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Abstract
In this paper, we address the problem of person-independent facial expression recognition in dynamic sequences
of 3D face scans. To this end, an original approach is proposed that relies on automatically extracting a set of
3D facial points, and modeling their mutual distances along time. Training an Hidden Markov Model for every
prototypical facial expression to be recognized, and combining them to form a multi-class classifier, an average
recognition rate of 76.3% on the angry, happy and surprise expressions of the BU-4DFE database has been
obtained. Comparison with competitor approaches on the same database shows that our solution is able to obtain
effective results with the clear advantage of an implementation that fits to real-time constraints.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications— I.3.5
[Computer Graphics]: Computational Geometry and Object Modeling—Curve, surface, solid, and object repre-
sentations

1. Introduction

In the last few years, automatic recognition of facial expres-
sions has emerged as an active research field with applica-
tions in several different areas, such as human-machine in-
teraction, psychology, computer graphics, driver fatigue de-
tection, etc. The first systematic studies on facial expres-
sions date back to the late 70s with the pioneering work
of Ekman [Ekm72]. In these studies, it is evidenced that,
apart the neutral expression, the prototypical facial expres-
sions can be categorized into six classes, representing anger,
disgust, fear, happiness, sadness and surprise. This catego-
rization of facial expressions has been proved to be consis-
tent across different ethnicities and cultures, so that these
expressions are in some sense “universally” recognized. In
his studies, Ekman also evidenced that facial expressions
can be coded through the movement of face points as de-
scribed by a set of action units. These results inspired many
researchers to analyze facial expressions in videos by track-
ing facial features and measuring the amount of facial move-
ments in subsequent frames. In fact, there is the awareness
that facial expressions are highly dynamical processes and
looking at sequences of face instances rather than to still im-
ages can help to improve the recognition performance. More
properly, facial expressions can be seen as dynamical pro-
cesses that involve the 3D space and the temporal dimen-

sion (3D plus time, referred to as 4D), rather than being
just a static or dynamic 2D behavior. In addition, 3D face
scans are expected to feature less sensitivity to lighting con-
ditions and pose variations. These considerations motivated
a progressive shift from 2D to 3D in performing facial shape
analysis, with the research on 3D facial expression recogni-
tion gaining a great impulse thanks to the recent availabil-
ity of new databases, like the Binghamton University BU-
3DFE [YWS∗06], and the Bosphorus database [SAD∗08].
Now, new challenges are also posed by the facial expres-
sion recognition in 4D, with the introduction of appropriate
data sets, such as the BU-4DFE developed at Binghamton
University [YCS∗08] and the Hi4D-ADSIP [BM11] of the
University of Central Lancashire. This trend is also inspired
by the revolution of inexpensive acquisition devices such as
the consumer 3D cameras [Kin10], that makes accessible 3D
cameras to a large number of consumers. Hence, the quan-
tity of 4D data is expected to grow very rapidly in the next
years. However, the direct extension of traditional methods
developed for 2D face recognition or expression recognition
can be not effective or even possible with these new devices,
so that new solutions are required. In order to motivate our
approach to 4D facial expression recognition and relate it to
the state of the art solutions, in the following we provide an
overview of existing methods for 3D and 4D facial expres-
sion recognition.
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1.1. Related work

Most of the work on 3D facial expression recognition can
be categorized as based on: generic facial model or feature
classification. In the first category, a template face model is
trained with some prior knowledge, such as feature points,
shape and texture variations or local geometry labels. A
dense correspondence between faces is usually required to
build the general model, and facial landmarks are often used
to this end. However, the requested precision in establish-
ing dense correspondences, demands for manual annotation
in many cases. Methods that fall in this category are those
in [RKVW06, MMS08] and [GWLT09]. Approaches in the
second category (i.e., methods that use feature classifica-
tion), extract features from 3D scans and classify them into
different expressions. Notable works in this category are ei-
ther semi-automatic, in that rely on manually selected facial
landmarks, like those presented in [WYWS06, SD07, TH08,
MBD∗11], or completely automatic as the solution proposed
in [BdP∗10]. Interestingly, all these works are experimented
and compared on the BU-3DFE database.

