for example using a facial rig. In this case, it is common
practice to represent the animation as a set of key-frames and then interpo-
late the in-between frames. Unfortunately, this interpolation may not match
the true dynamics of the real actor, resulting in an unrealistic performance.
As an added benefit of our performance enhancement system, we can aug-
ment the temporal component of the performance in a data-driven manner
(Section 4.4). Keeping the artist in the loop when defining key-frames, we
devise a new interpolation scheme to re-time the animation according to the
actor-specific dynamics encoded in the database.

4.2 Preprocessing

Several preprocessing steps can be performed once per-actor. The database
must be constructed (Section 4.2.1), and encoded into our shape space (Sec-
tion 4.2.2), in a region-based manner (Section 4.2.3).

4.2.1 Performance Capture Database

We acquire a dense database of detailed facial geometry that includes pores,
wrinkles and expressive deformations. The actor performs a number of
short but expressive sequences that are stored in the database D. The high-
resolution geometry must be in full correspondence over time so that the
motion and deformation of every point on the face is known. The database
can be acquired using any high-resolution 3D facial performance capture
method and we employ the passive approach of Beeler et al. [2011]. In this
method, multi-view video sequences are recorded and high-resolution per-
frame geometry is computed with the static reconstruction method of Beeler
at al. [2010] at approximately 40 frames per second. We then temporally
align multiple sequences using dense image-space matching and per-frame
geometry propagation, yielding a temporally consistent database of 24 ex-
pressive performances (in full vertex correspondence). Figure 4.2 shows a
subset of poses from the database for each of our two actors.
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Figure 4.2: Performance capture database samples for our two actors

4.2.2 Data Encoding

Frequency Separation. Once the database is captured, we separate the low-
and high-frequency components of D using a low-pass filter operation f (·).
We create the dataset f (D), where f (M) for a set of meshesM denotes the
set of all its filtered meshes, i.e., f (M) = { f (m)|m ∈ M}. In our work,
this separation is conducted using implicit curvature flow [Des+99], an iter-
ative approach where in each iteration we find new vertex positions Xn+1

by solving the system:

(I − λdtK)Xn+1 = Xn,

Kij =

{
− 1

4Ai
(cotαj + cotβ j) i 6= j

−∑k 6=i Kik i = j

(4.1)
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where αj and β j are the two angles opposite to the edge in the two trian-
gles having the edge eij in common, Ai is the sum of the areas of the tri-
angles having xi as a common vertex, and λdt was chosen to be 125 in all
our experiments. By using a large λdt, we require only a single iteration
to aggressively attenuate the high-frequency components, while preserving
roughly the same levels for the low frequency part. During performance en-
hancement we will also separate the frequencies of the input animation (Sec-
tion 4.3.1 and Figure 4.5), so this step creates a common ground for all differ-
ent types of inputs presented in this work and enables an accurate matching
and enhancement process. Note that this process preserves the size of in-
put triangles, which might yield very small or nearly degenerated ones. To
avoid the numerical instabilities caused by such triangles, we also perform
one iteration of uniform Laplacian smoothing after the implicit fairing pro-
cess.

Encoding. Finally, the database frames are encoded into the shape space.
For every database frame d ∈ D, the deformation gradients encoding the
difference between the mesh and its low-frequency counterpart f (d) ∈ f (D)
are encoded and saved, denoted by dh. These high frequencies will be used
as details, and are transferred onto the input animations during the spatial
enhancement process (Section 4.3.4).

For the projection, we encode the low-frequency component relative to the
low frequency neutral pose f (d0). Since the input is fairly low resolution,
the full shape space of the high-resolution mesh contains redundant infor-
mation. To reduce the runtime and memory footprint, we encode into a
compressed shape space. Rather than encoding the deformation gradient per-
triangle, we uniformly cluster the high-resolution mesh into patches and
encode only the average deformation gradient for each patch. Patches are
computed using a random seed-and-grow approach. In practice, we found
that patches of 100 vertices provided ample compression for our high reso-
lution meshes. The shape space vector size is thus reduced by a factor of 100.
Figure 4.3 illustrates the clustering on one of our datasets. We denote the set
of all compressed shape space vectors in our database as D̃. Note that alter-
native compression schemes are possible, for example mesh simplification.
However, deformation gradients would have to be computed a second time
on the simplified mesh, and therefore we use the clustering approach.

4.2.3 Regions

Tena et al. [2011] show that region-based face models generalize better than
their holistic counterparts. Regions are a partition of the mesh faces into
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Figure 4.3: Triangle clustering for encoding into a compressed shape space. We encode
the average deformation gradient for each patch rather than per-triangle de-
formation gradients.

what are usually groups with common functionality. The regionsRwe have
chosen to use are based on Tena et al.’s work, which clusters the vertices ac-
cording to their correlation in movement. While using the same clustering,
we distinguish between voluntary regions, controlled by the actor directly,
and involuntary regions. The latter are areas that deform indirectly, governed
by the voluntary regions. As shown in Figure 4.4, out of the total 13 re-
gions described by Tena and colleagues, we classify four as voluntary and
use them in our matching process: left and right halves of the mouth, and
the left and right eyebrows. This classification enables us to detect asym-
metrical expressions as well as decoupling of the eyes and mouth. Note
however, that as elaborated in Section 4.3.3 and decipted in Figure 4.4, this
is a soft-boundary decoupling - each mesh triangle is weighted according to
its geodesic distance from each of the regions. In Section 4.3.4, these regions
will be used both for matching and blending of the high-frequency details
originating from several database meshes.

4.3 Performance Enhancement Model

Our data-driven performance enhancement approach consists of five steps
for each frame. First, the frame is brought into correspondence with the
database geometry and we perform frequency separation (Section 4.3.1).
Next, the frame is encoded into the shape space (Section 4.3.2). Then, we
project it onto the shape space of the database in a matching step (Sec-
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Figure 4.4: The four voluntary regions that are used in the matching process. The
weights smoothly decrease from 1 (red) to 0 (blue).

tion 4.3.3). Based on the matching, we interpolate the relevant high-frequency
details from the database and compose them with the low-frequency input
mesh (Section 4.3.4). Finally, we reconstruct the resulting mesh, and assign
per vertex colors to it by linearly interpolating the colors from the same
database frames (Section 4.3.5).

4.3.1 Input Animation Pre-Processing

Input Sources. The input animations A can come from any source, but
in industry these are most often created using a manually-controlled rig or
driven by sparse marker-based motion capture. For one of our experiments,
we use a facial rig as input built from a set of B ≈ 40 blendshapes. These
are based on static scans of an actor according to the facial action coding
system (FACS) [EF78]. This rig can be fully controlled manually, allowing
artists to create arbitrary animations. The rig only spans an approximate
subset of facial expressions, and there is a natural limit on the accuracy and
number of animation parameters an animator can evolve over time. Some
example snapshots from an animation created using this facial rig are shown
in Figure 4.10 (left column).

Additionally, we evaluate our algorithm on three other input sources, in-
cluding sparse marker-based motion capture data, a low-resolution mor-
phable model fit to a monocular video sequence [Dal+11], and a blendshape-
based facial animation driven by Kinect data using faceshift [Wei+11].

Registration and Frequency Separation. The input animationAwill have a
different geometric structure thanD (e.g. it could be a lower resolution mesh
or possibly just marker positions). In our examples the actor is the same for
A and D, although this need not be the case. In theory, we could transfer
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facial details to different actors, although in practice, the facial properties of
the face in the database D and the animation A should be similar to achieve
visually plausible results.

To be able to work in the same shape space and to provide a means for de-
tail transfer, we obtain a dense correspondence between a database neutral
frame d0 and the neutral frame a0 from our low resolution input source. We
start by aligning a0 to d0 using the non-rigid registration method of Li et
al. [2008]. This establishes a correspondence between the database meshes
and the input data that we can propagate over the entire input. Naturally,
the number of vertices nd for a pose in D is much larger than the num-
ber of vertices na for a pose in A. For example, in the case of the face
rig, na ≈ 4000, whereas nd ≈ 1.2M. We therefore employ a linear defor-
mation model to propagate the animation specified by A to the registered
high-resolution neutral pose [Bic+08b]. The resulting animation Ā matches
exactly the motion of A and is in dense correspondence with our database
D. We then separate the low frequencies in Ā using the same procedure as
with the database (Section 4.2.2), to obtain f (Ā). f (Ā) is now a standard
form that is similar to f (D), no matter the source of the original animation
A. The results of this process are decipted in Figure 4.5.

4.3.2 Encoding

As mentioned in Section 4.1, our performance enhancement uses defor-
mation gradients [SP04]. In order to achieve accurate matching, every
smoothed input frame f (ā) ∈ f (Ā) is first rigidly aligned to the database
using the method of Horn [1987], and only then is the frame encoded. The
deformation gradients are encoded with respect to a smoothed version of
a database neutral pose, into a vector denoted a`. As explained in Sec-
tion 4.2.2, a compressed version ã of the same vector is created to be used in
Section 4.3.3. The rotation Ra and translation Ta matrices that are produced
during the alignment operation are also stored along with the deformation
gradients vector, and all are used for reconstruction in Section 4.3.5.

