
NEW EDITING TECHNIQUES FOR

VIDEO POST-PROCESSING

DISSERTATION

ZUR ERLANGUNG DES GRADES DES

DOKTORS DER INGENIEURWISSENSCHAFTEN (DR.-ING.)
DER NATURWISSENSCHAFTLICH-TECHNISCHEN FAKULTÄTEN

DER UNIVERSITÄT DES SAARLANDES

VORGELEGT VON

VOLKER SCHOLZ

SAARBRÜCKEN

2007

http://www.eg.org
http://diglib.eg.org

Abgabe der Dissertation: 5.04.2007
Datum des Kolloquiums: 21.05.2007

Dekan der Naturwissenschaftlich-Technischen Fakultät I:
Prof. Dr. Thomas Herfet

Mitglieder des Prüfungsausschusses:
Vorsitzender: Prof. Dr. Joachim Weickert
1. Gutachter: Prof. Dr. Hans-Peter Seidel
2. Gutachter: Prof. Dr. Marcus Magnor
Akademischer Mitarbeiter: Prof. Dr. Karol Myszkowski

ii

Abstract

This thesis contributes to capturing 3D cloth shape, editing cloth texture and altering

object shape and motion in multi-camera and monocular video recordings. We propose

a technique to capture cloth shape from a 3D scene flow by determining optical

flow in several camera views. Together with a silhouette matching constraint we can

track and reconstruct cloth surfaces in long video sequences. In the area of garment

motion capture, we present a system to reconstruct time-coherent triangle meshes from

multi-view video recordings. Texture mapping of the acquired triangle meshes is used

to replace the recorded texture with new cloth patterns. We extend this work to the

more challenging single camera view case. Extracting texture deformation and shading

effects simultaneously enables us to achieve texture replacement effects for garments

in monocular video recordings. Finally, we propose a system for the keyframe editing

of video objects. A color-based segmentation algorithm together with automatic video

inpainting for filling in missing background texture allows us to edit the shape and

motion of 2D video objects. We present examples for altering object trajectories,

applying non-rigid deformation and simulating camera motion.

Kurzfassung

In dieser Dissertation stellen wir Beiträge zur 3D-Rekonstruktion von Stoffoberfächen,

zum Editieren von Stofftexturen und zum Editieren von Form und Bewegung von

Videoobjekten in Multikamera- und Einkamera-Aufnahmen vor. Wir beschreiben eine

Methode für die 3D-Rekonstruktion von Stoffoberflächen, die auf der Bestimmung

des optischen Fluß in mehreren Kameraansichten basiert. In Kombination mit einem

Abgleich der Objektsilhouetten im Video und in der Rekonstruktion erhalten wir

Rekonstruktionsergebnisse für längere Videosequenzen. Für die Rekonstruktion von

iii

Kleidungsstücken beschreiben wir ein System, das zeitlich kohärente Dreiecksnetze

aus Multikamera-Aufnahmen rekonstruiert. Mittels Texturemapping der erhaltenen

Dreiecksnetze wird die Stofftextur in der Aufnahme mit neuen Texturen ersetzt. Wir

setzen diese Arbeit fort, indem wir den anspruchsvolleren Fall mit nur einer einzelnen

Videokamera betrachten. Um realistische Resultate beim Ersetzen der Textur zu

erzielen, werden sowohl Texturdeformationen durch zugrundeliegende Deformation der

Oberfläche als auch Beleuchtungseffekte berücksichtigt. Im letzten Teil der Dissertation

stellen wir ein System zum Editieren von Videoobjekten mittels Keyframes vor. Dies

wird durch eine Kombination eines farbbasierten Segmentierungsalgorithmus mit

automatischem Auffüllen des Hintergrunds erreicht, wodurch Form und Bewegung

von 2D-Videoobjekten editiert werden können. Wir zeigen Beispiele für editierte

Objekttrajektorien, beliebige Deformationen und simulierte Kamerabewegung.

Summary

Today’s digital image processing tools have greatly advanced movie editing capabili-

ties. However, considerable, time-consuming manual interaction is still necessary for

post-production tasks like rotoscoping, segmentation etc. Replacement of non-rigid ob-

jects such as cloth is almost infeasible without automation, due to the high number of

degrees of freedom of the surface. For general shape and motion editing of video ob-

jects, an easy-to-use interactive system which only requires a moderate amount of user

interaction is desirable. This dissertation contributes to capturing cloth shape, editing

cloth texture and altering object shape and motion in multi-camera and monocular video

recordings.

We propose a technique to capture cloth shape from a 3D scene flow by determining

optical flow in several camera views. Together with a silhouette matching constraint we

can track and reconstruct cloth surfaces in long video sequences. Reconstructing the

iv

surface is a prerequisite for further editing operations such as texture replacement.

In the area of garment motion capture, we present a system to reconstruct time-coherent

triangle meshes from multi-view video recordings. It makes use of a specially designed

color pattern which allows a unique identification of color features on the garment across

different camera viewpoints. Texture mapping of the acquired triangle meshes is used

to replace the recorded texture with new cloth patterns.

We extend this work to the more challenging single camera view case. Simultaneously

extracting texture deformation and shading effects enables us to achieve texture replace-

ment effects which are close to reality. We use the same color pattern as in the multi-

camera approach. This method enables us to exchange fabric pattern designs worn by

actors as a video post-processing step.

Finally, we propose a system for keyframe editing of video objects. A color-based

segmentation algorithm together with automatic video inpainting for filling in missing

background texture allows us to edit shape and motion of 2D video objects. We present

examples for altering object trajectories, applying non-rigid deformation and simulating

camera motion. Our vision is that a powerful video post-processing framework gives

visual effects artists additional artistic freedom to tell the visual story of a film during

editing.

To sum up, the key contributions of this thesis are:

– A method for the 3D tracking of cloth motion by optical flow in a multi-camera

setting.

– The first system for multi-camera capture of garment motion that uses a color-

coded pattern specially designed for robust observation.

– A video editing system for replacing cloth texture with texture deformation and

lighting effects, which makes our color-coded approach useful for single camera

recordings.

v

– The first system for keyframe editing of shape and motion of video objects which

combines color-based object segmentation with video inpainting methods.

– A new algorithm for matting of video objects.

– A new, fast video inpainting method for static and moving cameras.

Zusammenfassung

Heutige Softwaretools zum Editieren von Bildern und Video ermöglichen vielfältige

Bearbeitungsmöglichkeiten für das Editieren von Filmen. Dennoch sind einige Schritte

in der Nachbearbeitung wie Rotoscoping und Segmentierung noch sehr zeitaufwendig

und benötigen ein beträchtliches Maß an Benutzerinteraktion. Das Ersetzen von de-

formierbaren Objekten wie Stoff ist ohne Automatisierung praktisch unmöglich, weil

die betreffende Oberfläche viele Freiheitsgrade hat. Will man die Form und Bewegung

von Videoobjekten im Allgemeinen editieren, wäre eine Software wünschenswert, die

mit wenig Benutzerinteraktion auskommt. In dieser Dissertation stellen wir Beiträge

zur 3D-Rekonstruktion von Stoffoberfächen, zum Editieren von Stofftexturen und zum

Editieren von Form und Bewegung von Objekten in Multikamera- und Einkamera-

Videoaufnahmen vor.

Wir stellen eine Methode für die 3D-Rekonstruktion von Stoffoberflächen vor, die auf

der Bestimmung des optischen Fluß in mehreren Kameraansichten basiert. Mittels

bekannter Kamerakalibrierung wird daraus das 3D-Bewegungsfeld der Szene abgeleitet.

In Kombination mit einem Abgleich der Objektsilhouetten im Video und in der Rekon-

struktion erhalten wir Rekonstruktionsergebnisse für längere Videosequenzen. Diese

Rekonstruktion ist eine Voraussetzung für spätere Editieroperationen wie das Ersetzen

von Texturen.

Für die Rekonstruktion von Kleidungsstücken beschreiben wir ein System, das zeitlich

kohärente Dreiecksnetze aus Multikamera-Aufnahmen rekonstruiert. Hierzu wird der

vi

Stoff mit einem speziellen Farbmuster bedruckt, das eine einfache Identifikation von

Farbfeatures zwischen acht verschiedenen Kameraansichten erlaubt. Mittels bekannter

Kamerakalibrierung wird die Oberfläche für jedes Videobild über Triangulation rekon-

struiert. Die Stofftextur in der Aufnahme wird durch texture mapping der erhaltenen

Dreiecksnetze mit neuen Texturen ersetzt.

Wir setzen diese Arbeit fort in dem wir den anspruchsvolleren Fall mit einer einzel-

nen Videokamera betrachten. Um realistische Resultate beim Ersetzen der Textur zu

erzielen, werden sowohl Texturdeformationen durch zugrundeliegende Deformation der

Oberfläche als auch Beleuchtungseffekte berücksichtigt. Es kommt dasselbe Farbmuster

wie im vorherigen Projekt zum Einsatz. Diese System könnte dazu eingesetzt werden,

die Kleidungstextur von Schauspielern in der Postproduktion auszutauschen.

Im letzten Teil der Dissertation stellen wir ein System zum Editieren von Videoobjekten

über Keyframes vor. Dies wird durch eine Kombination eines farbbasierten Segmen-

tierungsalgorithmus mit automatischem Auffüllen des Hintergrunds erreicht. Dadurch

können Form und Bewegung von 2D-Videoobjekten editiert werden. Wir zeigen

Beispiele für editierte Objekttrajektorien, beliebige Deformationen und simulierte Kam-

erabewegung. Unsere Vision ist ein leistungsfähiges Softwaretool, das Künstlern mehr

Freiheit in der Postproduktion von Filmen gibt.

Zusammengefasst sind die wesentlichen Beiträge dieser Dissertation:

– Eine Methode für das Tracking von Stoff über den optischen Fluß in einem

Multikamera-System.

– Das erste System für die 3D-Rekonstruktion von Kleidungsstücken aus

Multikamera-Aufnahmen, das auf einem speziell dafür konstruierten Farbmuster

beruht.