There are a few works that use 4D data to perform facial
expression recognition. In [SY08], a spatio-temporal expres-
sion analysis approach based on 3D dynamic geometric fa-
cial model sequences is proposed. The approach integrates
a 3D facial surface descriptor and Hidden Markov Models
(HMMs) to recognize facial expressions. Experiments were
performed on the BU-4DFE. The main limit of this solution
resides in the use of 83 manually annotated landmarks of the
BU-4DFE that are not released for public use. In [SZPR11],
a method that exploits 3D motion-based features between
frames of 3D facial geometry sequences for dynamic facial
expression recognition is proposed. An expressive sequence
is modeled to contain an onset followed by an apex and an
offset. Feature selection methods are applied in order to ex-
tract features for each of the onset and offset segments of the
expression. These features are then used to train an HMM in
order to model the full temporal dynamics of the expression.
The system was tested on a subset of the BU-4DFE for the
recognition of anger, happiness and surprise. In [LTH11],
3D facial shapes are compared using facial level curves. The
pair- and segment-wise distances between the level curves
comprise the spatiotemporal features for expression recog-
nition from 3D dynamic faces. The paper further introduces
universal background modeling and maximum a posteriori
adaptation for HMMs, leading to a decision boundary focus
classification algorithm. High recognition accuracy on the
happiness, sad and surprise expressions of the BU-4DFE
are reported. The work in [FZSK11] proposes a fully au-
tomatic 4D facial expression recognition approach with a
particular emphasis on 4D data registration and dense corre-
spondence between 3D meshes along the temporal line. The
variant of the Local Binary Patterns (LBP) descriptor pro-
posed in [ZP07], which computes LBP on three orthogonal
planes, is used as face descriptor along the sequence. Results
are provided on the BU-4DFE for all expressions and for

the subsets of expressions used in [SZPR11] and [LTH11].
However, the need to perform 4D data registration and dense
correspondence between subsequent 3D frames, makes the
approach not suited for on-line processing of 4D sequences.

1.2. Method and contribution

From the analysis above, it emerges that the large part of ex-
isting works on 3D facial expression recognition rely on the
presence of landmarks accurately identified on the face sur-
face. The fact that several landmarks are not automatically
detectable and the precision required for their positioning
demand for manual annotation of train and test scans. This
limits the applicability of many approaches and makes them
difficult to be extended to the 4D case. At the same time, so-
lutions specifically tailored for 4D are still preliminary, pos-
ing little or no attention to time constraints.

Motivated by these considerations, in this work we pro-
pose to use local descriptors to perform 4D facial expression
recognition. Differently from existing 4D approaches, we
exploit the local characteristics of the face by automatically
extracting a small set of 3D facial points from depth maps
of the face and computing mutual distances between them as
face descriptors. Expression classification is then performed
by using HMMs trained with the time variations of the ex-
tracted distance features. Experimental results show that the
proposed approach is capable to achieve effective results on
the BU-4DFE, also obeying to real time constraints.

In synthesis, three are the main contributions of this work:

• An original method to automatically detect an effective
set of 3D facial points from depth images of the face;

• A simple and efficient modeling of the face based on mu-
tual distances between 3D facial points;

• An effective and efficient temporal modeling of the 3D
dynamic sequences based on HMM.

Finally, to the best of our knowledge, this is the first fully
automatic approach for 4D facial expression recognition per-
forming in real-time.

The rest of the paper is organized as follows: In Sect. 2,
the main characteristics of the BU-4DFE and the preprocess-
ing operations performed on the facial scans are described.
In Sect. 3, a face representation model is proposed that cap-
tures facial features relevant to categorize expression varia-
tions in 3D dynamic sequences. In Sect. 4, the HMM based
classification of the selected features is addressed. Experi-
mental results and comparative evaluation are reported and
discussed in Sect. 5. Finally, conclusions and future research
directions are outlined in Sect. 6.