4.3.3 Matching

In order to transfer the subtleties of facial details recorded in our database
to a low-resolution input mesh we must locate the corresponding high-
frequency data in our database. This can be formulated as a projection of
the compressed shape space vector ã of the input frame onto the database.
In other words, we represent the input frame as a convex combination
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Figure 4.5: Input frame pre-processing for all input sources (top to bottom): Hand an-
imated rig, tracked mocap markers, depth camera driven rig and monocu-
lar video based capture. The input frame (left), drives a deformation of the
database neutral pose (middle) and is standardized using smoothing (right).
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of weights w that represents a point in the shape space, spanned by the
database, that is closest to the input frame, i.e.,

min
w
‖(D̃ ·w)− ã)‖, s.t. ∑

wi∈w
wi = 1, wi > 0 (4.2)

where each column i in the matrix D̃ represents the compressed shape space
vector of frame i in our database.

Previous works have restricted this matching to affine weights [Bar+09].
However, in our experiments, affine weights distorted fine features such as
pores and we therefore enforce convex weights, solving the resulting mini-
mization problem using a QP solver. Note that the weights quickly fall off to
nearly zero outside the immediate neighborhood of ã, yielding only a small
number of relevant shapes to interpolate. Furthermore, in Section 4.2.3 we
describe a partition of the face into voluntary regions, R. This implies that
throughout the matching process each region of the face is treated inde-
pendently. However, actual facial expressions are not decoupled between
regions, as a genuine smile is shown on the eyes as well as on the mouth.
Therefore, in our method, each region is represented as a vector !r of weights
per mesh triangle. The triangle weights are constant within the region, and
decay in a Gaussian way as the geodesic distance from this area grows. This
means that, with diminishing influence, areas outside the region participate
in the matching process, yielding a subtle coupling effect. We incorporate
these weights in a weighted least squares manner, solving:

(D̃T · diag(!r) · D̃)wr = D̃T · diag(!r) ã (4.3)

∀r ∈ R,

with the aforementioned convex constraints, where diag(v) is the diagonal
matrix with v on its diagonal. In order to save runtime and memory con-
sumption, the matrices (D̃T · diag(!r) · D̃) are precomputed per region, and
only D̃T · diag(!r) · ã are computed during the matching process.

4.3.4 Interpolation

Having computed the weights per region, we are now able to generate
the highly detailed augmented mesh. The high-frequency details of the
database are linearly blended according to the computed weights with re-
spect to the region weights !r. Formally, given a triangle t and a component
i of its deformation gradient, the interpolation scheme is:

bh =
|R|

∑
r=0

Dh
ti

wr !r,t

∑|R|ρ=0 !ρ,t
(4.4)
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Figure 4.6: To create the desired forehead wrinkles on the left, which are not present in the
database, our enhancement technique blends between two different database
frames.

where Dh consists of columns which are the high-frequency detail vectors
dh, Dh

ti
is the row in Dh that corresponds to the i-th component of the defor-

mation gradient of triangle t, and !r,t is the t-th element in the vector !r. Note
that, per region r, the length of the matched weights vector wr is |D| while
the length of !r is the number of triangles in a mesh. As mentioned above,
this interpolation scheme blends the database within each region according
to the matched weights and provides a normalized interpolation between
regions. As a final step before reconstruction, the blended high-frequency
details bh are composed with the low-frequency deformation gradients of
the input animation a`. This is done by converting the stretching and ro-
tation vectors of bh and a` back to the deformation gradients’ matrices and
multiplying them. This process is equivalent to applying the blended defor-
mation gradients representing the high-frequency details to the smoothed
input animation mesh, as a deformation transfer [SP04], only without ex-
plicitly producing the intermediate low-frequency mesh.

4.3.5 Reconstruction

Having the final deformation gradients, we reconstruct the mesh using a
slightly modified version of the Laplace-Beltrami operator [Bot+06]. First,
in the interest of runtime performance, the Laplace-Beltrami operator is
considered to be similar for all meshes, and so it is precomputed and pre-
factored once for the neutral pose. This assumption allows us to only use
back-substitutions during reconstruction and has proven to be reasonable
in all our experiments. Second, since the final deformation gradients are
composed from several different ones, some artifacts tend to appear along
the mesh boundaries. To suppress this artifact, we add a weighted regu-
larization term to the reconstruction system of equations: in addition to
the Laplace-Beltrami operator, we minimize the 1D Laplacian term along
the mesh boundaries. In all our experiments, a minimal weight factor of
w = 0.05 was sufficient to completely eliminate the artifacts.
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After reconstructing the final mesh, we align it to the database using the
method of Horn [1987] and we then apply the inverse transformations R−1

a
and T−1

a that were calculated during encoding, to restore the mesh to its
starting position.

As a final step, we perform the same interpolation scheme described in Sec-
tion 4.3.4 on the vertex colors of the database meshes, and apply the result
to the final mesh. An illustration of our enhancement technique is shown in
Figure 4.6 for the forehead regions. Since the given expression is not in the
database, two database frames are blended to create the closest match.

4.4 Temporal Performance Enhancement

In facial animation, the dynamic behavior of a performance greatly affects its
perceived realism. Often, correct dynamics can be difficult to achieve. For
example, when an animator creates a facial animation by rigging keyframes,
the keyframes are interpolated linearly or with some hand adjusted ease-
in/ease-out curves to create the full animation. This simple interpolation is
insufficient to capture the timing of a real performance, and affects realism.
In this section, we describe a method to automatically adjust the temporal
behavior of the keyframe interpolation in a data-driven manner, using the
previously described capture database.

The core concept that enables the temporal performance enhancement is the
extension of the previously described frame projection to a sequence pro-
jection operator (Section 4.4.1). In short, given two sequences, this operator
determines how one of the sequences can be approximated by the other, and
how close the approximation is.

To start the process, the artist picks two keyframes they wish to interpolate,
as well as the length of the desired motion. These two keyframes are then
treated as a sequence of length two, and are projected onto our compressed
shape space using the sequence projection operator to find the closest match-
ing sequence. The temporal behavior of the matched sequence is analyzed,
and this information is used to generate a well-timed interpolation of the
input frames (Section 4.4.2). The result is an animation that closely follows
the data-driven dynamic behavior while maintaining the user’s artistic in-
tent and spatial features. Note that the process is invoked by request of the
artist, since temporal performance modification may not be desired in every
scenario.
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4.4.1 Sequence Projection

Sequence projection is an extension of the single frame projection operator
described in Section 4.3.3. Given an input sequence, we wish to find the clos-
est sequence in the database. This is a non-trivial task since the sequences in
the database can have different dynamics and temporal behavior, resulting
in different timing. For the sake of simplicity, we disregard the partitioning
of the face into regions in this explanation, although the method is applied
to each region independently.

As mentioned in Section 4.2.1, our capture database consists of sequences
transitioning from the neutral pose to an extremity and back. We consider
each such sequence as a temporal continuum, sampled uniformly at the se-
quence frames. The task of projecting an input sequence, α, onto such a
sequence in the database, β, is simply one of finding a valid mapping be-
tween each frame of α to the time-line defined by β. A valid mapping is
one that preserves the temporal order: a later frame in the input sequence α

must be projected onto a later point in the time-line defined by the database
sequence β.

Given an input sequence α, consisting of m frames {α0...αm−1}, and a
database sequence β, consisting of n frames {β0...βn−1}, we start by pro-
jecting each frame αi onto each of the linear segments {β j, β j+1} ⊂ β, and
store the resulting blend weights as a matrix T, as well as the distance (or
error) of the projected points from the original ones as a matrix E:

Ti,j = Proj(αi, {β j, β j+1})0, 0 ≤ i < m, 0 ≤ j < n− 1

Ei,j = ‖αi −
(
Ti,jβ j + (1− Ti,j)β j+1

)
‖

(4.5)

where Proj(v,S) is a vector of blend weights that represents the static pro-
jection (Section 4.3.3) of vector v on the set S , and Proj(v,S)0 is the first
element of this vector.

Next, we wish to identify the valid mapping P that yields the minimum error.
This means that we search for a monotonic function that assigns a segment
{β j, β j+1} to every input frame αi in a valid way, and minimizes the sum of
projected distances. We solve for P that minimizes the following objective:

min
P

m−1

∑
i=0

Ei,P(i)

s.t. P(i1) ≤ P(i2) ∀i1 < i2.

(4.6)

We solve this minimization problem using dynamic programming. This pro-
cess is performed for all the sequences in the database, and the resulting pro-
jected sequence corresponding to the input is chosen to be the one yielding
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the minimal error. Note that in most cases the input sequence α is projected
only to a part of the chosen database sequence, which we refer to as the
projected sub-sequence.

4.4.2 Temporally Driven Interpolation

We now describe how we use the sequence projection operator to interpo-
late the selected keyframes in a data-driven manner. As mentioned earlier,
the user selects the desired length of the resulting sequence, m, and two end-
point keyframes of the resulting sequence, α0 and αm−1. As a first step, the
sequence (of length two) {α0, αm−1} is projected onto the database to find the
closest sub-sequence. In case the input matches only a portion of a database
sequence, the user may choose to extend the matched sub-sequence to the
full corresponding database motion.