– Ein System für das Ersetzen von Stofftexturen in monokularen Videoaufnahmen,

das Texturdeformationen und Beleuchtungseffekte berücksichtigt.

vii

– Das erste System zum Editieren von Form und Bewegung von Videoobjekten über

Keyframes, das farbbasierte Objektsegmentierung mit Inpainting Methoden für

Video kombiniert.

– Ein neuer Algorithmus für das Matting von Videoobjekten.

– Eine neue, effiziente Methode für Video Inpainting bei Aufnahmen mit statischer

und bewegter Kamera.

viii

Acknowledgments. First and foremost, I am grateful to Prof. Dr. Magnor for su-

pervising my Ph.D. work. After my first job as a software engineer, I’m grateful for the

opportunity to do research at an internationally renowned institute. Marcus was a great

advisor motivating us for the major conference deadlines. Special thanks is due to Prof.

Dr. Seidel who was my co-advisor after Marcus’ move to Braunschweig.

Also, I want to thank my co-workers Timo Stich, Michael Keckeisen, Markus Wacker

and Sascha El-Abed for helping me build the software behind the papers. Their work

is included in this thesis and the corresponding sections are marked explicitly. Thanks

to all members of the former Graphics-Optics-Vision group and the Computer Graphics

Lab in Braunschweig for helping with administration issues and proofreading of paper

drafts (Lukas Ahrenberg, Ellen Fries, Bastian Goldlücke, Ivo Ihrke, Joseph Klumpp,

Andrei Lintu, Christian Linz, Anita Sellent and Timo Stich).

Furthermore, I would like to thank Edda Happ, Lukas Ahrenberg, Julia Luxenburger

and Sarah Scherer from the Max-Planck-Institute for acting as models during our video

recordings. Our tailor Tanja Frisch did also a great job in manufacturing the custom-

designed clothing. Thanks also to Michael Repplinger and Prof. Dr. Slusallek from the

Computer Graphics Lab, Saarland University for providing camera equipment for the

last project.

Special thanks is due to Oliver Schall for regular discussions. Finally, I am most grateful

to my family and Betty for their encouragement and support.

ix

Contents

1 Introduction 1

2 Related Work 4

2.1 Cloth Capture . 4

2.2 Texture Replacement . 9

2.3 Video Object Editing . 12

3 Cloth Motion from Optical Flow 18

3.1 Introduction . 18

3.2 Algorithm Overview . 18

3.3 Optical Flow . 19

3.4 Deformable Model . 21

3.5 Silhouette Matching . 23

3.6 Results . 24

3.7 Conclusions . 27

4 Garment Motion Capture Using Color-Coded Patterns 31

4.1 Introduction . 31

4.2 Preliminary work . 32

4.2.1 Color-coded patterns . 32

x

CONTENTS xi

4.2.2 Mesh construction . 34

4.3 Cloth Motion Capture . 34

4.3.1 Feature recognition . 35

4.3.2 Feature labeling . 36

4.3.3 Reconstruction . 40

4.3.4 Hole interpolation . 41

4.4 Rendering . 43

4.5 Results . 44

4.6 Conclusions . 46

5 Texture Replacement of Garments in Monocular Video Sequences 50

5.1 Introduction . 50

5.2 Overview . 51

5.3 Image Processing . 52

5.4 Feature Labeling and Tracking . 54

5.5 Texture Coordinate Interpolation . 55

5.6 Shading Maps . 58

5.7 Results . 63

5.8 Conclusions . 65

6 Keyframe Editing of Video Objects 71

6.1 Introduction . 72

6.2 Overview . 74

6.3 Video Segmentation . 74

6.3.1 Preprocessing . 75

6.3.2 Min-cut Segmentation on Superpixels 76

6.3.3 Min-cut Refinement . 78

6.3.4 Boundary Editing Tool . 79

CONTENTS xii

6.4 Video Inpainting . 81

6.4.1 Image Inpainting Revisited . 81

6.4.2 Video Inpainting with Spatio-temporal Patches 82

6.4.3 Camera Motion . 84

6.5 Editing Operations . 86

6.5.1 Translation . 86

6.5.2 Scaling and Rotation . 86

6.5.3 Non-rigid Deformation . 87

6.5.4 Simulated Camera Motion . 87

6.6 Compositing . 88

6.7 Results . 90

6.8 Conclusions . 94

7 Conclusions 97

7.1 Future Research . 99

7.1.1 Cloth Capture . 99

7.1.2 Texture Replacement . 99

7.1.3 Video Editing . 100

Appendix 101

Bibliography 102

CONTENTS xiii

1

Introduction

Figure 1.1: Le voyage dans la lune (George Méliès, 1902) [Wik07]. An artificial rocket
hits the moon’s eye.

From the beginning of cinema, invented by the Lumière brothers in 1895, visual effects

as a means to manipulate and transform reality received a lot of attention from the pi-

oneers of cinematography. George Méliès accidentally discovered the stop trick, one

of the simplest special effects, in 1896 [Wik07]. It occurs when an object is filmed,

then while the camera is off, the object is moved out of sight of the camera. Then the

camera is turned back on. When the film is watched it thus seems to the viewer that

the object disappears. George Méliès was one of the first filmmakers to use multiple

exposures, time-lapse photography, dissolves, and hand-painted color in his films. His

science fiction film ”Voyage dans la lune” (A Trip to the Moon) from 1902 (Fig. 1.1)

is considered to be the first visual effects film.The earliest films showed two important

aspects: the amazing realism of the new medium and the ability to make up scenes that

were impossible to create any other way.

2

Figure 1.2: King Kong c© 2005 Universal Studios, used with permission.

Until the 1990s, special effects post-production for movies consisted of photo-chemical

processing steps, which was very labor-intensive. The recent digitization of photogra-

phy and video moves beyond the constraints of traditional analog film and poses new

challenges for computer scientists. Commercial software packages such as Adobe Pho-

toshop and After Effects [Ado07] now allow everyone to create visual effects on their

desktop computer. Stunning compositing effects are now common in today’s movie

productions (Fig. 1.2). New methods for effective editing of video material are still at-

tractive as this editing work is still considered as an art practiced by a small community.

We address this challenge in four projects for editing cloth and general video objects.

Physically-based simulation is the traditional way of generating cloth animations in

computer graphics. Recently, cloth capture methods have emerged which build cloth

models from video data. Both methods have advantages and disadvantages. Simulation

gives the user full control over the result. It can generate high-resolution meshes and

commercial software packages are available. For high quality results, long computation

times are required. Parameter tweaking and cloth tangling are other common problems.

Also, cloth which is resistant to stretch creates instabilities in the simulation resulting

from stiff differential equations [HE00]. In contrast, cloth capture does not depend on

cloth parameters. Cloth interaction with the human body is implicit and there is no need

for elaborate models of the human body. It does not require parameter tweaking and is

relatively fast. We will describe a multi-camera approach for 3D reconstruction of real

3

garments. The obtained models are re-rendered with new textures into the original video

frames, opening up new editing possibilities.

Image-based rendering is another alternative for rendering cloth. It operates in the im-

age domain instead of building 3D models. It has several advantages for footage from a

single camera. One major advantage is that accurate illumination can be obtained from

the video recording. Also, an expensive multi-camera setup which needs time to cali-

brate is not needed. For this case we propose a system for retexturing cloth in video,

based on an image-based technique.

In the last part of this thesis, we extend our scope from cloth editing to editing of gen-

eral video objects in order to generate a larger variety of visual effects. We present a

video editing framework which can be used to alter shape and motion of video objects.

By combining color-based video segmentation with automatic inpainting for filling in

background texture, general purpose editing of video objects becomes possible. The

system is keyframe-based and we show various visual effects such as altering the mo-

tion and shape of objects and the simulation of camera motion.

This thesis is organized as follows: first, we will put the work presented here in per-

spective by giving an overview of related work (Chapter 2). In Chapter 3, an algorithm

for tracking cloth motion based on optical flow is described. The subsequent chapter

presents a system for capturing cloth motion with a multi-camera system and a custom-

designed color pattern (Chapter 4). Chapter 5 deals with our approach for texture re-

placement of cloth in monocular video. In Chapter 6, we describe our video editing

framework for altering object shape and motion. A general discussion concludes the

thesis.

2

Related Work

This chapter summarizes work that is related to ours. The first section will describe

several cloth capture methods (Section 2.1), which is an alternative to physically-based

cloth simulation in computer graphics. Section 2.2 reports on literature relevant for

texture replacement in still images and video. Finally, Section 2.3 describes previous

research in the editing of video objects.

2.1 Cloth Capture

To motivate this approach, we continue our discussion of cloth simulation versus

cloth capture from the introduction. A good survey of the basics of physically-based

cloth simulation in computer graphics is given in [HE00] and [Bri03]. Tutorials de-

scribing the state-of-the-art in virtual clothing (garment design etc.) can be found

in [MTCK+04, MTVTW05]. Starting with the seminal work of Terzopoulos et al.

[TPBF87], who presented a model for the animation of deformable surfaces based on

continuum mechanics, the literature in this area has grown continuously. In the fol-

lowing years, this physically sound approach was not adopted by computer graphics

scientists due to high computational complexity, and particle and mass-spring systems

were introduced. To achieve physically plausible results, some parameter tweaking is

necessary for these models. As observed by Choi et al. [CK02], the buckling behavior

of cloth in simulation strongly depends on initial conditions, which can lead to different

2.1 Cloth Capture 5

Figure 2.1: Left: reconstruction result from [PH03], c© D. Pritchard, used with permis-
sion. Right: Results from [BTH+03a] for different materials, c© K. Bhat, used with
permission.

results for small parameter variations.

After two decades of cloth simulation research in computer graphics there are still major

challenges in this area. The modeling of dynamic cloth behavior (hysteresis, damping)

is an issue because only static cloth properties are currently measured and modeled.