2. The BU-4DFE database

To investigate the usability and performance of 3D dynamic
facial sequences for facial expression recognition, a dynamic
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3D facial expression database has been recently created at
Binghamton University [YCS∗08]. The 3D scans have been
constructed by capturing a sequence of stereo images and
producing a depth map for each frame according to a pas-
sive stereo-photogrammetry approach. Each subject was re-
quested to perform the six prototypic expressions (i.e., an-
gry, disgust, fear, happiness, sadness, and surprise) sepa-
rately. Each expression sequence contains neutral expres-
sions in the beginning and the end, so that each expression
was performed gradually from neutral appearance, low in-
tensity, high intensity, and back to low intensity and neu-
tral. Each 3D sequence captures one expression at a rate of
25 frames per second and each 3D sequence lasts approxi-
mately 4 seconds with about 35,000 vertices per scan (i.e.,
3D frame). The database consists of 101 subjects (58 female
and 43 male, with an age range of 18-45 years old) including
606 3D model sequences with 6 prototypic expressions and
a variety of ethnic/racial ancestries (i.e., 28 Asian, 8 African-
American, 3 Hispanic/Latino, and 62 Caucasian). More de-
tails on the BU-4DFE can be found in [YCS∗08].

From a preliminary analysis, we note that the resolution
of the individual scans of 3D sequences is not very high. In
fact, the average number of vertices per scan is reasonable
(about 35,000), but the number of vertices used to represent
the face region is considerably lower due to the large out-
liers acquired in the hair and shoulder regions (see Fig. 1).
The lack of facial geometric details makes the 3D sequences
quite challenging to be used for facial expression recogni-
tion and face recognition. It can be also observed that the 3D
frames present a near frontal pose with some slight changes
occurring mainly in the azimuthal plane. This motivated us
to perform expression recognition without requiring accu-
rate pose normalization which is typically a time consuming
operation. Based on these considerations, the preprocessing
of the 3D frames is reduced to face cropping based on nose
tip (see next Section), median filtering in the z-coordinate,
holes filling using cubic interpolation and re-sampling on an
uniform square grid at 0.7mm resolution.

(a) frontal view (b) side view

Figure 1: BU-4DFE: A raw 3D frame before preprocessing:
(a) Frontal view; (b) Side view.

An example of a 3D dynamic facial sequence of a sub-
ject with “happy” expression is shown in Fig. 2, where 2D
frames (not used in our solution), 3D frames and the depth

maps extracted from the 3D frames after preprocessing are
reported. For each row, five frames are given (out of the 98
total frames of the sequence). In particular, for each column
in the figure: Frames in (a) and (e) represent the first and
last frame of the sequence, respectively; Frames in (b) and
(c) provide a sample of the extent of the facial expression in
the onset and offset intervals of the sequence, respectively;
Frames in (c) are taken from the interval of the sequence
with the apex intensity of the expression.

3. Description of 3D dynamic sequences

Facial expressions are a dynamic process induced by spa-
tiotemporal variations of facial muscles. The dynamic 3D
face data provides both 3D geometric and motion informa-
tion of such variations. In our approach, spatial variations
due to expression changes in relevant regions of the face
are captured by the facial distances computed between de-
tected facial points. Instead, the temporal dynamic of the fa-
cial distances is learned by HMMs. This ensures a low com-
putational cost of the approach and fits real-time constraints
in the processing and classification of 3D dynamic face se-
quences. In particular, individual 3D frames are processed in
three steps: (i) Identification of the tip and width of the nose;
(ii) Detection of facial points in the mouth and eyes regions;
(iii) Computation of distances between facial points.

Tip and width of the nose - The point with maximum
gray value in the central region of the depth map of the face
is used as initial estimate of the nose tip, and its position
is then refined using the surface curvature [GMB10]. The
Gaussian curvature (K) and the mean curvature (H) of the
depth map are computed from the first and second deriva-
tives of the surface. To reduce the effect of surface noise on
second derivatives, the surface is smoothed with a Gaussian
filter and approximated using a biquadratic polynomial. Fol-
lowing the observation that the region surrounding the nose
tip is convex (H < 0), and has high elliptic Gaussian curva-
ture (K > 0), the nose tip is determined in the convex part of
the central region of the face as the point with a local max-
imum of the elliptic Gaussian curvature which is closest to
the initial estimate of the nose tip. On the nose tip is then
centered a sphere used to crop the 3D points than lie within
a radius of 90mm.