The matched sequence β = {β0...βn−1} has exactly the dynamics we want,
but typically contains a different number of frames n than the desired m. To
rectify this, we start by creating a new sequence β̂ = {β̂0...β̂m−1}, which is
a uniform interpolation of the ends of the selected subsequence {β0, βn−1}.
Then, to get the right dynamics we wish to position each frame β̂i on the
continuous time-line uniformly sampled by β. This is accomplished by pro-
jecting β̂ onto β, again using the sequence projection operator. If a frame β̂i
is mapped to the segment {β j, β j+1} with blend weight ti, one could deduce
that β̂i is projected to the point j+ (1− ti) in the continuous time-line. These
time stamps are recorded for each frame.

As a final step, the two input keyframes α0, αm−1 are linearly interpolated,
creating the sequence α̂ = {α̂0...α̂m−1}. The frames are assigned the previ-
ously computed time stamps t(β̂i), forming a non-uniformly sampled piece-
wise linear time curve. The curve is then re-sampled using the shape space,
in uniform intervals of dt = n/m for the final animation. The result is a
sequence composed solely of the artistically generated keyframes, but with
the temporal behavior of the matched sequence of the database.

Figure 4.7 illustrates the result of the re-timing process, performed on a
rigged transition between the rest pose and a smile. In this figure, we
plot the time versus displacement of a vertex positioned on the edge of the
mouth. An input linear interpolation is shown in red, and the closest match-
ing database sequence is shown in dark blue. The database sequence con-
tains the non-linear dynamics of the actor, but it represents a larger smile, i.e.
the amount of displacement extends further than the input keyframe. The
input sequence directly matches the first part of the database smile, where
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Figure 4.7: A transition between the rest pose and a smile is enhanced using the temporal
enhancement method. Here we show linear interpolation of one vertex (red),
temporally augmented interpolation according to the closest matched sub-
sequence (cyan), and temporally augmented interpolation according to the
extended full sequence (purple). The actual temporal behavior of the database
expression is presented for reference (blue).

the motion is fast and relatively linear. If we re-time the input sequence us-
ing this direct match, we obtain the sub-sequence behavior shown in cyan,
which is not much of an enhancement. However, should the artist choose
to re-time the input after extending the matched sub-sequence to the full
database smile, we obtain temporal behavior that matches the captured data
as closely as possible, while maintaining the artistic intent (shown in pur-
ple).

The accompanied video exhibits a rigged transition of two key-frames, after
being temporally and spatially enhanced. In order to keep the full integrity
of the artistic intent, we propose to perform temporal enhancement before
the spatial enhancement described in Section 4.3 is applied, and to enhance
between only two interpolated keyframes at a time, although these are not
constraints of the method.

4.5 Results

Our dynamic performance enhancement algorithm increases realism in fa-
cial animations by adding fine-scale details and expressiveness to low-
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Figure 4.8: Validation of our performance enhancement on a down-sampled high-
resolution performance. Left: select frames from the high-resolution scan.
Middle: downsampled inputs to the algorithm. Right: our enhanced result
very closely matches the original.

resolution performances. In order to validate our technique, we captured a
high-resolution performance of an actor with the same reconstruction tech-
nique that we used to build the expression database. The performance is
then spatially downsampled to mimic a typical input that we would ex-
pect, lacking expressive details. We then enhance the performance using
our technique, yielding a result very similar in detail to the ground truth in-
put scans. Figure 4.8 shows a few frames of the resulting validation. Minor
differences between the ground truth and enhanced meshes (for example,
around the mouth) are only visible where the correct shape is simply not in
the database. For all examples in this section, we invite the reader to refer to
the accompanying video for more results.
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Figure 4.9: Enhancing a marker-based motion captured performance. The columns from
left to right: selected frames from the input sequence, tracked marker posi-
tions, traditional mocap result using the tracked markers to deform the mesh
with a linear shell (notice the missing expression wrinkles), our enhanced
geometry including expression details, final result rendered with texture.

We demonstrate the robustness and flexibility of our enhancement algorithm
by augmenting facial performances generated using four radically different
facial animation techniques commonly used in industry and research. First,
in Figure 4.9, we enhance a traditional marker-based motion capture ani-
mation. Approximately 250 markers are tracked and used to drive a low-
resolution facial animation. The traditional motion capture approach is to
deform a face mesh (e.g., using a linear shell model) with the marker posi-
tions as constraints. As a result, fine-scale details are clearly missing since
they cannot be reconstructed from such a sparse set of markers (Figure 4.9,
third column). Our technique is able to enhance the result with detailed
wrinkles (Figure 4.9, fourth column), greatly adding to the expressiveness
of the performance. We also illustrate the result rendered with per-frame
reconstructed textures (Figure 4.9, last column). Note that we purposely do
not target eye motion in the enhancement algorithm, and so we choose a sin-
gle capture frame with closed eyes and blend the eye-regions into all final
results using our interpolation framework.

Another common art-directable facial animation approach is a hand-
animated rig. An example rigged performance and our enhanced result
is shown in Figure 4.10. Most rig animations also lack fine-scale expres-
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sion details, as it is time-consuming and difficult for animators to author
these subtle effects. Our enhancement approach successfully adds the
high-frequency details automatically. To illustrate the result of shape space
matching, Figure 4.11 shows some of the closest database poses that are
used in the region-based interpolation for one of the rig result frames.

A third mode of facial animation that lends itself to our enhancement tech-
nique is monocular face tracking using a morphable model [Bla+03; Vla+05;
Dal+11]. Here, a low-resolution face model is automatically fitted to a video
stream, which can be captured from a handheld camera in outdoor and re-
mote environments (see Figure 4.12, left). By upsampling this type of anima-
tion (Figure 4.12, right), we demonstrate the ability to achieve studio-quality
facial performance capture, even on a moving train. We believe this technol-
ogy is a large step towards on-set markerless facial motion capture, which
can benefit the visual effects industry.

Finally, we show that our algorithm can enhance facial animations captured
using a Kinect depth sensor. Our input is generated from recent technology
designed by faceshift, based on real-time performance-based facial anima-
tion [Wei+11]. An actor’s facial motions drive a low-resolution blendshape
model, which we then sparsely sample at 40 locations (see Figure 4.5) and
enhance with our technique. Since the blendshape model is only an approx-
imation of the performance, this result demonstrates the robustness of our
approach to handle inaccurately tracked face motion.

The processing time of our algorithm is approximately 30 seconds per frame
for our female actress with a mesh resolution of 500K vertices and 55 seconds
for the male actor with a mesh resolution of 850K vertices, measured on an i7
desktop machine with 12GB of memory. We use the MOSEK [AA00] library
to solve the QP problem (Equation 4.2), and process all four face regions in
parallel. Realistic face renders are created using DAZ Studio with the Elite
Human Surface Shader2.

Comparison to Ma et al. [2008] Our work is most similar to the polynomial
displacement map (PDM) technique of Ma et al. [2008], however our method
contains some important benefits. The PDM technique is designed for real-
time performance on well-tracked input sequences that lie inside the con-
vex hull of a small training set. In that situation, our respective algorithms
will produce similar upsampled results. However, in the case that the input
shapes are far away from the training set, polynomial extrapolation artifacts
can be seen in the method of Ma et al. (see Figure 4.14). Here we show
our algorithm compared to an implementation of the PDM method with the

2www.daz3d.com
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Figure 4.10: Our method can enhance a rigged facial performance (left), adding the sub-
tle details of expression particular to an individual’s face (shown as a sur-
face and textured).
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Figure 4.11: Illustrating the shape space matching for one frame of the face rig result
from Figure 4.10. Here we see four of the database poses that are used for
interpolation.

same database on two different inputs, one from Kinect input using faceshift
and the other from motion-capture markers. The PDM approach produces
unrealistic deformation of the face and amplification of the pore details. One
could argue that increasing the size of the training set is a solution, however
the PDM’s are determined by an underlying vector field and discontinu-
ities in the vector field causes artifacts in the resulting displacements. The
bigger the training set, the harder this vector field is to control. This effect
accounts for the discontinuities in the left part of the lip, the left cheek and
the forehead. Finally, in the case of lower-accuracy input sequences like the
ones from faceshift (top row of Figure 4.14), the input deviates again from
the training set and results in more artifacts with the PDM approach. Our
technique is more general and handles a wider range of scenarios.

Limitations and Future Work. One area for future work is to analyze and
correct low-frequency errors. Currently, we assume that the low-frequency
component of the input animation is correct, however it could be the case
that it does not match the shape and dynamics of the real actor. Furthermore,
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Figure 4.12: Result on a morphable model fit to a monocular video sequence [Dale et al.
2011]. From left to right: selected frames from the video, the low-resolution
fit model in gray, our enhanced geometry, and our final result rendered with
texture.

in this work we use the same actor for the database and input animations to
ensure the facial properties are similar. An interesting avenue would be to
explore performance transfer, by using input animations from one actor with
a database from another. In addition, our method does not currently handle
the eye region correctly due to a lack of accurate data in this area. This could
be corrected with an improved acquisition system for the database. As a
result, we blend closed-eyes into all results, which is easily accomplished
with our shape space interpolation framework.