Folds and wrinkles lead to complicated self-collisions, which must be detected and han-

dled robustly by collision detection algorithms. Due to high computational complexity,

parallel implementations of these algorithms are considered. Garment design and mod-

eling has been addressed by previous work [MTVTW05], and homogeneous textiles can

be simulated by current cloth simulators. Garments composed of different fabrics and

with differing seam properties are not accurately modeled by current techniques. We

see cloth capture from video as a promising alternative to avoid the complexity of an ac-

curate physically-based simulation. In the following, we describe several related cloth

capture methods that build cloth models from video data.

Pritchard and Heidrich [PH03, Pri03] use an image-based approach to cloth motion.

They use a calibrated stereo camera pair for shape and obtain the surface parameteriza-

tion by using SIFT feature matching [Low04] and a region growing technique. Matching

to a flat piece of cloth yields texture coordinates (Fig. 2.1 left). The used cloth has a non-

repeating line drawing pattern which eases the task of finding feature correspondences.

2.1 Cloth Capture 6

Motion blur caused by fast motion reduces the accuracy of the matching and the ani-

mation lacks frame-to-frame coherence because reconstruction is performed for every

frame separately.

Bhat et al. [BTH+03b] estimate the parameters for a cloth simulation by adjusting the

simulation results to real world footage. This is an elegant way to avoid parameter tuning

by hand. Results for fabrics with different material properties are shown (Fig. 2.1 right).

By reducing non-rigid motion to several material parameters, this method is suitable

mainly for qualitative reproduction.

Carceroni and Kutulakos [CK01] present a general method for obtaining shape, re-

flectance and non-rigid motion of a dynamic 3D scene by an algorithm called surfel

sampling. Experimental results for complex real scenes (a waving flag, skin, shiny ob-

jects) are shown. The reconstructed surfels are quite large which gives a coarse sampling

of the surface.

A flow-based tracking method which does not require prior shape models is described

by Torresani et al. [TYAB01]. This method produces 3D reconstructions from single-

view video by exploiting rank constraints on optical flow. They develop factorization

of images of non-rigid scenes, where the non-rigidity is represented as a linear combi-

nation of basis shapes. Another example for this factorization approach is the work by

Brand [Bra01]. Results for a shoe and a T-shirt tracking sequence are shown. They con-

tinued this work in [TB02, TH04]. They obtain reconstructions of non-rigid surfaces by

tracking sparse feature sets. While the results are impressive for single camera recon-

struction, the tracked features are too sparse for a detailed representation of cloth folds.

To obtain accurate cloth models, a dense reconstruction would be necessary.

Lobay and Forsyth [LF04] show that shape-from-texture techniques can be applied to

cloth reconstruction. The results are based on still images and a surface model with

irradiance maps is reconstructed. Their shape from texture approach derives surface

normals from the shape of the individual texture elements which requires a regular tex-

2.1 Cloth Capture 7

Figure 2.2: Left: reconstruction result from [LF04], c© D. Lobay, used with permission.
Right: Color-coded T-shirt from [GKB03], c© I. Guskov, used with permission.

ture pattern. The results look smooth but lack detail (Fig. 2.2 left).

Han and Zhu [HZ05, HZ07] present a shape-from-shading (SFS) method to determine

the 3D geometry of uniformly colored cloth. To improve conventional ill-posed SFS

[ZTCS99] they propose a two-layer generative model of cloth folds, which requires

some prior knowledge on folds. The upper level consists of a number of folds which

generate ridge areas with a dictionary of fold primitives. These primitives are derived in

a supervised learning phase based on 3D surfaces acquired through photometric stereo

[Woo80]. The lower level consists of the remaining flat areas which are filled in between

the folds with a smoothness prior. Compelling cloth surfaces are obtained from still

images, but the supervised learning phase requires considerable manual effort.

Hasler et al. [HAR+06, HRA+07] use an analysis-by-synthesis approach to cloth track-

ing, where they present results for a square piece of cloth. They combine tracking by

SIFT features [Low04] with a mass-spring model and optimize the parameters of the

cloth simulation. Compelling results are obtained for a simple sequence (lifting the

cloth from the floor), but the computational cost of their implementation is prohibitive

(20-30 hours on 7 processors). The authors continue this work in [HRS07], where they

segment laser scans of people into garment and non-garment regions. They employ a

template fitting approach which also estimates garment dimensions. The obtained gar-

ment model is the input for a future cloth capture algorithm.

2.1 Cloth Capture 8

Ebert et al. [ESD03] use color-coded cloth textures for retexturing virtual clothing. To-

gether with range scans of the garment a parameterization of the mesh is obtained. The

authors use a color code which has a limited size of codewords so that the pattern is

repeated over the whole fabric. In this method the color code is only used for the pa-

rameterization of the surface, not for surface reconstruction.

The work by Guskov et al. [Gus02, GKB03] is related to our cloth capture method in

Chapter 4. In [Gus02] they introduce an algorithm that tracks checkerboard patterns

printed on cloth. The black squares (quads) are tracked independently by temporal pre-

diction of the associated homography. Heuristics to deactivate occluded squares and

to activate new appearing squares are applied. Locally, each marker is indistinguish-

able meaning that correspondence relies on global reasoning and temporal tracking. In

[GKB03] this work was extended to a multi-camera setup for 3D reconstruction. Color-

coded quad markers allow the identification of position and orientation unambiguously.

Results for different surface types, including a T-shirt are presented (Fig. 2.2 right). The

used color code has a limited number of codewords, so that a tracking method based

on Markov random fields is needed to identify individual quads. The system achieves

real-time performance. Tracking performance deteriorates for fast motion and the quads

have to be quite large which limits the achievable surface resolution.

Concurrent to our work presented in Chapter 4, White and Forsyth [WLF05, Whi05]

propose a multi-camera method based on colored triangle patterns. They use a hier-

archical code to disambiguate individual triangles which leads to large holes when the

triangle hierarchy is not visible due to occlusion. A cloth simulator is used to fill in

the missing data. Cloth silhouettes are used to constrain the surface shape to the visual

hull [Lau94]. In [WFV06, WCF07], they continue this work by replacing the hierar-

chical code by a non-hierarchical code which uses a large number of colors, i.e. they

use the whole printer color gamut. Due to camera noise and illumination effects the

triangle markers cannot be identified from color alone. A belief propagation algorithm

2.2 Texture Replacement 9

which uses surface strain as an additional cue is employed. Compelling results for still

images are obtained, which contain fine scale folds and wrinkles. We give a summary

of the different cloth capture methods in Table 2.2. In comparison to previous work,

our cloth capture method presented in Chapter 4 re-uses the idea of using color-coded

markers introduced by Guskov et al. and introduces a new color pattern. This pattern al-

lows us to use more markers and to obtain dense 3D models of garments in a circle-like

multi-camera setup.

2.2 Texture Replacement

Several authors have worked on texture replacement in still images. Two main effects

have to be considered for proper texture replacement: the geometric distortion of the tex-

ture due to the surface structure and the lighting effects which are present in the original

image. Tsin et al. [TLR01] propose to replace near-regular texture patterns in a plane by

learning a statistical texture model and lighting distributions from a sample image. Oh

et al. [OCDD01] use texture replacement in their image editing system. Depth informa-

tion is used to generate foreshortening distortions of the texture, and lighting changes

are also extracted. Image Analogy [HJO+01] and Image Quilting [EF01a] show texture

transfer effects which preserve local appearance of the texture but do not model texture

distortion and lighting effects explicitly. Liu et al. [LLH04] present an approach which

builds on user-assisted lattice extraction for near-regular texture (e.g. a brick wall). A

PCA analysis of the obtained geometric and lighting deformation fields allows control

over texture regularity. Textureshop [FH04a] introduces the idea of using shape-from-

shading to recover a rough set of normals for a non-textured surface in the image and

using these normals to introduce distortion in the texture synthesis process. User inter-

action is required to fix normal recovery errors. Zelinka et al. [ZFGH05] continue this

work and present a faster system with improved object selection, texture synthesis and

2.2 Texture Replacement 10

Figure 2.3: Left: statue with new brick texture from [FH04a], c© H. Fang, used with
permission. Right: T-shirt with superimposed logo from [PLF05b], c© J. Pilet, used
with permission.

shape-from-shading algorithms.

The major difficulty of replacing texture in video streams is temporal coherence. A

single-frame method would inevitably lead to flickering artifacts. Pilet et al. [PLF05b]

propose an algorithm for real-time non-rigid surface detection for arbitrary textures

which detects a surface by per frame feature matching in conjunction with a deformable

mesh model. Being a single frame method, however, temporal coherence is not consid-

ered. They extend this work in [PLF05a] by taking surface shading effects into account.

Bradley and Roth [BR04] augment cloth and paper with texture and interpolated light-

ing by using augmented reality square markers. Concurrent to our work, White and

Forsyth [WF06] re-texture special clothing with color patterns and natural clothing with

a limited number of colors. Their irradiance estimation exploits the property that pixels

can be classified into few color classes. Texture replacement for video data maintaining

temporal coherence has been attempted only recently by Lin et al. [Lin05, LL06, LL07].

The method is based on user-assisted lattice extraction for near-regular texture on cloth

(Fig. 2.4 left). The lattice structure is modeled by a Markov Random Field and tracked

with an affine Lucas-Kanade algorithm [LK81a]. Temporal coherence of the texture

deformation and shading maps is achieved by spatio-temporal smoothing as a post-

2.2 Texture Replacement 11

Figure 2.4: Left: texture replacement results from [Lin05], c© W. Lin, used with per-
mission. Right: retextured face in video [FH06], c© H. Fang, used with permission.

processing step.

Fang et al. [FH06] propose a video editing system called RotoTexture, which can syn-

thesize texture on nearly diffuse surfaces such as skin and a T-shirt (Fig. 2.4 right). It

is an extension of the Textureshop paper [FH04a] to video. Additionally to the shape-

from-shading method, the system uses a spring model to model the surface as it is de-

forming according to the recovered normal field. Optical flow and feature tracking are

used to obtain a temporally coherent texture mapping result. Temporal smoothing is

applied as a post-processing step. This is actually the first system that can re-texture

homogeneous surfaces in video. The results show texture swimming artifacts, this is

due to inaccuracies of feature point tracking.