The search of the two points that define the nose width
is performed in a window of 50mm width and 42mm height
centered on the nose tip [GMB10]. In this region, the edges
of the depth image are identified using a Laplacian of Gaus-
sian (LoG) edge detector with σ = 3 pixels. The edges of
the left and right part boundaries of the nose are detected
by traversing outwards horizontally in both directions from
the tip of the nose and by retaining the first edges encoun-
tered. In order to compute the boundary curvature, the con-
tour is coded counter-clockwise according to the Freeman
chain code. Then, a derivative of Gaussian (doG) filter is
applied to the chain code in order to smooth and derive it.
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2D
frames

3D
frames

depth
maps

(a) (b) (c) (d) (e)

Figure 2: BU-4DFE: 2D and 3D frames, and depth maps extracted from the 3D frames, of the dynamic sequence of subject
F021 (“happy” expression). For each row, five frames are reported (out of 98 total frames): (a) frame #0, first frame of the
sequence (neutral expression); (b) frame #18, start of the expression; (c) frame #47, apex of the expression; (d) frame #82, end
of the expression; (e) frame #97, last frame of the sequence (neutral expression).

Finally, the “critical” points are identified in correspondence
to the local minima of the derivative that correspond to max-
ima of the curvature (i.e., the points along the nasal boundary
with high negative curvature). The outer-left and outer-right
critical points are selected as the points that determine the
nose width (indicated as leftnose and rightnose).

Facial points in the mouth and eyes regions - The face
regions that change maximally with facial expressions are
those of the mouth and of the eyes. Following the studies of
Farkas [FM87], the detection of these regions proceeds using
the location of the nose tip and of the nose width points.

The vertical limits of the mouth are determined by detect-
ing the upper and lower lip as the regions with elliptic Gaus-
sian curvature below the tip of the nose. The points in these
regions at the horizontal coordinate of the nose tip are used
as the upper and lower points of the mouth. The nose width
nwx = |le f tnosex− rightnosex| is used to constrain horizon-
tally the mouth region, being the left and right bounds, re-
spectively, le f tnosex + 0.7× nwx, and rightnosex − 0.7×
nwx. The horizontal coordinate of the nose tip is also used as
left bound for the left mouth region, and as right bound for
the right mouth region. In these two regions, the SIFT de-
tector [Low04] is run to identify the outer mouth points. In
fact, SIFT works on 2D gray-scale images and the keypoints
detected are mainly located at corner points of the image.
When applied to depth maps, SIFT scale space extrema co-
incide with local depth variations that are preserved through
multiple levels of resampling and smoothing. As result, de-
tected keypoints are located in points that morphologically

characterize the 3D shape. However, since several keypoints
can be detected in each region, only the most stable keypoint
(i.e., that detected at the largest scale) is retained as outer
mouth point in the left and right mouth regions. The hori-
zontal limits of the mouth, together with the vertical ones,
are then used to sample two more points in the upper and
lower lips in both the left and right regions of the mouth
(uniform spacing and curvature information are used to lo-
cate these points). In summary, the mouth is sampled with 5
points in the upper lip and 5 points in the lower lip, and with
the two outer mouth points, as shown in Fig. 3.

The eyes region is upper bounded by the eyebrows and
lower bounded by the cheekbones. The movement of eye-
brows and the eyelids convey significant information on the
facial expressions. However, the eyes region with the eyelids
is typically acquired with noise in 3D, so that it is difficult to
extract effective features from it. Due to this, we analyze the
eyes region and characterize its variations with facial expres-
sions by using the movement of the eyebrows. To this end,
the upper limit of the eyebrows and the cheekbones (i.e., the
lower bound of the eyes cavities) are detected by computing
the elliptic Gaussian curvature. As an example, Fig. 3 shows
the points that limit the eyes region in two 3D frames.

Distances between facial points - Using the detected
facial points, the face in each 3D frame is represented by
computing distances between points, as follows:

• Mouth region - The five distances between corresponding
facial points detected in the upper and lower lips are used
to model the vertical changes of the mouth due to different
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expressions. The average value between these distances is
used (feature f t

0, mouth). In addition, the distance between
the outer points of the mouth is used to capture horizontal
variations of the mouth width (feature f t

1, mouth width).
• Nose region - The nose tip is a stable point of the face

across different expressions. The distance between this
point and the upper point of the mouth is considered to re-
late absolute variations of the mouth with respect to other
parts of the face (feature f t

2, mouth-nose).
• Eyes region - The distances between the lower and upper

points of the left and right eyes regions are computed and
averaged (feature f t

3, eyebrows).