4.6 Conclusions

We have targeted the gap between low-resolution artistically created facial
animations and high-resolution expressive performance capture. On the one
hand, art-directed animations are attractive because the animation can easily
be tuned for the desired performance, however they lack the subtle details of
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Figure 4.13: Enhancement result on Kinect-driven input animations produced by
faceshift [Wei+11]. From left to right: reference image from the Kinect,
blendshape result of the faceshift software, our enhanced geometry, and our
final result rendered with texture.

65



Performance Enhancement

Figure 4.14: Comparison to the Polynomial Displacement Map (PDM) tech-
nique [Ma+08] on two different datasets: Kinect input (top row) and mo-
tion capture markers (bottom row). The PDM method (center) exhibits
more artifacts around the lips, cheek, forehead and exaggeration of pores,
compared to our method (right).
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deformation and timing that make a real individual’s facial performance so
expressive and compelling. On the other hand, high-resolution performance
capture can acquire the expressive facial details of a performance, but the
result can only be played back without further directability. Our method ex-
tracts the fine-scale details from a performance capture database that spans
the range of expressiveness for a particular individual, and then transfers
these details to low-resolution input animations. Our system can also im-
prove facial keyframe interpolation so that the dynamics of the real actor are
reflected in the enhanced result. We demonstrate our method on four ani-
mations created by typical facial animation systems: marker-based motion
capture, a hand-animated facial rig, a morphable model fit to monocular
video, and a sequence reconstructed with a Kinect depth sensor. We also
validate our result against ground truth data by using a smoothed perfor-
mance capture animation as input, and provide a direct comparison to cur-
rent state-of-the-art. With our technique, art-directed animations can now
be enhanced to match the expressive quality of performance capture.
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C H A P T E R 5
Physical Avatars Augmentation

Bringing virtual characters to life is another one of the great challenges in
computer graphics. While there were tremendous advancements in captur-
ing, animating, and rendering realistic human faces in the past decade, dis-
playing them on traditional screens conveys only a limited sense of physical
presence. Animatronic figures or robotic avatars can bridge this gap. How-
ever, in contrast to virtual face models, reproducing detailed facial motions
on an animatronic head is highly challenging due to physical constraints. Al-
though steady progress in creating highly sophisticated robotic heads that
strive to recreate convincing facial motions can be observed, for example
those in Disney World’s Hall of Presidents or “Geminoids” [NIH07a], these
achieve only limited expressiveness when compared to a real human being.

Our goal in this Chapter is to significantly increase the expressiveness of
such figures, and to allow to animate them and controlling their motion and
appearance easily, by adding additional degrees of freedom with projected
shading, thus improving the last step of the facial content creation pipeline
- display (Section 1.2). An animatronic head consists of a deformable skin
attached to an underlying rigid articulated structure. The appearance is de-
termined by the material of the skin and its static texture. The articulated
structure is driven by a set of motors, and their motion range determines
the expressiveness of the figure. While adding additional mechanical com-
ponents to extend the degrees of freedom would be an obvious choice, in
practice this is often prohibitive due to the lack of space inside the head and
the extensive cost. Instead, we suggest projected shading to obtain dynamic
control of the appearance, and emulate expressive motion and appearance
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Figure 5.1: Our system allows augmentation of a physical avatar (a) with projector-
based illumination, significantly increasing its expressiveness. In (b) the
target performance is shown. The appearance under controlled and ambient
illumination is shown in (c) and (d).

using a combination of low-frequency motion of the animatronic head and
high-frequency shading.

In this Chapter, we present a two-scale model for representing facial motion
tailored to animatronic heads, embedded in a multi-projection system. Low-
frequency motions that can be reproduced by the physical head are repre-
sented as control parameters of actuators. High-frequency details and subtle
motions that cannot be reproduced are emulated in texture space. In prac-
tice, we face the challenge that the mechanical motion range of the robotic
head is significantly smaller than that of a human. However, the formation
of facial details is strongly correlated to the underlying low-frequency mo-
tion. Given an arbitrary performance capture sequence, a naive baking of
dynamic facial details into texture space would violate this correlation, due
to the limited mechanical motion range. The robotic head would stop mov-
ing when reaching its limit, while the original input data would still contain
motion and induce formation of facial details. We observed that this leads
to visual artifacts. We therefore propose an efficient spatio-temporal method
for decomposing the motion in gradient space, ensuring that we can repro-
duce the visual appearance of the sequence as close as possible while main-
taining the correlation of low-frequency physical motion and formation of
facial details. Using a multi-projector system, we then are able to convinc-
ingly and accurately replay the input animation.

More specifically, we start by acquiring a dense performance capture se-
quence of a person. First, we determine initial control parameters of the
animatronic head that most closely resembles the target expression and ac-
quire its detailed geometry for each frame. We then establish dense corre-
spondence between the target performance and the performance of the an-
imatronic head. Subsequently, we decompose the input performance into
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low-frequency animatronic head motion and dynamic high-frequency shad-
ing details. Given the dense correspondence, we perform a space-time op-
timization that maps the input performance to the constraint motion gamut
of the robotic head. Subsequently, we embed the high-frequency shading in-
formation on the robotic head geometry such that the low-frequency details
conform in both performances.

Furthermore, we present a complete multi-camera and -projector system, al-
lowing efficient optimization of the projection quality in terms of focus and
contrast. Defocused projections and subsurface scattering lower the possi-
bilities to reproduce high-frequency shading on the animatronic head. To
maximize the overall contrast and focus, we present a model-based multi-
projector optimization step to improve the final image quality considering
physical light drop-off, smooth blending in overlapping regions, projection
defocus, and subsurface-scattering. The optimization is carried out by care-
fully analyzing and modeling the required defocus and subsurface scatter-
ing properties independently of the actual pose of the animatronic. This has
the advantage that it, in contrast to camera-based approaches, is indepen-
dent of a particular viewing position and can be easily adapted to arbitrary
animatronic poses without exhaustive per-frame data acquisition.

We implemented a prototype and demonstrate several results with our sys-
tem. In all our results one can observe that our approach significantly in-
creases the expressiveness of the animatronic head. We also show how our
system can be used for artistic effects such as aging of faces, an application
that would not be possible without projector-based shading.

5.1 Overview

Our approach on augmenting physical avatars using projector-based illu-
mination starts by acquiring a source performance. For each input frame
independently, we optimize for the animatronic head’s actuation parame-
ters that best resemble the input motion in simulation. Our goal is then to
register the animatronic head to our projection-camera system, acquire in-
formation about its deformation behavior and subsurface-scattering as well
as projector defocus to model the multi-projector light transport, perform a
spatio-temporal decomposition and optimization of the head’s motion and
its texture to reproduce the desired facial performance, and finally, to repro-
duce the performance based on synchronized motion of the physical head
and projection. An overview of the processing pipeline is given in Figure 5.2.
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Figure 5.2: Overview of the processing pipeline. A target performance drives the ani-
matronics actuation, which is scanned by the system. Based on this data,
the actuation parameters of the head are remapped to match the dynamics of
the target performance. Next, the target performance is remapped onto the
re-timed performance and its high-frequency details are embedded as colors.
The sequence is then rendered from the calibrated projectors’ point of view
and globally optimized to compensate for light drop-off, defocus, and subsur-
face scattering. Finally the resulting images are projected onto the animated
animatronic head.

5.2 Performance Remapping

As input to our system we use a facial animation sequence that was cap-
tured using the system of Beeler et al. [2011]. It provides a detailed mesh se-
quence with explicit temporal correspondence. Our avatar is a proprietary
animatronic head developed by Walt Disney Imagineering. It is driven by
electric motors and features 13 parameters to control the actuation of the
skin. We treat the underlying mechanical structure as a black box and use a
finite-element-based optimization approach to determine the parameters for
matching the deformation of the skin to each frame of the input sequence in
a least-squares sense as described in Bickel et al. [2012]. We then place the
animatronic head in our projector-camera system and acquire and register its
dense performance as described in the following subsection. Furthermore,
we then re-time its performance, as described in Section 5.2.3.
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5.2.1 Geometry Acquisition

Accurate projection and remapping requires an accurate 3D representation
of the physical avatar.

Acquisition setup. In order to enable the system to be self-contained once
it is deployed, we used five calibrated cameras to capture structured light
patterns for projector calibration, 3D reconstruction, and defocus estima-
tion. The complete setup is depicted in Figure 5.3. The cameras are geo-
metrically calibrated using a standard checkerboard-based calibration tech-
nique [Zha00]. A series of structured light patterns, consisting of gray codes
and binary blobs, is used to get a sub-pixel accurate mapping from camera to
projector pixels. We then generate a medium-resolution 3D point cloud Pn
for each frame n = 1...N of the animatronic head’s performance as described
in [HZ04]. Using direct linear transformation with non-linear optimization
and distortion estimation enables an accurate calibration of the projectors.
While the data provided by the scans is relatively accurate and represents
the motion of the animatronic head well, it is incomplete in terms of both
density and coverage: Regions that are not visible to more than one camera
(due to occlusion or field of view) are not acquired at all, or yield a sparse
and less accurate distribution of samples. Instead of adding more cameras
to the system, we opted to scan the neutral pose once before deployment
with a high-quality scanner [Bee+11], and then to complete the missing data
using non-rigid registration.