To obtain realistic texture replacement results, the lighting conditions in the input data

have to be considered. Determining reflectance and shading at each scene point is also

referred to as the intrinsic image problem. The goal is to decompose an input image

into two images, one containing the shading information and the other the reflectance

information. Oh et al. [OCDD01] make the simplifying assumption that large-scale

luminance variations are due to the lighting, while small-scale variations are due to tex-

ture. The texture features are blurred with an adaptive bilateral filter. A texture image

with uniform lighting is obtained by dividing the initial image by the blurred image.

The computer vision literature contains several algorithms to solve the general intrin-

sic image problem. Tappen et al. [TFA05] use machine learning for classifying image

2.3 Video Object Editing 12

pixels while Finlayson et al. [FDL04] rely on a projection of color onto gray images

minimizing image entropy. In [FDB92], Funt et al. recover the shading field by re-

moving reflectance changes in the gradient image. Integrating the manipulated gradient

field by solving a Poisson equation leads to the shading image. Table 2.1 summarizes

the different texture replacement methods. In comparison to previous work, our method

presented in Chapter 5 uses a color-coded pattern to obtain dense texture replacement

results with correct lighting and shading effects. Bradley et al. [BR04] also work with

markers but obtain sparse marker coordinates which are interpolated. Other methods are

targeted towards textured [PLF05b, LL06] or diffuse surfaces [FH06], which is a more

general problem and works well in many cases, but not always high-quality results can

be obtained.

Method Texture Features Details Restrictions
[PLF05b, PLF05a] general SIFT deformable model, lighting stiffness of the model

[Lin05, LL06, LL07] near-regular optical flow retexturing, lighting tracking robustness
[WF06] few colors color retexturing, lighting color restriction
[BR04] markers AR markers retexturing, lighting coarse resolution

[SM06b] (ours) markers color dots retexturing, lighting discontinuities
[FH06] diffuse surface shading texture synthesis, optical flow texture swimming artifacts

Table 2.1: Comparison of methods for texture replacement in monocular video.

2.3 Video Object Editing

To allow editing of video objects, the video has first to be segmented into objects. An

automatic approach for video segmentation is described by Wang et al. [WTXC04] (Fig.

2.5 left). The mean-shift image segmentation method [CM02] is extended to video and

applied to pixels in 6D (x,y, t,r,g,b) space. Adaptive anisotropic kernels allow better

feature extraction than previous isotropic kernels. The algorithm finds homogeneous

regions in video which are consistent with human visual saliency. Grouping the regions

that belong to one video object is still an interactive step and not automated. The running

time is on the order of several hours.

2.3 Video Object Editing 13

Figure 2.5: Left: mean-shift segmentation from [WTXC04]. Right: Cutout ballet dancer
from [WBC+05]. c© J. Wang, used with permission.

Faster, more interactive systems have been recently proposed. Wang et al. [WBC+05]

compute a pre-segmentation with a 2D mean-shift algorithm (Fig. 2.5 right). A graph-

cut based image segmentation algorithm is extended to video, with running times of a

few seconds. This work is based on image segmentation with graph cuts, introduced

for greyscale images by Boykov and Jolly [BJ01]. Later, this method was extended to

color images by Rother et al. [RKB04]. Blake et al. [BRB+04] provide a theoretical

analysis of the algorithm and propose a method to learn parameters which they evaluate

with ground truth segmentation data.

Li et al. [LSS05] apply a 3D graph-cut segmentation algorithm to the spatio-temporal

video cube. The result is refined with a 2D graph cut algorithm in localized windows

around the object’s border. Our system presented in Chapter 6 is inspired by this work

and proposes several important extensions (steerable presegmentation and a new inter-

active boundary editing tool). In contrast, an automatic learning-based method by Cri-

minisi et al. [CCBK06] which uses color and motion cues produces good quality results

but requires ground truth segmentation masks, which is not practical for our primary

goal, a general-purpose editing tool.

Editing the segmented objects can produce holes in the background. In the follow-

ing, we review the literature on hole filling in images and video. There exists a large

2.3 Video Object Editing 14

body of work on texture synthesis [WL00, EL99, EF01b] and the closely related im-

age inpainting problem [BSCB00]. Image inpainting propagates linear image structures

(called isophotes) from a hole’s circumference into the hole region by using a PDE-

based method. It works well for small, smooth and low-textured regions. For larger

missing regions or textured regions it may generate blurring artifacts. Exemplar-based

texture synthesis fills unknown regions by copying image patches from the hole border.

It is aimed at reproducing textural patterns but has problems with macrostructure in the

image. Approaches that generate texture on a per-pixel basis [WL00, EL99] are compu-

tationally more expensive than patch-based methods [EF01b]. Criminisi et al. [CPT03]

show how continuations of strong edges can be propagated inwards, which preserves

simple structures. Our algorithm presented in Chapter 6 builds on the work by Crim-

inisi et al. We extend it to video and contribute two valuable improvements: weighted

matching and patch blending. We also focus on a time-efficient implementation. Com-

pared to the global optimization approach proposed by Wexler et al. [WSI04, WSI07],

our method is significantly faster. We can also handle fast camera motion with our

method, while Patwardhan et al. [PSB05] (Fig. 2.6) and [WSI04] present results for a

static camera only. Concurrent to our work, Patwardhan et al. [PSB07] later presented

inpainting results for sequences with moderate camera motion and for moving objects

that slightly change size.

To provide an easy-to-use user interface for object editing, we use a keyframe-based

editing framework. Keyframe animation is a well-known technique from production

systems like Autodesk’s Maya [Aut07]. It offers the animator excellent control over

the final motion and is used in high end production. For our general purpose video

editor it is the ideal tool to specify object motion without having to consider motion

laws from physics. Much work has been done on interpolating keyframes. Relevant

to our approach, Kochanek et al. introduced interpolating splines with local tension,

continuity and bias control [KB84]. This technique gives the user much control over the

2.3 Video Object Editing 15

Figure 2.6: Left: Original video frame from [PSB05]. Right: inpainting result (person
was removed). c© K. Patwardhan, G. Sapiro, M. Bertalmio, used with permission.

final result. To reduce the number of parameters we use cubic spline interpolation.

To composite the edited object back into the video, a matting algorithm is needed to

compute alpha masks. The goal is here to extract a foreground element from a back-

ground image by estimating an opacity α for each pixel of the foreground. The pixel

color C is modelled as a linear combination of a foreground color F and a background

color B (compositing equation):

C = α ·F +(1−α) ·B (2.1)

Determining α , F and B for each pixel is the so-called matting problem. The image

matting problem has been studied intensively, we just mention the most relevant pub-

lications. Chuang et al. [CCSS01] introduce Bayesian matting, a Bayesian framework

for solving the matting problem. They model foreground and background color mod-

els with spatially varying sets of Gaussians and use a maximum-likelihood criterion to

estimate foreground, background and opacity simultaneously. The user is required to

supply a trimap that partitions the image into three regions: foreground, background

and an unknown region. Shum et al. [SSY+04] propose a modification of the matting

equations which they call coherence matting. By using a coherence prior for alpha, they

2.3 Video Object Editing 16

obtain more robust results for the case when foreground and background colors are simi-

lar. Sun et al. [SJTS04] introduce Poisson Matting, where they cast the matting problem

as solving a Poisson equation with the matte gradient field. By interactively manipu-

lating the matte gradient field using a number of filtering tools, the user can improve

the matting results locally. An inherent limitation is the assumption that the foreground

and background intensity varies smoothly, i.e. matting of textured objects is an issue.

Recent methods by Wang and Cohen [WC05] and Levin et al. [LLW06] explore the

case of limited user input, i.e. instead of specifying a full trimap the user only has to

mark foreground and background regions with a few paint strokes. This is advantageous

for images with large semi-transparent regions (e.g. a spider web), since it is difficult

to create a trimap manually in this case. For single camera video matting, various tech-

niques exist [CAC+02, CCBK06]. In this case, temporal coherence has to be considered

to achieve convincing results. We choose the robust border matting method for images

by Rother et al. [RKB04] and propose two modifications (a different color model and

thin-plate spline regularization).

Related to our work is the motion magnification approach proposed by Liu et

al. [LTF+05]. Their goal is to amplify subtle motions in a video sequence. The in-

put is a sequence of images from a stationary camera, the output is a re-rendered video

sequence with magnified motions of selected layers. Our system, in contrast, solves the

more general problem of editing video object shape and motion in various ways while

the camera is also moving.

2.3
V

ideo
O

bjectE
diting

17

Method Cameras Video Features Pattern Details Restrictions
[BTH+03b] 1 x edges - parameter estimation cloth models insufficient

[TYAB01, TB02] 1 x corners - flow-based tracking sparse reconstruction
[TH04] 1 x corners - learning-based sparse reconstruction
[LF04] 1 - SIFT periodic texture shape from texture, shading oversmoothed surface
[Gus02] 1 x markers checkerboard homography tracking coarse resolution

[HZ05, HZ07] 1 - shading - two-layer SFS model supervised learning phase
[PH03, Pri03] 2 x depth, SIFT - stereo, SIFT matching temporal coherence

[CK01] 7 x raw - surfel sampling coarse mesh
[GKB03] 4 x markers color quads homography tracking coarse mesh

[SM04] (ours) 3 x silhouettes, raw - flow-based tracking synthetic data
[SSK+05] (ours) 8 x markers color dots triangulation occluded regions
[WLF05, Whi05] 4 x markers color triangles triangulation large holes

[WFV06] 6-10 - markers color triangles new triangle pattern still image
[HAR+06] 8 x silhouettes, SIFT - physical model-based tracking simple cloth, resolution

Table 2.2: Comparison of cloth capture methods. The columns describe the number of employed cameras, video or still image, used
features, special pattern or natural texture, algorithm details and restrictions.