For each feature f t
k , the apex t indicates the dependence of

the feature from the current 3D frame (t = 1, . . . ,T , being T
the number of frames in a 3D sequence).

(a) happy: neutral (b) happy: apex

Figure 3: Facial points detected in the depth maps of 3D
frames (“happy” sequence): (a) Neutral frame; (b) Apex
frame.

Each feature f t
k , measured for a particular subject, cap-

tures an absolute distance that depends from the face size
as well as from the facial expression of the subject. As a
consequence, these distances could be affected more by the
identity of the subject than by his/her expression. In order
to remove the unwanted dependency from the subject, each
feature is normalized with respect to the distance between
the inner eye points which is assumed to be an intrinsic fea-
ture of the subject and is invariant with respect to expres-
sion changes [BBDd11]. In addition, to remove the effect
induced on expressions by the specific subject, each feature
is managed in a differential form, by subtracting from its
value that assumed in the initial frame of the sequence. Fi-
nally, the magnitude of features f t

k is quantized into 2L+ 1
discrete intervals. This is obtained by a stair-step function
with a quantization step ∆:

f̂ t
k =


L i f f t

k ≥ L∆

i i f f t
k ∈ [i∆,(i+1)∆)

−i i f f t
k ∈ [−i∆,−(i+1)∆)

−L i f f t
k ≤−L∆.

Normalized and quantized distances f̂ t
k are computed for

each 3D frame of a dynamic facial sequence, thus consti-
tuting the intra-frame representation of the face. Accord-
ing to this, the facial expression recognition process relies

on the analysis of the temporal behavior of these distances.
Fig. 4 shows the temporal dynamic of distances f t

k (i.e., be-
fore quantization) for 3D sequences of a same subject (“an-
gry”, “happiness” and “surprise” expression sequences are
reported in (a), (b) and (c), respectively). For example, it can
be observed that the “happy” expression is characterized by
a convex shape of the mouth width curve and by a concave
shape of the mouth-nose curve. Differently, the signatures
for the “surprise” expression are given by the convex shape
of the mouth and mouth-nose curves. For the “angry” expres-
sion, the concave shapes of the mouth and eyebrows curves
are the most characterizing signatures. As a common behav-
ior across different expressions, the features that most char-
acterize each expression change from an initial reference
value passing through an activation interval (onset), consti-
tuted by the sequence of frames in which the face changes
from a neutral state to an expressive one, followed by an
apex interval, where the expression reaches its maximum,
with the sequence closed by a deactivation interval (offset),
where the expressive face vanishes to a neutral one. This ev-
idences the capability of the extracted features to capture the
expression changes in the experimented 3D sequences that
evolve through neutral appearance, low intensity, high inten-
sity, and back to low intensity and neutral again (see Sect. 2).

(a) angry

(b) happy

(c) surprise

Figure 4: Temporal dynamics of the distances f t
k of a same

subject for three sequences of the BU-4DFE: (a) Angry; (b)
Happiness; (c) Surprise.

In view of HMM training and classification, each feature
f̂ t
k is seen as an observation Ot of the hidden process rep-

resented by the specific facial expression to be modeled as
detailed in the next Section.
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4. Expression classification based on HMMs

Let λ = {A,B,π} denote an HMM to be trained and N be
the number of hidden states in the model. We indicate the
states as S = {S1,S2, ...,SN}, and the state at instant time
t is qt . The state transition probability distribution is indi-
cated as A = {ai j}, where ai j = P(qt+1 = S j|qt = Si), with
1 ≤ i, j ≤ N. In a discrete domain, each state of the model
can emit a set of observation symbols, taken from a discrete
alphabet corresponding to the physical output of the sys-
tem being modeled. The individual symbols are indicated as
V = {v1,v2, . . . ,vM}, being M the number of distinct obser-
vation symbols. In our case, the set V includes all the possi-
ble instances that can be assumed by the discretized features
f̂ t
k generated by the face representation of Sect. 3. Given an

observation vk, B = {b j(k)} = P(vk at t|qt = S j) is the ob-
servation probability distribution in state j, that is the prob-
ability that the observation k being produced from state j,
independent of t. Finally, with π = {πi} is denoted the ini-
tial probability array, being πi = P(q1 = Si).