Non-rigid registration. Given the acquired point-clouds Pn, we generate
a complete detailed mesh sequenceMn, using the high-quality scan of the
neutral pose (denoted by N ). We achieve this by deforming N to match
the point-cloud Pn in all high-confidence regions. For this, we first con-
vert the point-cloud Pn to a manifold mesh P̂n, by employing Poisson re-
construction [KBH06]. Using a similarity matching criterion combining dis-
tance, curvature, and surface normal as recommended in Tena et al. [2006],
we then automatically find correspondences between P̂n and N . The afore-
mentioned process yields semantically plausible correspondences only for
relatively small variations between meshes. Therefore, we use an incremen-
tal tracking process. For each frame n with corresponding acquired point-
cloud Pn, we use Mn−1 as the high-quality mesh for the non-rigid regis-
tration step, assuming that the motion performed between two consecutive
frames is sufficiently small. Using these correspondences, we then deform
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Figure 5.3: Hardware setup: 5 cameras (blue) and 3 projectors (red) were used to recon-
struct and illuminate the animatronic’s face.

N to obtain a deformed mesh Mn that matches Pn using linear rotation-
invariant coordinates [Lip+05].

5.2.2 Actuator Control and Re-timing

We employ the physically based optimization method proposed by Bickel
et al. [2012] to initially compute the animatronic actuation control. This
method matches the deformation of the skin to each frame of the target se-
quence individually. As the animatronic head’s range of motion is much
more limited than the target performance, the resulting motion follows the
target one as long as it can, and remains stationary once the target motion
is out of range. Projecting the target sequence in such a case results in tex-
tures that continuously present motion while the animatronic avatar does
not. In practice, this results in significant visual artifacts. We therefore sug-
gest augmenting the actuation by taking dynamics into consideration, and
not only the poses of the performance. Figure 5.4 exhibits a result of the pro-
cess applied on the eyebrows-raising sequence. The graph shows how the
resulting motion resembles the target one in terms of dynamics more than
actual deformation, while the images illustrate the effects the process has on
the performance itself.
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Temporal optimization. As our actuated performance was created using
physically based simulation and the mapping between actuation parameters
and resulting skin deformation is non-linear, we chose to adapt the timing
of the existing performance instead of creating a new one, assuming linear
behavior only between adjacent frames. In other words, given a sequence
consisting of N frames, we wish to create a new sequence of the same length,
with each frame being a linear blend of two adjacent frames of the original
motion. We start by analyzing the temporally coherent mesh sequence for
the actuated performance, as described in Section 5.2.1,Mn, n = 1..N, along
with its correspondence to the target performance Tn, n = 1..N. Denoting
the re-timed mesh sequence as M̂n, n = 1..N, we represent it by a vector
τ ∈ [1..N]N such that τn ∈ τ defines M̂n =Mbτnc · α +Mdτne · (1− α), α =
(τn − bτnc). Using the error term discussed next, we wish to find a vector
τ that minimizes the error between the target performance Tn and the aug-
mented actuation frames M̂n induced by τ. In addition, we constrain τ to
be temporally consistent such that each element τn ∈ τ respects τn < τn+1.
We employ constrained non-linear interior-point optimization to find the
desired performance.

Error term. It has been shown that matching motion in the gradient
space implies matching its dynamics instead of its pose and enhances re-
alism [Seo+12]. However, as we do not have a linear face space, this princi-
ple is not directly applicable to our case. In the following we introduce an
error term for the aforementioned optimization that is performance aware
and helps avoiding local minima , by exploiting some key observations of
our problem: First, each actuator drives the motion on a 1D curve. This
means that instead of considering the 3D displacement of vertices, we can
only consider their distance from the neutral pose. Second, target motion
that resides within the avatar’s range is reproduced fairly well, while large
motion is clamped. Thus, considering the relative position (the ratio of ev-
ery vertex’s distance from the neutral pose to its maximum distance in the
performance) describes the motion in a way that can be naturally translated
to the avatar’s gamut. Incorporating these observations and considerations,
we get the following error term for a vertex v in a target performance mesh
Tn and its corresponding position u in an actuated one M̂n:

d(v, u) = |U|( 1
|V|

∂|v|
∂t
− 1
|U|

∂|u|
∂t

) ·ωg + |U|(
|v|
|V| −

|u|
|U| ) ·ωs, (5.1)

where v is the displacement of v from the neutral pose in the aforemen-
tioned frame, V is the maximum displacement of v in the whole sequence,
and u and U are their counterparts in the actuated motion. We observed that
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Figure 5.4: Temporal remapping. Top: Graph showing the displacement of a vertex on
the edge of an eyebrow. The original motion (black) surpasses the avatar’s
motion gamut. Static physical simulation matches the motion only within
the gamut (blue). The remapped motion matches dynamic behavior instead
(green). Bottom: The eyebrow position at frame 43. The projected features
are nearly nonexistent while the eyebrow in the original motion still stays at
peak position (left).

adding the relative position error term prevents the solution from converg-
ing to a local minima. In our experiments we used the values of 0.85 and
0.15 for ωg and ωs, respectively.

Solution procedure. The optimization process starts with the initial guess
that reproduces the original actuated motion τ = (1, 2, ..., N). During the
optimization process, given the vector τ, we generate the induced actuated
mesh sequence M̂n, n = 1..N, and compute the aforementioned error term
for a pre-selected random subset of the vertices. The error function used
by the optimization d : [1..N]N → R is the Frobenius norm of the matrix
containing all the error measures per vertex per frame. As this function is
piecewise linear, its gradient can be computed analytically for each linear
segment. To prevent local minima, we iteratively perturb the solution to
generate new initial guesses by randomly sampling τn = [τn−1, τn+1] until
there is no improvement of the solution in the current iteration. Finally, we
replay the re-timed performance with the physical avatar and scan the exact
geometry of M̂n to obtain pixel-accurate data.
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5.2.3 Detail Remapping

Having the re-timed avatar geometry, the next step is to map the details of
the target performance to the avatar. The task of mapping one geometry
to another is an ambiguous one, as some regions should be mapped to their
semantic counterparts, such as the eyebrows in our case, while other regions,
such as the lips, should deform freely to enhance expressiveness (see for
example Figure 5.10). Therefore, we propose a method that does not alter
geometry, but textures the avatar. This is done by rendering the performance
from several points of view, deforming the rendered images to match the
avatar according to user-specified semantics, and back-projects these images
to the avatar while blending them in a confidence-driven manner.

Appearance transfer. Given a target performance sequence, consisting of
N frames represented by a coherent set of meshes Tn, n = 1..N, and a corre-
lating sequence of the avatar M̂n, the process starts with computing the cor-
respondence between the neutral pose of the target performance, denoted by
T0, and the neutral pose of the avatarN . Using the method described in Sec-
tion 5.2.1, the correspondence is achieved by registering T0 ontoN . Next, for
every frame Tn, we render it from m viewpoints, where m = 4 in our case.
We carefully picked the views such that the complete facial area is covered.
The result is a set of images ITn

i , i = 1..m and corresponding depth maps
ZTn

i , i = 1..m. As the avatar’s meshes potentially cover more of the avatar
itself than the target performance, we expand the target information of the
rendered images ITn

i by mirroring the image across the mesh boundaries,
adding a blurring term that grows with the distance from the boundary.
While we achieved satisfactory results, in theory more sophisticated hole
filling or texture generation algorithms could be used. Boundaries are de-
termined by transitions between background and non-background depths
in the depth maps ZTn

i . The avatar’s corresponding frame is also rendered,

after being rigidly aligned with Tn, creating the IM̂n
i and ZM̂n

i counterparts.
Next, we deform the images ITn

i to match their avatar’s counterparts, using
moving least squares [SMW06]. The deformation is driven by a subset of
vertices, which constrain the pixels they are projected to in ITn

i to move the
projected position of their corresponding vertices in the avatar’s rendering.
Implicitly, this process deforms the low-frequency behavior of the target per-
formance to match the avatar’s one, while keeping true the high-frequency
behavior of the target performance. The choice of the driving vertices is elab-
orated upon later in this section. Next, the images are projected back onto
M̂n, which means that every vertex receives the color from its rendered po-
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sition on the deformed images, if it is not occluded. Blending between the
different viewpoints is done based on the confidence of the vertex’s color,
determined by the cosine of the angle between the surface normal and view-
ing direction. As a final step, we perform for every vertex a few Laplacian
temporal smoothing iterations on the resulting colors.