3

Cloth Motion from Optical Flow

3.1 Introduction

This chapter presents an algorithm for capturing the motion of deformable surfaces,

in particular textured cloth. In a calibrated multi-camera setup, the optical flow be-

tween consecutive video frames is determined and 3D scene flow is computed. We use

a deformable surface model with constraints for vertex distances and curvature to in-

crease the robustness of the optical flow measurements. Tracking errors in long video

sequences are corrected by a silhouette matching procedure. We present results for syn-

thetic cloth simulations and discuss how they can be extended to real-world footage.

The following chapter is structured as follows. In Section 3.2, we give a short overview

of our algorithm. Sections 3.3–3.5 describe the components of the algorithm in detail.

Results are presented in Section 3.6, before we make concluding remarks in Section 3.7.

3.2 Algorithm Overview

We propose an approach using optical flow as the main component in our reconstruction

algorithm. A prerequisite for the use of optical flow is a richly detailed cloth texture.

If the initial position of the cloth is known, vertex motion can be tracked from frame

to frame using optical flow information. Given a high frame rate, optical flow between

consecutive frames is suitable to track rapid motion. Optical flow is a well-known prob-

3.3 Optical Flow 19

lem and the quality of the available algorithms is sufficient for practical applications.

Previous work by DeCarlo and Metaxas [DM96] applied optical flow tracking to the

problem of determining human face shape and motion from a single camera. They com-

bine this with edge information and use a deformable model. We extend this approach

to the challenging case of cloth tracking and use a multi-camera setup to obtain 3D flow

information.

Optical flow is not well-defined in poorly textured regions so we have to interpolate over

these regions. We employ a deformable cloth model for this purpose. The model also

makes the algorithm more robust against optical flow errors. Adding the interframe flow

vectors over a long frame sequence is not feasible because flow errors accumulate and

tracking errors are introduced. As a consequence, our model would drift away from the

image data. In order to address this problem, the cloth silhouette is determined in the

video frames and the boundary vertices of the model are matched to the silhouette.

3.3 Optical Flow

Optical flow is the apparent motion of brightness patterns between two frames of an im-

age sequence. In [BFB94] and [GMN+98] several optical flow algorithms are evaluated.

The method by Lucas and Kanade [LK81a] shows the best accuracy and noise tolerance.

It was originally a stereo matching technique but is now mainly used for optical flow.

We give a short description of the algorithm. The basic assumptions of the algorithm

are:

– the brightness of the image pixels remains constant between successive video

frames.

– the motion can be described by a pure translation in the image plane.

3.3 Optical Flow 20

This can be summarized as

I(x, t) = I(x+u, t +dt) (3.1)

where I denotes image brightness, x the pixel location, u the pixel translation and t the

time. The first order Taylor series expansion of image intensity I is given by

I(x+u, t +dt) = I(x, t)+∇I ·u+
∂ I
∂ t

·dt (3.2)

where ∇I denotes the spatial image gradient and ∂ I
∂ t is the temporal derivative of inten-

sity. Plugging Eq. (3.1) into (3.2) leads to the optical flow constraint equation:

∇I ·u+
∂ I
∂ t

·dt = 0 (3.3)

The Lucas-Kanade algorithm minimizes the left hand side of Eq. (3.3) in a window W

around a pixel with respect to u:

Emin = min
u ∑

x∈W
w2(x)(∇I ·u+

∂ I
∂ t

·dt)2 (3.4)

w : W → R denotes a Gaussian kernel function which gives more weight to pixels near

the window center. This function is minimized with the Newton method. The sum-

mation window W increases the robustness of the method, as the pixel translation u is

assumed to be constant inside the window. The algorithm can find pixel displacements

u in the subpixel range. Larger pixel displacements are handled by a multiresolution

scheme on a Gaussian image pyramid which consists of four levels in our case. Optical

flow is determined on the coarsest level and propagated as an initial solution to the next,

more detailed level. This multiresolution strategy is also used to avoid local minima of

the energy function. The implementation details can be found in [Bou00] and we use

3.4 Deformable Model 21

their implementation. The optimization method finds suitable solutions as long as the

two considered frames are similar enough so that a local minimum is sufficient.

In order to make the flow computation more reliable, we compute the flow in a projected

3D rectangular patch around the vertex positions of our cloth model and apply a median

filter to the flow vectors in the patch for outlier removal (we choose the vector with min-

imum distance from the remaining vectors). The size of the window W in Eq. 3.4 is 5x5

pixels. Larger windows increase the robustness of the Lucas-Kanade algorithm but can

also lead to oversmoothing of the flow vector field.

Two-dimensional optical flow is a projection of a three-dimensional range or scene flow

to the image plane [VBR+99]. If the camera calibration and the initial vertex positions

of the surface are known, the scene flow can be determined from several camera views

by a method similar to triangulation. The vertex motion is optimized together with a

deformable model which we describe in the next section.

3.4 Deformable Model

Deformable models have successfully been applied to motion tracking problems

[PH91, TM91]. The goal is to provide additional constraints which make the motion

estimation more robust. In [PH91], the number of degrees of freedom of a finite element

method (FEM) model is reduced by an analysis of the vibration modes. This approach

is suitable for simple shapes and difficult to apply to cloth with its fine scale, complex

folds. [TM91] introduces superquadrics for deformable surfaces, a model which is tar-

geted towards closed surfaces. A good introduction to physics-based deformable models

is [Met96]. Our model minimizes deformation energy per frame while in previous work

the temporal dynamics are also considered. This introduces model parameters for mass,

damping etc. which have to be estimated. Our model only contains parameters for de-

formation strain.

3.4 Deformable Model 22

Our cloth model consists of a rectangular grid of vertices. Cloth deformation can be de-

scribed in terms of three basic deformations: stretching, bending and shearing [HE00].

Stretching is almost negligible for non-elastic materials and can be used as a constraint

for the vertex positions. We propose the following energy function which penalizes

compression and stretching of horizontally or vertically adjacent vertices pi, p j, where

d0 denotes the initial vertex distance (Fig. 3.1):

Estretch = ∑
i, j

(
‖pi −p j‖−d0

d0
)2 (3.5)

PSfrag replacements
d0

d0

Figure 3.1: Uniform triangulation with distance constraint for adjacent vertices.

The diagonal mesh edges are not considered here as this would constrain shearing de-

formations. It is also reasonable to assume a smooth cloth surface. We use a discrete

version of thin plate spline energy [MS97]

Ecurv = ∑
ta,tb

le · (nta −ntb)
2 (3.6)

where nta and ntb are the normalized normals of adjacent triangles ta and tb and le is the

length of their common edge (Fig. 3.2). In our implementation, we omit normalization

as the analytical gradient would get too complex. This approximation assumes constant

triangle areas, i.e. small shear but yields pleasing results. The summation in Eq. 3.4 is

done over all triangle pairs with an adjacent edge. Estretch and Ecurv are similar to the

energy terms used in cloth simulation [HE00].

3.4 Deformable Model 23

PSfrag replacements

ta tb

nta ntb

le

Figure 3.2: Bending constraint for adjacent triangles

The vertex error of the model at time t with respect to optical flow to the next video

frame at time t +1 is given as

x̂i =
mc

 ·pi

mc
 ·pi

ŷi =
mc

 ·pi

mc
 ·pi

εc
i =

√

(x̂i − (xi +ui))2 +(ŷi − (yi + vi))2

E f low = ∑
c∈C

∑
i

vc
i εc

i (3.7)

where mc
0−mc

3 are the rows of the 4x4 OpenGL projection matrix M c of camera c ∈C.

x̂i and ŷi are the projected vertex coordinates. ui and vi are the components of the optical

flow vector and εc
i the projection error of vertex i in camera view c. The inner sum

is computed for all visible vertices in a camera view, indicated by a visibility variable

vc
i ∈ {0,1}. Visibility is determined with an OpenGL depth buffer test.

All energy terms are combined with weighting factors into one energy function

E = E f low +λ ·Estretch + µ ·Ecurv (3.8)

and optimized with the Polak-Ribière conjugate gradient method [PFTV92]. The energy

function gradient can be computed analytically. If the interframe differences are small

(high frame rate), conjugate gradient minimization is suitable because we are already

near the optimum.

3.5 Silhouette Matching 24

Figure 3.3: Input images from two of three camera views. The third camera is located
in the middle of the two views.

3.5 Silhouette Matching

The optical flow errors accumulate over longer frame sequences and the 3D model drifts

away from the video frames. To correct for this, we determine the cloth silhouettes in the

input images by a border following algorithm [SA85]. With our synthetic test data, the

contour can be directly determined from the input images. Real video data would require

background subtraction [FP02] as a preprocessing step. For every vertex on the mesh

boundary of our model, the nearest contour point is determined. Its position corresponds

to the new vertex position (xi + ui, yi + vi) in Eq. (3.7), i.e. the contour generates flow

vectors for the boundary vertices. The inner vertices do not contribute to E f low, they are

only constrained by Estretch and Ecurv. The mesh is adjusted by optimizing the energy

function from Eq. (3.8). A limitation of the contour matching procedure is that the

boundary vertices have to stay on the cloth silhouette during the whole video sequence.

3.6 Results 25

Figure 3.4: Reconstruction from novel viewpoints.

Figure 3.5: Shaded views showing the cloth folds which are found by our method.

3.6 Results

Experiments with our video cameras with a resolution of 320x240 pixels at that time

showed that a higher image resolution is necessary for an accurate surface reconstruction

from optical flow. For this reason, we use synthetic data generated with a cloth simulator

[Ebe03] to test our algorithm.

The sequence consists of 300 frames, recorded by three camera views with a resolution

3.6 Results 26

of 640x480 pixels. Fig. 3.3 shows the test sequence, a piece of cloth flapping in a

breeze. The cloth texture was acquired with a still image digital camera and mapped on

the cloth mesh. A directional light source was added to the scene. The resulting shading

effects are challenging for the optical flow algorithm because the brightness constancy

constraint is violated.

The triangle mesh used for reconstruction has a resolution of v = 33x33 vertices, i.e. the

optimization problem has n = 3v = 3267 variables. The parameters λ and µ in Eq. (3.8)

are chosen empirically. We choose λ = 1.0 and µ = 0.1 for our experiments. These

values are not fine-tuned but sufficient for a pleasing result. The parameter µ is adjusted

so that the bending deformation of the cloth is preserved but temporal noise is removed.