In our case, sequences of 3D frames constitute the tempo-
ral dynamics to be classified. Each prototypical expression
is modeled by four HMMs, one for each feature f̂ t

k (a to-
tal of 24 HMMs is required, λ

expr
k , with k = 0,1,2,3, and

expr ∈ {an,di, f e,ha,sa,su}). Four states per HMM (N=4)
are used to represent the temporal behavior of each expres-
sion. This corresponds to the idea that: Each sequence starts
and ends with a neutral expression (state S1); The frames that
belong to the temporal intervals where the face changes from
neutral to expressive and back from expressive to neutral are
modeled by the onset (S2) and offset (S4) states, respectively;
Finally, the frames corresponding to the highest intensity of
the expression are captured by the apex state (S3). Fig. 5 ex-
emplifies the structure of the HMMs in our framework.

Figure 5: Structure of the HMMs modeling a 3D facial se-
quence. The four states model, respectively, the neutral, on-
set, apex and offset frames of the sequence. As shown, from
each state it is possible to remain in the state itself or move
to the next one (left-right HMM).

The training procedure of each HMM is summarized as
follows:

• Observation sequences O= {O1,O2, · · · ,OT }, are derived
from the 3D expression sequences, where each Ot denotes
an observation at time t expressed by the feature f̂ t

k;
• The HMM λ is initialized with random values. The Baum-

Welch algorithm [Rab89] is used to perform unsupervised

learning from a set of training sequences, thus estimating
the model parameter λ = {A,B,π} when P(O|λ) is maxi-
mized.

Given a 3D sequence to be classified, it is processed as in
Sect. 3, so that each feature f̂ t

k corresponds to a query obser-
vation Ok = {O1

k ≡ f̂ 1
k , . . . ,O

T
k ≡ f̂ T

k }. Then, the query ob-
servation Ok is presented to the six HMMs λ

expr
k that model

the feature k for different expressions, and the Viterbi algo-
rithm is used to determine the best path Q̄k = {q̄1

k , . . . , q̄
T
k },

which corresponds to the state sequence giving a maximum
of likelihood to the observation sequence Ok. The likelihood
along the best path, pexpr

k (Ok, Q̄k|λ
expr
k ) = p̄expr

k (Ok|λ
expr
k ),

is considered as a good approximation of the true likelihood
given by the more expensive forward procedure [Rab89],
where all the possible paths are considered instead of the
best one. This procedure is applied to the four features f̂ t

k of
a sequence and the likelihoods of the corresponding HMMs
are combined according to a weighted product rule. Finally,
the sequence is classified as belonging to the class corre-
sponding to the four HMMs whose combined log-likelihood
along the best paths is the greatest one:

c = argmax
expr

3

∏
k=0

αk · log p̄expr
k ,

where αk is a parameter that weights the likelihood of the
HMM classifying the individual feature f̂ t

k , and c is the re-
sulting class.

5. Experimental results

In the following, we present our preliminary facial expres-
sion recognition results obtained on the BU-4DFE database.
Similarly to the approach in [SZPR11], our solution can ef-
fectively discriminate between angry, happiness and sur-
prise expressions. So, with respect to the general formula-
tion of the previous section, in the proposed experiments
expr takes value in the set {an,ha,su}. Data of 80 subjects
have been considered in the experiments (in contrast to 60
subjects used in [SY08], [SZPR11] and [LTH11]), using the
remaining 21 subjects for a preliminary tuning of the pro-
posed algorithms. The 80 subjects are randomly partitioned
into 10 sets, each containing 8 subjects, and 10-fold cross
validation has been used for test, where at each round 9 of
the 10 folds (72 subjects) are used for training while the re-
maining (8 subjects) are used for test. The recognition results
of 10 rounds are then averaged to give a statistically signifi-
cant performance measure of the proposed solution.

Results are reported in the confusion matrix of Tab. 1.
Rows of the table are the true expressions to classify,
whereas columns represent the results of the classification. It
can be observed that the best classified expression is angry
with a recognition accuracy of about 84%, whereas there is a
greater confusion for the expressions of happiness and sur-
prise. The average recognition accuracy is equal to 76.3%.
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Angry Happy Surprise

Angry 83.75 11.25 5
Happy 17.5 75 7.5
Surprise 13.75 16.25 70

Table 1: Average confusion matrix (percentage values).