Conveying semantics. As aforementioned, the target performance is ren-
dered and the images are deformed to match the physical avatar. The goal of
the deformation is to adapt the target’s features to the avatar while preserv-
ing the artistic intent of the performance. This notion suggests different be-
havior for different animations, and we allow the user to indicate the seman-
tics of the animation by selecting individual or curves of vertices of the target
performance and assign a property to it. These properties affect the behavior
of the image deformation step described before. We have found that divid-
ing the vertices into three types was sufficient to convey the semantics in our
examples, and have used the same categorization for all of them. By default,
all vertices are categorized as free to move, and have no effect on the image
deformations. The second type, marked as geometrical constraint, enables the
user to define vertices that will constrain the pixels that they are rendered
to. The corresponding pixels of these vertices are moved to the position that
their avatar’s counterpart was rendered to, given that both are not occluded
in the images. This type of constraint is usually used for vertices which are
static throughout the performance, such as the nose, and is also useful for
regions that should accurately match, such as the edges of the mouth and
the eyebrows. The last type, marked as view-dependent constraint, relates to
the fact that the geometries of the target performance and the avatar head
do not match perfectly in some regions, and therefore the projection differs
depending on the point of view. Marking these types of vertices with an
associated viewpoint means that these vertices are constrained to match the
avatar vertices they were projected closest to during the marked viewpoint.
Figure 5.5 illustrates the effect of the different types of constraints: Remov-
ing the geometrical constraint from the eyebrows results in their projection
on the middle of the forehead. Additionally, vertices that are marked as con-
strained with a front point of view are changed to a side one. This change
proves unnatural from the front when the lip deviates away from the ani-
matronic’s geometry. In all our experiments, we have used 8 curves and 20
individual vertices that were geometrically constrained, and 2 curves and
5 individual vertices that were constrained view-dependent from the front
view. Note that we have also experimented with different effect radii and
also other types of constraints, such as snapping vertices back if they left the
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Figure 5.5: Semantics illustration. The marked vertices (left) are of the geometric type
(blue) and view-dependent type (red). Removing constraints from the eye-
brows results in an unnatural positioning (2nd image) vs the original (3rd).
Vertices on the lips, marked with front view-dependent constraint (5th im-
age), are changed to a side one, which yields an unnatural look from the front
(4th).

avatar’s silhouette, but eventually found them unnecessary for our applica-
tion.

5.3 Projection

After preprocessing the geometry and finally generating the per-vertex col-
ors containing the desired shading, the model has to be projected accurately
onto the physical avatar. This step involves rendering the geometry from
the calibrated projector views and distorting the images to compensate for
lens distortion. Additionally, we compute a light transport matrix that is
used in a global optimization step for blending of multiple projector contri-
butions, neutralizing physical light drop-off effects, and compensating for
defocus and subsurface scattering to generate an optimized reproduction of
high frequencies. To achieve this goal, besides the geometric calibration al-
ready described in Section 5.2, further data acquisition steps have to be car-
ried out. Therefore the response curves of the used devices were linearized
to simplify the image analysis and processing steps. While the camera re-
sponse curves were linearized using the method described in [DM97], a Spy-
der4ELITE colorimeter was used for projector linearization and to match
their color gamuts as well as lumen output. To match the cameras’ color
gamuts, an x-rite ColorChecker Classic based color transformation calibra-
tion was carried out.
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Figure 5.6: Overview of the defocus measurement pipeline. (a) Back projection of the
captured images to the projector’s image plane and normalization. (b) Gauss
fitting for each captured blob. (c) Recovering the amount of projector blur
from the precomputed LUT.

5.3.1 Defocus Data Acquisition

To accurately compensate for the projection defocus, the used PSF has to
represent the physical defocus as precisely as possible. Following [NIS11;
Ali+12], we approximate the projector defocus by a two-dimensional
isotropic Gaussian function in the projector’s image coordinate, depend-
ing on the pixel position and the distance to the projector:

PSFz(xy, xy′) = e
− (x−x′)2

+(y−y′)2

σ2
x,y,z . (5.2)

Here, x and y are pixel coordinates of the pixel from which the projected
light originates, x′ and y′ are the pixel coordinates of the target pixel that is
illuminated by the defocused pixel, and z is the distance to the projector in
world coordinates of the surface corresponding to the target pixel. σ is the
standard deviation of the Gaussian function.

The PSF measurement process is based upon the one proposed in [NIS11].
The projector displays a two-dimensional grid of white pixels on black back-
ground onto a white, planar surface that is oriented to be orthogonal to the
projection axis of the projector. This surface is placed at different distances
around the focal plane of the projector and images are taken of the projected
pixel pattern using one or more cameras. The Gaussian function is defined
in the coordinate frame of the projector, requiring that all captured images be
projected into the projector’s image plane. Our implementation uses homo-
graphies [SSM01] for this purpose. Each back-projected image is split into
patches, one for each projected pixel, and the PSF model is fitted to each
patch, resulting in a σ value and a position x and y for each image patch.
As our projectors did not exhibit significant chromatic aberrations, we cap-
tured only white patterns. In this case, the position (x and y) can be ignored,
as any deviation of those coordinates from the coordinates of the originally
projected pixel can be explained by inexact back projection. Using the com-
puted homographies in combination with the geometrically calibrated cam-
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eras and projectors, we also compute the distance to the projector for each
pattern.

The σ values together with their respective distances and pixel coordinates
constitute a dense, irregular field of defocus measurements, called a PSF
field, that will be used to build the equation system for compensation. De-
pending on the density of the measurements, the defocus values for each
point inside the covered volume can be interpolated with high accuracy. We
observed that even while taking measures to reduce errors and minimize the
influence of noise and environment light, the proposed measurement proce-
dure produces σ values much greater than 0, even when measuring next to
the focal plane. In our setup the minimal σ values were around 0.8. As our
PSF model describes Gaussian functions in the projector image space, a σ

value of 0.8 translates into a Gaussian that includes already severe defocus,
covering multiple neighboring pixels. Reasons for this additional defocus
include coma and chromatic aberrations of the camera lenses, its aperture
settings, sampling inaccuracies both on the camera CCD and during the back
projection step, and noise.

We propose an additional calibration step, referred to as sigma calibration,
designed to uncover the blurring behavior of the capturing and model fit-
ting pipeline. For this, we place the same white plane that was used for
the measurements above into the focal plane and project a single pixel on a
black background, followed by Gaussian blurred versions of the same with
increasing σ. The captured patterns were again fitted to Gaussians, which
results in a lookup table (LUT) between the σ values of the actually projected
Gaussian functions and the ones found using the measurement pipeline.
The overall process is illustrated in Figure 5.6.

Besides measurement of the projector defocus, subsurface scattering is mea-
sured and modeled as well. The modeling was done using the method
described in [DI11] while the measurement was carried out using a device
based on [Wey+06].

5.3.2 Projection Image Computation

To optimize the projected images, the light transport is computed and com-
pensated for. We modeled the light transport as matrix-vector multiplica-
tion:

C = LP, (5.3)

where P is a vector containing the projected images, L is a matrix containing
the light transport, and C is the output of the system. The semantic mean-
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ing of C depends on what aspect of the projection system is of interest. In
previous works in the context of light transport and defocus compensation
[ZN06; Ali+12; WB07], C corresponds to an image captured by a designated
camera that is used as a proxy for a human observer, and L encodes the light
transport from one or more projectors to this camera.

To the best of our knowledge, we present the first work on pre-correcting
defocus compensation for multi-projector systems that does not use a ref-
erence camera as optimization target. Instead, we completely work in the
image planes of the involved projectors, treating them as virtual cameras.
In this case, C represents the set of images that would be captured by the
projectors. As the compensation images are generated using the parameters
stored directly for each projector pixel, the resulting compensation is inde-
pendent of the camera viewpoint and thus is not influenced by occlusions,
obliqueness, camera defocus, etc., which would occur from almost any cam-
era viewing position.

Compensation of the light transport, i.e. finding the images P that produce
the output C when being projected, conceptually involves an inversion of
the light transport: P′ = L−1C′. Here C′ is the desired output of the system
and P′ is the input that produces it when projected. In most cases, directly
inverting L is impossible because L is not full rank. As was done in [ZN06]
and [Ali+12], we instead reformulate the compensation as a minimization
problem: P′ = argmin0≤P≤1‖LP − C′‖2. In the course of building up the
components of the equation system, this minimization will be extended to
contain locally varying upper bounds, weighting of individual pixels, and
additional smoothness constraints, resulting in the following minimization:

P′ = argmin
0≤P≤U

‖W (TP− S)‖2 = argmin
0≤P≤U

‖W
([

L
Smooth

]
P−

[
C
0

])
‖2.

S is a vector containing the target images C′ and the smoothing target val-
ues of constant 0. T is a matrix consisting of the light transport L and the
smoothing terms Smooth. W is a diagonal matrix containing weights for each
equation. Finally, U contains the upper bounds of the projected image pixel
values.