The average computation time for one video frame of the sequence is 53 seconds on a

Pentium IV 2.4 GHz. The different stages of the algorithm have the following average

time requirements:

– optical flow computation: 18 s

– vertex flow optimization: 17 s

– contour matching: 5 s

– correction step optimization: 13 s

Fig. 3.4 shows the surface rendered from novel viewpoints and Fig. 3.5 the reconstructed

surface. In Fig. 3.8 and 3.9 the tracking accuracy of the algorithm over the whole se-

quence is depicted. The object silhouettes are preserved by the contour matching algo-

rithm. In Fig. 3.6, a reconstructed frame and the difference to the corresponding input

image are shown. The difference image shows a pixel displacement in the range of 2-3

pixels between reconstruction and input image. The error is concentrated near the image

gradients.

In Fig. 3.7 the root mean squared error (RMSE) between the input images Ii =

3.6 Results 27

Figure 3.6: Reconstructed frame and the difference to the left input image in Fig. 3.3

(Ri,Gi,Bi) and the reconstructed images Ir = (Rr,Gr,Br) over the whole frame sequence

is depicted. The mean is computed over all camera views and color channels:

RMSE =

√

√

√

√

1
3|C| ∑

c∈C

W

∑
x=1

H

∑
y=1

(Ri(x,y)−Rr(x,y))2 +(Gi(x,y)−Gr(x,y))2 +(Bi(x,y)−Br(x,y))2

(3.9)

We have added the upper curve showing the behavior without silhouette matching. The

average error is higher in this case. The lower curve (with silhouette matching) shows

several local minima corresponding to frames where the cloth motion is minimal (the test

sequence contains periodic motion). This shows that the deformable model constraints

are able to reduce the error at these points (E f low is small compared to the other error

terms in this case). The average error is constant for about 200 frames and grows towards

the end of the sequence as small tracking errors accumulate over time. The quality of

the result should be assessed in the accompanying video. 1

1http://www.mpi-inf.mpg.de/˜vscholz/vmv04/result.mpg

3.7 Conclusions 28

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0 50 100 150 200 250 300

R
M

S
E

frame number

"without silhouette matching"
"with silhouette matching"

Figure 3.7: Per-pixel error with and without silhouette matching. Pixel values range
from 0 to 255.

3.7 Conclusions

We have presented a method that is capable of reconstructing cloth motion for synthetic

test data. A combination of optical flow and a deformable model is used to track motion

robustly. We obtain photo-realistic results and can track motion over several hundred

frames. Frame-to-frame coherence is achieved by our incremental approach using op-

tical flow, adding to the realism of the captured motion. The approach is applicable to

cloth with richly detailed texture.

In our current implementation we assume a flat initial cloth position. This limitation

could be overcome by reconstructing the initial cloth position with a stereo method (as

in [PH03]). Additionally, the parameterization of the surface with uv texture coordinates

must be determined in the first frame by matching the cloth features to a flat reference

cloth ([PH03]). Our results are based on synthetic test data, so the next step would be

the application to video data from high-resolution cameras. This requires background

subtraction for the silhouette matching step.

There are several limitations which prevented us from pursuing this tracking approach

further. Tracking errors accumulate over time and must be corrected by silhouette

3.7 Conclusions 29

Figure 3.8: Wireframe models overlayed on the input images show the tracking accuracy
of the algorithm (we show every 40th frame). A good match between the silhouettes of
the input frames and the reconstructed mesh is obtained with our optimization approach.

matching. This constraint is not always available (e.g. for garments) and feature match-

ing techniques (e.g. SIFT features) are not reliable enough for this purpose. Occlusions

are also a difficult problem as tracking must be resumed after an occlusion event. The

next chapter proposes a robust method which reconstructs cloth shape on a frame-by-

frame basis, avoiding the difficulties of frame-to-frame tracking.

3.7 Conclusions 30

Figure 3.9: Wireframe models (remaining frames).

4

Garment Motion Capture Using

Color-Coded Patterns

4.1 Introduction

After reconstructing a piece of cloth in the last chapter, we now move on to build a

system capable of reconstructing large garments. We present an image-based algorithm

for surface reconstruction of moving garment from multiple calibrated video cameras.

Using a color-coded cloth texture, we reliably match circle-shaped features between

different camera views. As surface model we use an a priori known triangle mesh. By

identifying the mesh vertices with texture elements we obtain a consistent parameteri-

zation of the surface over time without further processing. Missing data points resulting

from occlusion and self-shadowing are plausibly interpolated with a thin-plate spline.

The deforming geometry can be used for different graphics applications, e.g. for real-

istic retexturing. We show results for real garments demonstrating the accuracy of the

recovered flexible shape.

The following chapter is structured as follows: Section 4.2 explains the process of gar-

ment production. We then move on to describe our method for shape reconstruction in

Section 4.3. Section 4.4 explains our rendering method and Section 4.5 presents the

obtained results. Finally, we conclude in Section 4.6.

4.2 Preliminary work 32

Figure 4.1: The pseudo-random color pattern used for our garments contains five colors:
cyan, magenta, yellow, orange and green.

4.2 Preliminary work

Our approach requires a costum-printed cloth pattern. We describe its production in the

following. Additionally, a triangle mesh for the garment is constructed as input for the

acquisition algorithm.

4.2.1 Color-coded patterns

We print a pattern on our cloth which is carefully chosen to allow robust observation.

Our pattern is a set of colored circular dots where the neighborhood coloring of each

dot identifies the location and orientation on the cloth. The pattern elements are highly

distinctive and the neighborhoods are unique over the entire cloth. Some cameras may

see only a small fraction of the entire cloth due to self-occlusion, so that correspondence

must be determined locally. Distinctive neighborhoods allow reconstruction even in this

difficult case. Additionally, our pattern offers a high degree of spatial accuracy.

Color codes are well-known in the context of structured light reconstruction tech-

niques [ZCS02]. In [PSGM03], a good overview of projection patterns including color

codes is given. For two-dimensional cloth textures we need a pattern which encodes both

dimensions. The generated pattern should be large enough for manufacturing garments

while containing distinctive neighborhoods. We have chosen M-arrays [MOC+98], a

4.2 Preliminary work 33

Figure 4.2: Example for a local neighborhood (leftmost image) and the seven patterns
obtained by rotations in 45 degree steps. The pattern construction algorithm guarantees
that only one of these eight neighborhoods is used in the garment pattern.

color code which encodes each point in the pattern by its spatial neighborhood (Fig-

ure 4.1). In this code, each 3×3 neighborhood of a point is unique and can be used for

point identification (the window property). By choosing five well distinguishable colors,

including the color printer primaries cyan, magenta and yellow, we are able to construct

a pattern with a reasonable size for textile printing (76×251 points). For pseudo-random

code generation we adopt an incremental algorithm described in [MOC+98]. It begins

by seeding the top-left 3×3 window of the pattern matrix with a random color assign-

ment and fills up the matrix by incrementally adding random colors. In each step, the

window property is verified. In our case, the windows may be rotated in the camera

images, i.e. the orientation of the local neighborhood is unknown. In order to make

point identification invariant to rotations in the image plane, all windows are also veri-

fied against rotated versions in 45 degree steps (Figure 4.2). This reduces the number of

possible codewords but still allows patterns of reasonable size. The number of possible

codewords depends on the number of colors c, an upper bound is c9

8 (≈ 480.000 for

c = 5). The output of the algorithm is a pattern matrix M with entries for the five col-

ors. The generated color pattern is printed on polyester fabric with a high-quality textile

inkjet printer. The grid spacing between dots is 2 cm with diameter measuring 1.3 cm.

The two garments, a skirt and a T-shirt are manufactured by a tailor. During this pro-

cess, we take photographs of the garment panel outlines for triangle mesh construction

(Figure 4.3).

4.3 Cloth Motion Capture 34

4.2.2 Mesh construction

This section describes work done by Michael Keckeisen and Markus Wacker [SSK+05].

Based on the photographs of the panels, we design the virtual garment counterparts. To

this end we use the cloth simulation plugin tcCloth for Alias’ Maya software [GMP+04].

With this tool we construct the corresponding meshes for the garment. First, we draw

the border curves of each panel using Nurbs curves. These curves are assembled to cloth

panels from which single triangle meshes are constructed for the panels. We meet the

additional constraint that interior mesh points are situated at the center of the color dots.

This is achieved by triangulating a regular quadratic mesh, representing the color-coded

texture, inside the border curves drawn in the first step. Then, the necessary seams be-

tween the cloth panels are specified, and the complete piece of cloth is constructed. In

this step, we assert that the panels are triangulated in such a way that two corresponding

seam lines have the same number of vertices. More precisely, each seam is given by a

list of pairs of vertices being the corresponding vertices on two not necessarily distinct

planar panels. Afterwards, the integrated cloth simulation based on [EKS03] is used to

achieve a smooth triangle mesh as input for the reconstruction algorithm. A more de-

tailed description of the mesh construction process can be found in [GMP+04, KFW04].

The correspondence between the mesh vertices inside the borders and the colored pat-

tern dots is also established during mesh construction. The uv texture coordinates of a

vertex correspond to its index in the pattern matrix M.

4.3 Cloth Motion Capture

Our system consists of eight synchronized video cameras arranged all around the person

wearing the garment. In a first step, the acquired video images are processed for feature

identification and matching between different camera views. Using geometric camera

calibration, 3D surface points are reconstructed from the image feature positions. The

4.3 Cloth Motion Capture 35

Figure 4.3: Left: the four garment panels used for the T-shirt. Right: garment panels
used for the skirt. After sewing, the outlines are further reduced due to the seams which
is important for mesh construction.

acquired surface is then processed by hole filling and smoothing algorithms. In the

following, we go through the processing pipeline.