We also note that the proposed feature extraction and clas-
sification algorithms can process 3D sequences at a rate of
around 10 frames per second (on an Intel Centrino Duo
at 2.2GHz with 2GB memory), thus permitting a real-time
analysis.

5.1. Discussion and comparative evaluation

To the best of our knowledge, the only four works reporting
results on expression recognition from dynamic sequences
of 3D scans are those in [SY08], [SZPR11], [LTH11]
and [FZSK11]. These works have been verified on the BU-
4DFE dataset, but the testing protocols used in the experi-
ments are quite different, so that a direct comparison of the
results reported in these papers is not possible.

The approach in [SY08] is not completely automatic and
also presents an high computational cost. In fact, a generic
model (i.e., tracking model) is adapted to each depth model
of a 3D sequence. The adaptation is controlled by a set of
83 pre-defined keypoints that are manually identified and
tracked in 2D. The person-independent expression recog-
nition experiments were performed on 60 selected subjects
out of the 101 subjects of the BU-4DFE database, by gen-
erating a set of 6-frame subsequences from each expression
sequence to construct the training and testing sets. The pro-
cess were repeated by shifting the starting index of the sub-
sequence every one frame till the end of the sequence. The
rationale used by the authors for this shifting was that a sub-
ject could come to the recognition system at any time, thus
requiring the recognition process could start from any frame.
Following a 10-fold cross-validation, an average recogni-
tion rates of 90.44% was reported. So, it results that expres-
sion recognition results are actually provided not on variable
length sequences of 3D depth frames, but just on very short
sequences with a predefined length of 6 frames.

The method proposed in [SZPR11] is fully automatic with
respect to the processing of facial frames in the temporal
sequences, but uses supervised learning to train a set of
HMMs. Though performed offline, supervised learning re-
quires manual annotation and counting on a consistent num-
ber of training sequences that can be a time consuming op-
eration. In addition, a drawback of this solution is the com-
putational cost due to ICP alignment of the 3D mesh of each
frame with respect to a reference frame and Free-Form De-
formations based on B-spline interpolation between a lattice
of control points for nonrigid registration and motion cap-
turing between frames. This hinders the possibility of the

method to adhere to a real time protocol of use. Preliminary
tests were reported on three expressions: anger, happiness
and surprise. Authors motivated the choice of the happiness
and anger expressions with the fact that they are at either
ends of the valence expression spectrum, whereas surprise
was also chosen as it is at one extreme of the arousal expres-
sion spectrum. However, these experiments were carried out
on a subset of subjects accurately selected as acting out the
required expression. Verification of the classification system
was performed using a 10-fold cross-validation testing. On
this subset of expressions and subjects, an average expres-
sion recognition rate of 81.93% is reported.

In [LTH11], a fully automatic method is also proposed,
that uses an unsupervised learning solution to train a set of
HMMs. In this solution, preprocessing is very important in
that an accurate alignment of the 3D mesh of each frame is
required in order to extract the level set curves that are used
for face representation. This increases the computational
cost of the approach making questionable its use where a
real time constraint is required. Expression recognition is
performed on 60 subjects from the BU-4DFE database for
the expressions of happiness, sadness and surprise. Results
of 10-fold cross-validation show an overall recognition ac-
curacy of 92.22%, with the highest performance of 95% ob-
tained for the happiness expression.

The most recent method in the literature is that proposed
in [FZSK11]. The approach is fully automatic, and based
on 4D registration and dense correspondences between sub-
sequent frames of 3D facial sequences. In particular, two
techniques are proposed and compared to identify 3D corre-
spondences, namely, spin-images [JH99] computed around
Harris corner points of 3D meshes, and MeshHOG descrip-
tors computed in correspondence to MeshDOG detected
points [ZBVH09]. Matching of these descriptors between
frames, with RANSAC filtering, ensures points correspon-
dence and permits rigid registration using Procrustes anal-
ysis. Then, the initial frame of the sequence is fitted to a
3D deformable face model (AFM) using ICP, and the AFM
is deformed on the first frame minimizing an energy func-
tion whereas for the subsequent frames the deformation on
the previous one is used to initialize the AFM. Finally, LBP
on three orthogonal planes is used to describe the AFM se-
quence. An expression recognition rate of 74.63% on the six
expressions of the BU-4DFE is reported (average on 507 se-
quences from 100 subjects). However, due to the very high
computational cost required for feature extraction, registra-
tion and fitting, it is evident that the approach is only suited
for off-line processing of the sequences.