Light Transport. Below, we build up the light transport iteratively by its
components. For projector defocus, σ is looked up in the PSF field at the
pixel coordinates of the source pixel as well as at the depth of the target
pixel. The PSF model is then evaluated using σ, and the resulting value is
normalized such that all the light emitted at the same source pixel sums up
to 1. To ensure that the compensated pictures result in a uniformly bright

82



5.3 Projection

image plane                 focal plane             surface

projection lens

Figure 5.7: Simplified visualization of the spatial distinction between projector defocus
resulting from its lens properties (green) and subsurface scattering (red).
The defocus originates before the light physically reaches the surface, while
subsurface-scattering evolves only once it has hit the surface.

appearance, light drop-off caused by distance to the projector and the in-
cidence angle of the light at the surface is included in the light transport.
This is done by multiplying the light drop-off factor on top of the defocused
projection computed previously.

As illustrated in Figure 5.7, subsurface scattering physically happens after
projector defocus. Thus it is possible that light emitted from one pixel can
travel to the same target pixel using multiple paths, so care has to be taken
to sum up those contributions correctly. The subsurface scattering factor is
looked up in the previously measured scattering profile with the world coor-
dinate distance between the two involved surface points. This formulation
is not quite correct, as these measurements are valid only for flat patches
of silicone with a certain thickness. General surfaces are neither of uniform
thickness nor flat, however, and especially in concave parts, the point dis-
tance in world coordinates does not correspond to the distance on the sur-
face. But these inaccuracies are relatively small and don’t carry much weight
when compared to other sources of errors, such as inexact geometry and cal-
ibrations. As such, we do not handle these effects.

This finishes the single projector light transport (PLT). The following mod-
ifications are needed only in multi-projector systems; they fill in the cross
PLT without changing the already computed values. Instead of recomput-
ing projector defocus and subsurface scattering for the cross PLT, the rele-
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vant values are looked up in the results of the single PLT using a projective
mapping between the projectors. See the appendix for a description of this
lookup process. To make sure that the computed cross PLT actually deals in
correct units, the relative brightness of the involved projectors has to be con-
sidered as well. We use three projectors of the same make and model, and
have calibrated them to be of the same brightness as part of the projector
response curve linearization mentioned earlier.

Blending Multiple Contributions. In multi-projection systems, blending
maps are applied to ensure consistent intensities in overlapping projection
areas (cf. e.g. [Ras+98; Har+06]). This is especially important when project-
ing onto objects that are discontinuous when seen from a specific projector.
We use a geometry-based blending map calculation approach using shadow
volumes to detect discontinuous regions in the projector image planes and
smoothly fade out the individual projector intensities in these areas as well
as at the edges of the image planes in overlapping areas.

Previous work on multi-projector defocus compensation, such as [Ali+12],
does not take blending into account. This can be a serious shortcoming, as it
produces noticeable artifacts in the presence of discontinuities. Not involv-
ing blending maps while at the same time compensating for light drop-off
caused by incidence angle has the effect that projectors increase their inten-
sity when projecting onto oblique surfaces, instead of leaving the illumina-
tion of such surfaces to another projector in a more suitable position.

We propose to include the blending maps into the minimization as upper
bounds (U in equation 5.4). See Figure 5.8 for a comparison of compensa-
tion results with and without blending. These results were computed for a
three-projector system (see Figure 5.3), and the compensation images of the
lower projector are shown. It can be seen that the result without blending
(b) contains severe artifacts. They are most noticeable in areas of disconti-
nuities such as around the nose and on the cheeks. Applying the proposed
approach reduces the artifacts below a perceptual level (c). In regions where
projectors overlap, one point on the target surface is represented by multi-
ple pixels in the image planes of multiple projectors. If each of those pixels
had the same weighting in the residual computation, overlapping regions
would be treated as more important than non-overlapping regions. Not all
solution pixels have the same accuracy requirements: It is more important
for each projector to find good solutions for image patches for which it is the
only projector, or onto which it projects orthogonally. These criteria are also
followed when constructing blending maps, which makes blending maps
good weights for the individual equations in the system (W in equation 5.4).
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(a) (b) (c)

Figure 5.8: Blending Comparison. (a) Input image. (b) Compensation image without
blending; note the marked artifacts. (c) Compensation image with blending
maps as upper bounds.

See Figure 5.9 for a comparison of compensation results with and without
weighting. These images show an excerpt around the nose of the same three-
projector system as before. (b) was computed with blending maps as upper
bounds, but without weighting the equations. Note the artifacts (in red) that
disappear when including the weights, resulting in (c).

Smoothing. Even careful PSF measurement and sigma calibration might
lead to a slight under- or overestimation of the projector defocus, resulting
in visible artifacts caused by the projection of incorrect compensation im-
ages. Additionally, in regions where multiple projectors overlap, there is no
guarantee in which way the compensation image is composed. This can lead
to the case that for two neighboring pixels, one pixel is completely produced
by the first projector and the other by the second projector. In this case, small
calibration errors will become immediately apparent. Both of these issues
can be reduced by introducing additional smoothness constraints. We im-
plemented smoothness constraints similar to the ones proposed in [Ali+12].
We refer to the supplemental material for a description of the smoothness
constraints.

Solving. In our implementation, we used the iterative, constrained, steep-
est descent algorithm presented in [ZN06] as a solver for the equation sys-
tem. See the supplemental material for a description of how to deal with the
global scaling of the system.
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(a) (b) (c)

Figure 5.9: Weighting comparison. (Close-up of the image shown in Figure 5.8) (a)
Input image, showing the nose. (b) Compensation image with blending maps
as upper bounds but no weighting, leading to artifacts (red). (c) Adding the
blending maps as weights removes those errors.

5.4 Results and Discussion

To evaluate the performance of our projection-based enhancements, we used
the silicone animatronic head described by Bickel et al. [2012] and mapped
a performance capture sequence of a real actor onto it. In addition, some of
the input sequences were artistically altered to simulate a man older than the
one who actually performed. Figure 5.10 shows different results of our pro-
posed method. As can be seen, the actuators of the animatronic are not able
to generate the complex skin deformation required to accurately reproduce
the input geometry. Adding the missing information using our proposed
projection mapping significantly enhances the high-frequency components,
and thus the expressiveness of the performance. As the process is designed
to optimize for several viewing angles, we demonstrate the robustness to
viewer positions by using a hand-held camera, with and without ambient
lighting in the room, in the accompanying video and in Figure 5.11. Fur-
thermore, to emphasize the effect of our two-scale approach, we keep the
animatronic head static, and perform the suggested method for one of the
sequences. As can be seen in the accompanying video, as well as in Fig-
ure 5.12, while an illusion of the desired performance can be generated using
only the projection or only physical animation, the combination of the two
produces a far more compelling result.

To evaluate the quality improvement of our multi-projector optimization
method, we used the structural similarity index (SSIM) [Wan+04b], which
is a method for assessing the perceptual quality of a distorted image when

86



5.4 Results and Discussion

Figure 5.10: Three captured results of extreme poses, generated with our system. For
every frame, the desired appearance is on the left, the robot configuration
under uniform white illumination is in the middle, while the augmented
result is on the right.
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Figure 5.11: Results of a single frame captured from random viewing angles, illumi-
nated only by projectors (top row) and with ambient lighting in the room
(bottom row).
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Figure 5.12: The neutral pose (left) of a sequence, compared to an extreme pose while the
animatronic head is kept static (middle), and while it is actuated according
to the proposed method (right). The head configuration under uniform il-
lumination, and the target appearances are shown to the left of each result.

Figure 5.13: Close-up comparison of the projection shown in Figure 5.1. Upper row:
Simulations of the desired appearance. Second row: Uncompensated re-
sults. Third row: the compensated results. Fourth row: Appearance of the
head when no shading is projected.
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Area No Shading Uncompensated Compensated
Cheek 0.543 0.816 0.864
Chin 0.722 0.889 0.908
Forehead 0.632 0.815 0.849
Nose 0.669 0.864 0.885

Table 5.1: SSIM evaluation results for the cropped image regions shown in Figure 5.13.

compared to the original. We used a modified version of SSIM to com-
pare the projection results of uncompensated and compensated shadings to
a ground truth image. This was generated by rendering the input image
from a calibrated camera and using the color mapping technique described
in [Gru13] in an inverse manner to simulate the per-pixel surface color mod-
ulations. It has been modified in that it does not take the absolute pixel val-
ues into account, but only compares contrast and structure. This measure
results in a value between -1 and 1 where 1 corresponds to no distortion.

Figure 5.13 shows the excerpts from the final frame of the growing-old se-
quence shown in Figure 5.1. The uncompensated and the compensated pro-
jections were compared to the simulated ground truth, resulting in the SSIM
scores contained in Table 5.1. As can be seen, besides the perceived improve-
ments presented in Figure 5.13, the defocus compensation results in a mea-
surable increase in similarity to the simulated ground truth. As the finite
pixel resolution as well as the subsurface scattering properties of the sili-
cone skin constrain the reproduction quality of the input shading, a value of
1.0 is impossible to achieve with the presented setup. In practice we found
compensating for subsurface scattering to be more important than for de-
focus. Experiments showed that for the silicon head, the subsurface scat-
tering compensation enhanced the image quality significantly more when
compared to defocus compensation alone, as it also reduces image contrast
in well-focused areas.