4.3.1 Feature recognition

The first step in our method is the recognition of colored ellipses, the image projections

of our pattern dots. Color classification should be robust against illumination varia-

tions. For this purpose, we convert RGB color into the HSV color space to separate

luminance from chrominance properties. Hue is representing the color information,

while Saturation (whiteness) and Value (brightness) vary with illumination intensity. A

common model for this variability are Gaussian distributions used in Bayesian color

classifiers [VSA03]. This method requires training data for the classifier under different

illumination conditions, often hand-labeled in the images [GGW+98]. For a multi-

camera setup this is a tedious procedure. We use a simpler approach which uses only

hue for color classification. We assume that hue remains constant over a wide range

of brightness levels and use nearest neighbor classification to distinguish between five

color classes. No additional thresholds are needed. For estimation of the color class

hues, a training pattern with the five cloth pattern colors is recorded for every camera

(Figure 4.4) as a color calibration step.

4.3 Cloth Motion Capture 36

Figure 4.4: Test pattern with five colors for color hue calibration.

Color detection is affected by camera noise and does not allow to exactly estimate the

projected dot shapes. We increase the robustness of feature detection by combining

color with edge information. A Canny edge detector [Can86] is applied to the luminance

images. This yields well-defined ellipse contours due to the high brightness contrast be-

tween the color dots and the black cloth background. The contours are further processed

by outer contour following [SA85]. A lower and upper threshold for the feature area is

used for filtering. For color classification, every pixel inside an ellipse votes for a color

class and the ellipse color is determined by a winner-take-all strategy. Color detec-

tion works at an error rate of 5-10 percent misclassified dots. Performance deteriorates

mainly in dark, shadowed areas where the color information becomes unreliable. The

centers of the color dots are calculated as the center of gravity of the filled dot contours

and are later used for reconstruction.

4.3.2 Feature labeling

In the next step every colored dot has to be identified by its window in the pattern matrix

M and assigned an index (i, j). We use the garment panel outlines from Figure 4.3 to

mask out dots which are not in the garment or clipped dots at the seams and use this as

knowledge for labeling. The algorithm uses a region growing strategy. As a first step,

a seed color dot has to be identified in the image. For determining its neighbors, the

4.3 Cloth Motion Capture 37

Figure 4.5: Left side: frontal view, nearest eight neighbors of the center dot. Right side:
oblique view, different neighbors due to camera viewpoint foreshortening.

simplest approach would consider the nearest eight dots in the image. However, this

may give incorrect results when the dots are observed under oblique angles. Dots from

an extended 5×5 neighborhood can come closer (Figure 4.5). This has to be taken into

account for oblique regions at cloth folds. While this complication can be avoided if a

hexagonal grid with uniform neighbor distances is used, the reduced number of code-

words (c7) in this case would require additional colors which makes color classification

less reliable.

Thus, we have to examine the 5× 5 neighborhood of the center dot and generate three

hypotheses for its 3× 3 neighborhood and the local lattice directions u, v and u+v in

the image (Figure 4.6). More hypotheses could be examined by mirroring the blue and

green parallelograms in Figure 4.6 vertically and horizontally, but due to the symmetry

of the grid this can be reduced to three main hypotheses.

The algorithm for seed finding is as follows:

1. Determine the three nearest neighbors of the center to estimate the local u, v and

u+v directions (their opposite lying neighbors are determined as well).

2. Generate three different 3× 3 hypotheses by shifting the base lines AB and CD

along the local directions (Figure 4.6).

3. Filter out hypotheses which are not in the pattern matrix M. For searching in the

4.3 Cloth Motion Capture 38

pattern, the neighbor dots are sorted by the polar angle around the center dot.

After this, we have several seed hypotheses available which are verified in the follow-

ing region growing step. In this manner, seed dots can also be found for cloth areas

observed under oblique angles, which is important at cloth folds. The region growing

algorithm iterates over the following steps until no further dots are found and considers

a 4-neighborhood (horizontal and vertical grid neighbors) for every dot:

1. Compute the local vectors u, v from a 3×3 neighborhood

2. Calculate a search window for the neighbor dot (dashed window in Figure 4.6,

right side). The window center is given by adding u (horizontal neighbors) or v

(vertical neighbors) to the current dot center. The search window has a parallelo-

gram shape and is spanned by u and v.

3. Label an image dot in the search window with an index (i, j) if it has the correct

color and the re-estimated vectors u′, v′ satisfy ‖u′−u‖ ≤ c‖u‖ and ‖v′− v‖ ≤

c‖v‖ with 0 ≤ c ≤ 1. We use c = 0.33 in our experiments.

4. Propagate u′, v′ to the newly labeled neighbor in the direction of growth so that

step 1 is skipped in the next iteration.

Step 2 implies a smoothness constraint for the lattice structure because the neighboring

dot has to lie in the specified search window. This is a reasonable assumption for smooth

cloth surfaces. The parameter c in step 3 is a smoothness criterion for neighboring lattice

vectors. The color test in step 3 uses the a priori known pattern matrix M. At depth

discontinuities, region growing should stop. This is enforced by steps 2 and 3 because

in this case, the local lattice orientation is likely to change and the chance of finding

a dot with the correct color on the other side of the discontinuity is only 20 percent

for five colors. The growing algorithm is also likely to stop at oblique regions because

the feature detection becomes more difficult due to foreshortening as can be seen in

4.3 Cloth Motion Capture 39

u

v
u+v

A
B

C

D

u

v

u’

Figure 4.6: Left side: The local vectors u, v and u + v can change roles under certain
viewing angles. In addition to the obvious eight neighbors (red), the green and blue
neighborhoods (dashed lines) have to be considered as well (cf. red and green parallel-
ogram in Fig. 4.5). For example the blue parallelogram can be obtained by shifting the
base line AB in the u + v and −(u + v) directions. Right side: search window (dashed)
calculated from u, v.

Figure 4.7. However, some dots are wrongly labeled which can be detected later in the

reconstruction step.

A seed hypothesis is verified if a region of sufficient size is found by the region growing

algorithm. Otherwise, the region growing is restarted with another seed hypothesis.

After one region has been found successfully, region growing is restarted with the next

seed candidate until no further regions can be labelled.

The region growing approach can cope with arbitrary image background since it exploits

the regular lattice structure in the image (i.e. no explicit segmentation of the garment

region is necessary). Figure 4.7 shows the output after region growing. The region

growing algorithm considers only vertical and horizontal neighbors which increases ro-

bustness. For most images only a few seed points (regions) are needed to label all dots.

Algorithm performance deteriorates for oblique angles, but these areas don’t deliver

accurate measurements for reconstruction anyway. Fig. 4.13 summarizes the feature

recognition and labeling steps.

4.3 Cloth Motion Capture 40

Figure 4.7: Output of the labeling algorithm. The star-shaped crosses (left side, center)
mark seed points where region growing starts. Every color dot is connected with its
predecessor, yielding the tree structure of the iterative algorithm shown as white lines.
In oblique regions, the feature detection becomes unreliable.

4.3.3 Reconstruction

After labeling, the image projections of the visible pattern dots are known. We employ

the linear triangulation method from [HZ00] for reconstruction. All image measure-

ments xi = (xi,yi) = PiX, i ∈ {0 . . .n−1} of a pattern point in n camera views are used.

Pi denotes the 3×4 camera projection matrix of camera i with rows p1T
i , . . . ,p3T

i and X

the 3D reconstruction. A linear system AX = 0 is solved with singular value decompo-

4.3 Cloth Motion Capture 41

Figure 4.8: Missing data after reconstruction due to self-occlusion, and result after
thin-plate hole filling and smoothing.

sition:

x0p3T
0 −p1T

0

y0p3T
0 −p2T

0

...

xn−1p3T
n−1 −p1T

n−1

yn−1p3T
n−1 −p2T

n−1

X = 0 (4.1)

The solution X minimizes the reprojection error in the images in a least squares sense.

The maximum reprojection error is computed for every reconstructed point in all views.

Outlier points are removed by comparing the error with an upper threshold. The recon-

structed points deliver the vertex coordinates for the garment’s triangle mesh.

4.3.4 Hole interpolation

The resulting surface contains holes in areas of missing data (Figure 4.8). One reason

for missing data is self-shadowing. In these areas, color classification does not work

properly. Deep cloth folds may only be seen by one camera, in which case a reconstruc-

4.3 Cloth Motion Capture 42

tion due to self occlusion is not possible. As a post-processing step we employ mesh

interpolation with thin-plate splines to fill hole areas. Thin-plate interpolation yields

smooth surfaces which makes this approach suitable for cloth surfaces. The thin plate

energy

E(f) =
∫

R2
fuu +2 fuv + fvv du dv (4.2)

for a function f : R
2 → R punishes strong bending and the corresponding minimum

energy surface is given by ∆2 f = 0 [Wah90] where ∆2 denotes the Bilaplacian operator.

For triangle meshes the uniform Laplacian for a mesh vertex p with vertex neighbors pi

is discretized as [KCVS98]:

L(p) =
1
n

n−1

∑
i=0

(pi −p) (4.3)

The Bilaplacian operator ∆2 is thus

L2(p) =
1
n

n−1

∑
i=0

(L(pi)−L(p)) (4.4)

For hole filling, we solve a linear system AP = b for the vertex coordinates P =

(p0, . . . ,pn−1). We require two nested rings of boundary vertices around the hole which

are fixed. We add for these vertices pi the equation pi = ci in the linear system, where

the ci are the original vertex positions. This imposes a C1-continuous boundary condi-

tion on the problem. The hole vertices can move freely. L2(pi) = 0 is added to the linear

system for every free vertex. The corresponding matrix is sparse and the linear system

can be solved efficiently with iterative methods like GMRES [GL96].

The mesh holes are determined by a region growing algorithm which traverses the mesh

topology. For each hole, a separate linear system is solved. The uniform Bilaplacian

operator in Equation (4.4) leads to uniform edge lengths. To preserve the quadratic

mesh structure with its longer diagonal edges, the vertex neighborhood is restricted to

4.4 Rendering 43

Figure 4.9: Camera setup using eight cameras and two HMI lamps with softboxes.

the horizontal and vertical neighbors for computing the Bilaplacian. In order to remove

noise artifacts, the mesh is slightly smoothed by Laplacian smoothing [Tau95] using the

same neighborhood structure in the spatial and temporal domain. This method adjusts

the location of each mesh vertex to the geometric center of its neighbor vertices iter-

atively and eliminates high-frequency noise quickly. Outlier vertices are removed and

interpolated from neighbors by analyzing the spatial and temporal neighborhood.