With respect to these solutions, our approach has a lower
accuracy (using more sequences), but is positively distin-
guished by the capability to run in real-time, without re-
quiring manual intervention in both the training and testing
phase (no manual annotation of facial points or supervised
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learning are required). In addition, our solution has been
tested on a larger subset of the BU-4DFE database.

6. Conclusions

In this paper, we have presented a fully automatic ap-
proach for facial expression recognition from 3D dynamic
sequences (3D + time) of facial scans. The approach is tar-
geted to have a low computational cost (to the best of our
knowledge, it is the only one that can work in real time on
4D sequences) so that it can be used in applicative scenarios
where time constraints are relevant. To this end, the model-
ing of the face content is obtained by automatically detecting
in 3D a set of facial points and measuring distances between
them. The temporal dynamics of the distances between fa-
cial points is then used as input to a set of HMMs capable
to classify the dominant expression appearing in a temporal
sequence.

As future work, we plan to extend our face representation
approach in order to extract facial features capable to dis-
criminate also between disgust, fear and sad expressions.
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TUTAN O., GÖ B., SANKUR B., AKARUN L.: Bosphorus
database for 3D face analysis. In Proc. First COST 2101 Work-
shop on Biometrics and Identity Management (May 2008). 1

[SD07] SOYEL H., DEMIREL H.: Facial expression recognition
using 3D facial feature distances. In Proc. Int. Conf. on Image
Analysis and Recognition (Aug. 2007), pp. 831–838. 2

[SY08] SUN Y., YIN L.: Facial expression recognition based on
3D dynamic range model sequences. In Proc. Eur. Conf. on Com-
puter Vision (Marseille, France, Oct. 2008), pp. 58–71. 2, 6, 7

[SZPR11] SANDBACH G., ZAFEIRIOU S., PANTIC M., RUECK-
ERT D.: A dynamic approach to the recognition of 3d facial ex-
pressions and their temporal models. In IEEE Conf. on Automatic
Face and Gesture Recognition (Santa Barbara, CA, Mar. 2011),
pp. 406–413. 2, 6, 7

[TH08] TANG H., HUANG T. S.: 3D facial expression recogni-
tion based on automatically selected features. In Proc. IEEE Int.
Conf. on Computer Vision and Pattern Recognition (Anchorage,
AK, June 2008), pp. 1–8. 2

[WYWS06] WANG J., YIN L., WEI X., SUN Y.: 3D facial ex-
pression recognition based on primitive surface feature distribu-
tion. In Proc. IEEE Int. Conf. on Computer Vision and Pattern
Recognition (June 2006), vol. 2, pp. 1399–1406. 2

[YCS∗08] YIN L., CHEN X., SUN Y., WORM T., REALE M.:
A high-resolution 3d dynamic facial expression database. In
Int. Conf. on Automatic Face and Gesture Recognition (FGR08)
(Amsterdam, The Netherlands, Sept. 2008), pp. 1–6. 1, 3

[YWS∗06] YIN L., WEI X., SUN Y., WANG J., ROSATO M.:
A 3D facial expression database for facial behavior research. In
Proc. IEEE Int. Conf. on Automatic Face and Gesture Recogni-
tion (Southampton, UK, Apr. 2006), pp. 211–216. 1

[ZBVH09] ZAHARESCU A., BOYER E., VARANASI K., HO-
RAUD R.: Surface feature detection and description with appli-
cations to mesh matching. In Proc. IEEE Int. Conf. on Computer
Vision and Pattern Recognition (Miami Beach, FL, June 2009),
pp. 373–380. 7

[ZP07] ZHAO G., PIETIKÄINEN M.: Dynamic texture recogni-
tion using local binary patterns with an application to facial ex-
pressions. IEEE Transactions on Pattern Analysis and Machine
Intelligence 29, 6 (June 2007), 915–928. 2

c© The Eurographics Association 2012.

92