On our machine featuring a quad-core i7 Intel CPU, 24 GB of RAM, and an
NVidia QuadroPlex graphics card, the creation of a detailed mesh out of the
acquired point cloud lasts about 3 minutes per frame, and the application
of a target frame onto it takes about 1 minute. The actual projection image
generation is performed in real-time. The computation of a light transport
matrix for one pose takes about 11 minutes, while the compensation of a set
of projection images takes about 8 minutes.
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5.5 Summary and Future Work

In this paper we presented a novel approach using spatially varying illu-
mination to enhance the appearance and expressiveness of a silicone-skin-
based head animatronic. We demonstrated that a carefully calibrated multi-
projector system in combination with geometrical mapping can significantly
enhance its realism by projecting high-frequency skin structures that cannot
be reproduced by the animatronic’s actuators and the silicone skin alone.

In the future, we are planning to integrate the proposed approach into a
real-time, live feedback system to enable a realistic and responsive anima-
tronic interaction. While the software tools for real-time geometry mapping
are already available, this step requires a sophisticated engineering effort in
terms of accurate hardware setup and synchronization. The used subsurface
scattering compensation uses a simplified, spatially uniform description of
the subsurface scattering behavior. While this is the result of a missing mea-
surement device, a future research direction would be the utilization of the
projector-camera system to acquire accurate, spatially varying subsurface
scattering information similar to the work presented in [GD08]. Another
related future research direction would be an accurate estimation of the spa-
tially varying surface BRDF to also enable a view-independent photometric
projector compensation.
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C H A P T E R 6
Conclusion

In this chapter, we conclude this dissertation by summarizing the major con-
tributions and discussing future research directions.

6.1 Contributions

In this thesis, we have presented the high-level process of digital facial con-
tent creation - capture, augmentation and display - and have proposed an
advancement to each of these steps. In all chapters, we have focused on de-
livering content in the highest level of realism aiming to push the envelope
with regards to crossing the uncanny valley. Our work potentially reduces
the manual labor required to produce production level facial content by a
great deal, enabling the creation of substantially more content.

We first address the capturing step, where we have realized that humans
identify emotions by primarily using the eye region, but despite the impor-
tant role of this region, existing methods are unable to provide the level of
geometric detail and motion required for production level content. More
specifically, acquiring eyelids is very challenging due to extreme deforma-
tions while the eye opens, stretching over the eyeball when the eye is shut
and substantial occlusions due to concavities and eyelashes. We therefore
propose in Chapter 3 the first method for detailed spatio-temporal recon-
struction of eyelids. Our approach combines a specially tailored geometric
deformation model with image data, leveraging multi-view stereo, optical
flow, contour tracking and wrinkle detection from local skin appearance.
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Our deformation model is anatomically motivated and is designed to pro-
duce plausible eyelid motions. Our results demonstrate that the model is
able to provide a high-resolution mesh that deforms over time, reflecting de-
tailed dynamic skin features even for regions that are occluded or undergo
extreme deformations. Since this approach does not rely on the capture ap-
proach, it can be easily integrated into any performance capture pipeline, be
it passive or active, that records sufficiently high-resolution footage of the
eye region. As we demonstrate with several results, our system allows the
reconstruction of an expressive, dynamic model of the eye region at a quality
level that has never before been possible, increasing the fidelity of this very
important region.

In Chapter 4, we propose an enhancement to the second step of the digital
facial content creation pipeline - augmentation. While many methods exist
for art-directable facial animations which can easily be tuned for a desired
performance, they typically lack the subtle spatial and temporal details that
make a facial performance compelling. Of course, as seen in Chapter 3, high-
resolution capture devices exist, which can acquire an expressive facial per-
formance, however the result can only be played back and is not directable.
Therefore, we propose a data-driven approach to enhance the expressive-
ness of facial geometry and motion. Empolying a high fidelity facial per-
formance scanner, we record an individual exploring the full range of facial
expressiveness. A model is then built, which can be used to automatically
transfer subtle spatial and temporal features to lower-resolution facial an-
imations that lack expressive details, significantly increasing the perceived
realism. As mentioned, our system also takes advantage of the timing in-
formation in these recordings to enhance facial keyframe interpolation re-
flecting the nonlinearities of a real actor’s performance. We demonstrate
the robustness of our approach by enhancing a variety of input animations,
including hand-animated facial rigs, face models driven by low-resolution
motion capture data, morphable models animated using video data, and
performance reconstructions generated with a Kinect. We also show that our
algorithm outperforms the current state-of-the-art approach for data-driven
facial performance synthesis [Ma+08].

Lastly, in Chapter 5 we also propose an enhancement to the unavoidable
step of any digital content creation pipeline - display. Here we aim to bring
characters to life by bridging the gap between high-quality digital content
and physical avatars who convey a much greater sense of presence. Unlike
digital face models, animatronic figures or robotic avatars are unable to re-
produce detailed facial motions due to physical constraints. In Chapter 5
we significantly increase the expressiveness of such figures, by adding addi-
tional degrees of freedom with projector based illumination, effectively con-
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trolling their appearance in a digital way. We present a two-scale model for
controlling facial appearance, tailored to animatronic heads. Low-frequency
motions that can be reproduced by the physical head are represented as
control parameters of actuators. High-frequency details and motions that
are outside of the physical motion gamut are added through illumination,
similar to the commonly practiced texturing concept. We also propose an
efficient spatio-temporal method for decomposing the motion in gradient
space, enabling us to actuate the avatar in a way that matches the desired
appearance but also the desired timings, maintaining the correlation of low-
frequency physical motion and high-frequency details appearance. Further-
more, we present a complete multi-camera and -projector system, allowing
efficient optimization of the projection quality in terms of focus and contrast.
Defocused projections and subsurface scattering in practice reduce contrast
and impair sharpness. We present a model-based multi-projector optimiza-
tion step to alleviate these problems through considerations of physical light
drop-off, smooth blending in overlapping regions, projection defocus, and
subsurface-scattering.

6.2 Future Work

In this thesis we have proposed tools to address different problems that arise
during facial content creation. This final Section outlines some areas of fu-
ture work in the context of the solutions presented in the individual thesis
Chapters. We end with a more global vision of future directions and devel-
opments.

Eyelids Reconstruction We have presented a system to reconstruct eyelids
with spatio-temporal details. However, this pipeline is not fully automatic
and relies on a few manual steps, initialization and parameter tuning. We
believe that all of these steps can be fully automatic in the future. Our recon-
struction relies on the wrinkle probability map, which currently employs
general purpose kernel. A more sophisticated means of computing and ex-
tracting the wrinkles would an interesting direction to look at as well. Some
expressions such as extreme grinning or squinting typically induce wrinkle
formations that our model does not handle. In the future, we would like to
extend our model to handle more general cases. Furthermore, as we com-
pute several data terms, such as the eyelid contours, relative to the front
camera, we can only handle minor head rotations. Extending the method
to allow for large head rotations could be an interesting avenue for future
research. Finally, our system focuses solely on performance capture. For
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future work, an interesting avenue would be to add animation control, en-
abling easy creation of eyelids for facial rigs, and performance and detail
transfer of to different characters, thereby bringing the expressiveness of vir-
tual characters to a new level.

Performance Enhancement Our performance enhancement system is able
to augment low-resolution input animations with high frequency com-
pelling details. However, an interesting area for future research could be
to analyze and correct low-frequency errors. In this work we assume that
the low-frequency component of the input animation is accurate, matching
the actor’s facial expressions and motion. Correcting noisy input, impossible
configurations and dynamics would greatly benefit such systems. Further-
more, another interesting direction would be to explore performance trans-
fer, using input animations from one actor with a database from another.

Projection Based Augmentation In Chapter 5, we have presented a sys-
tem to display target animations of a robotic avatar head. In the future, inte-
grating the proposed approach into a real-time, live feedback system would
greatly enhance the system. This could enable a realistic and responsive
animatronic interaction, with both entertainment and tele-presence applica-
tions. The appearance estimation incorporate in the system is also rather
simplified. As future work, a more accurate and spatially varying represen-
tation of sub-surface scattering behavior and BRDF would be interesting to
define and measure.

Outlook The work presented in this thesis could be an important step in
several interesting directions. For example, specially tailored deformation
models such as the one presented in Chapter 3 could be applied to other
soft tissue capturing applications, such as skin on the hand and fingers, el-
bows etc. The performance enhancement system presented in Chapter 4, if
became real-time and retargetable, could lead to a new kind of facial pup-
petry, with applications spanning through entertainment, tele-presence or
even impersonation. Combined with the work suggested in Chapter 5, the
possible applications for powerful and live facial augmentation are limitless,
from using the human body as a display, through virtual makeup, versatile
performances and much more.

To conclude, this thesis presents advancements to the facial content creation
pipeline, in the fields of capturing, authoring and display. We believe that
this work constitutes another step towards crossing the uncanny valley, and
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6.2 Future Work

hope that this work would inspire facial animation research and be used to
help it progress towards the exciting avenues it holds for us in the future.
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