4.4 Rendering

This section describes work done by Timo Stich [SSK+05]. The visualization of the

dynamic surfaces is implemented in OpenGL which results in interactive framerates

(> 30 fps) on a GeForce4 graphics adapter. Rendering the reconstructed meshes as

wireframe, shaded or with various textures is possible (Fig. 4.12). The textures are

created from cloth photographs which improves the visual appeal of our renderings.

Furthermore the viewpoint can be interactively chosen from one of the original camera

viewpoints or a freely adjustable user-defined view. If the user chooses an original

camera viewpoint, the recorded images are used as background images. The background

4.5 Results 44

Figure 4.10: Overlayed wireframe renderings of the surface in two camera perspectives.

images are warped in a pre-processing step to remove lens distortion effects [Bou05].

These are estimated during camera calibration. Since the reconstructed garments are

stored in a standard 3D mesh file format (Alias Wavefront OBJ), it is easy to integrate

the textured dynamic garments into virtual environments using 3D animation software.

4.5 Results

The scenes were recorded with eight synchronized Imperx MDC-1004C video cam-

eras arranged in a circle around the scene (Fig. 4.9, 4.14 and 4.16). We recorded with

a frame rate of 25 frames per second and an image resolution of 1004× 1004 pixels.

A controlled lighting environment improves the reconstruction results significantly by

reducing the effects of self-shadowing. The scene is illuminated by two HMI (Hydrar-

gyrum Medium-arc Iodide) lamps with softboxes in order to obtain diffuse light sources.

We use HMI lamps because color recognition works best with a spectral distribution

similar to daylight. Standard tungsten halogen lamps have a higher output at the red end

of the spectrum and reduce the distance of the observed colors in color space.

For camera calibration we use the Camera Calibration Toolbox for MATLAB [Bou05]

which uses Zhang’s calibration method [Zha99]. Our complete reconstruction method

4.5 Results 45

Figure 4.11: Reconstructed surface for different time instances.

requires from feature recognition to mesh post-processing approximately 30 seconds per

video frame on a Pentium IV 3.2 GHz. This time includes image processing of eight

video frames with resolution 1004× 1004. The garment triangle meshes have 3000-

3500 mesh vertices. It is difficult to evaluate the reconstruction results when ground

truth is not available. We render the obtained surface into the original video images to

estimate the accuracy of the acquired shape qualitatively (Figure 4.10). The matching

between vertex positions and dot centers looks reasonable. The largest discrepancies

occur in dark cloth areas and near the image borders due to decreasing camera cali-

bration accuracy. Furthermore, the visible folds and the overall fall of the garment are

4.6 Conclusions 46

Figure 4.12: Arbitrary texture can be applied to the reconstructed dynamic surface.

recovered (Figures 4.11, 4.15 and 4.17). Results are best assessed in the accompanying

video, which shows examples for slow and fast motion.1

4.6 Conclusions

We have presented a method for robustly acquiring complex cloth motion. By using

color-coded textures, we can establish reliable point correspondences between different
1http://www.mpi-inf.mpg.de/˜vscholz/eg05/ccgarment.avi

4.6 Conclusions 47

camera views. A prior triangle mesh model enables us to plausibly fill in missing data.

Our method provides a surface parameterization that allows retexturing and rendering

the dynamic surfaces realistically from arbitrary viewpoints.

Figure 4.13: Image processing steps from top to bottom: edge detection, color classifi-
cation and labeled features.

4.6 Conclusions 48

Figure 4.14: Four input camera views for the same moment in time.

Figure 4.15: The reconstructed surface faithfully represents the cloth folds visible in the
input frames.

4.6 Conclusions 49

Figure 4.16: The other four camera views.

Figure 4.17: Reconstruction results for the T-shirt.

5

Texture Replacement of Garments in

Monocular Video Sequences

5.1 Introduction

Figure 5.1: Input frame (left) and texture replacement result (right). Notice how shading
adds an important visual cue.

In this chapter, we leave the domain of multi-camera video systems and present a video

processing algorithm for texture replacement of moving garments in monocular video

recordings. We use our color-coded pattern from the last chapter to determine the ge-

ometric deformation of the texture. A time-coherent texture interpolation is obtained

by the use of 3D radial basis functions. Shading maps are determined with a surface

5.2 Overview 51

interpolation technique and applied to new textures which replace the color pattern in

the video sequence. Our method enables exchanging fabric pattern designs of garments

worn by actors as a video post-processing step (Figure 5.1). It could also be useful for

virtual fashion presentation in e-commerce.

Current rotoscoping software allows tracking edges or single features in videos for tasks

like matting of computer-generated imagery (CGI) objects, selective filtering and creat-

ing cartoon animation from video [AHSS04]. For our purpose, however, an automatic

approach is needed which can track several hundred texture features in parallel while

handling occlusions automatically. Manual texture editing is in this case almost infea-

sible. We propose such a system to enable texture replacement with correct texture

deformation and lighting effects.

The chapter is organized as follows. Section 5.2 gives an overview of our system. In

Section 5.3-5.6 we detail our proposed method. Section 5.7 presents results. We end in

Section 5.8 by drawing conclusions from our work.

5.2 Overview

Figure 5.2 shows an overview of our system. For proper texture replacement, we need

a segmentation of the images into garment and background sections. For this purpose

we use the rotoscoping software by Agarwala et al. [AHSS04] for contour tracking

which requires the user to specify contour curves at keyframes. The contour is tracked

through the remaining frames by minimizing an energy functional based on optical

flow [LK81a] and active contours [KWT88]. In general, any other video segmentation

method [LSS05, WBC+05] could also be used. These methods all require some amount

of user interaction. This preprocessing step yields boundary curves which are converted

into a binary mask for the foreground where all further processing is done. Next, we

perform image processing for feature classification. We use garments with the custom-

5.3 Image Processing 52

Figure 5.2: Overview of the processing steps of our method.

designed color-coded pattern introduced in the last chapter. We use the single-frame

method from Section 4.3.2 which identifies the dots by their local neighborhood with

a region-growing approach. Texture coordinates can then automatically be assigned to

each dot. The results of the labeling algorithm are complemented by a feature tracker

and fed into a texture interpolation algorithm which determines a time-coherent image

texture from the feature positions. For realistic texture shading we determine the shad-

ing image. The new texture is rendered into each video frame by multiplying texture

color with the corresponding shading image.

5.3 Image Processing

We convert the input video images into HSV color space in order to increase color recog-

nition robustness against illumination changes. For color classification, we only use hue

and learn the five color classes from an example image taken from the video sequence.

Thus there is no need to record a training pattern as in Section 4.3.1. The feature pixels

are identified with an adaptive threshold algorithm [GW02] in the luminance image. It

computes a binary image by choosing a threshold based on local image brightness and

5.3 Image Processing 53

Figure 5.3: Result of color classification algorithm, visualized with artificial colors.

can therefore adapt to local brightness variations. From these pixel positions we col-

lect the hue values and fit a one-dimensional Gaussian distribution to each color class

(Gaussian mixture model GMM) with a statistical technique [FH04c]. This can be cast

as a clustering problem where each cluster corresponds to a color class. First, we run

the k-means algorithm with random initial centers on the input data and apply the EM

(expectation maximization) algorithm for determining GMMs [HTF01]. As a local op-

timization technique the EM algorithm can stagnate in local minima. This procedure is

restarted 10 times and the fitting result with the best log-likelihood is kept as the final

result. After this step, the pixels segmented by the adaptive thresholding method can

be classified into five color classes. For this purpose we compute maximum-likelihood

decision boundaries from the Gaussian parameters µi,σi of each color class. The color-

classified image is labeled with a connected component algorithm for every color sepa-

rately [HS92]. The obtained features are filtered by an upper and lower bound for their

area. Finally, for every feature the center of mass is calculated. We now have 2D image

coordinates of a number of color dots on the garment (Figure 5.3).

5.4 Feature Labeling and Tracking 54

Figure 5.4: Our dress has three panels: one front panel and two back panels (top). The
skirt has a front and a back panel (bottom).

5.4 Feature Labeling and Tracking

We use two different pieces of apparel for our experiments, a dress and a skirt. A known

condition is the pattern matrix M which contains a color label for each dot in the pattern.

We identify the outline of the individual cloth panels (three for the dress and two for the

skirt, Fig. 5.4) in the pattern matrix manually and identify the boundary dots adjacent

to the seams. Panel boundaries are interactively identified only once per garment. The

algorithm proposed in Section 4.3.2 labels the features obtained in the image processing

5.5 Texture Coordinate Interpolation 55

step with their indices i, j in the pattern matrix M. The obtained indices i, j yield the

texture coordinates for the feature dots. The original feature labeling algorithm is a ro-

bust single-frame method which does not use tracking history. Algorithm performance

deteriorates at oblique surface angles and it requires also that a seed with a 3x3 neighbor-

hood can be identified for each connected texture component in the image. In order to

increase the number of recognized features we apply a Lucas-Kanade feature tracker to

fill in missing features after labeling [LK81b, Int01]. We track the features known from

labeling with image patches and set the patch size to the mean distance of neighboring

features. In order to handle feature occlusions between two video frames, we run the

tracker forward in time and track the obtained result backwards. As occlusion test, we

compute the deviation from the original feature position. If it is below some threshold

(1 pixel in our experiments), the feature was tracked successfully and is added to the list

of labeled features. Feature tracking is applied to the whole video sequence forward and

backward in time. In the forward tracking phase, feature occlusions are detected while

in the backward tracking phase, disocclusions (new appearing features) are added.

5.5 Texture Coordinate Interpolation

Our garments consist of several panels (Fig. 5.4). Texture interpolation is done sep-

arately for every panel so our method is also applicable to several pieces of clothing

at the same time. In the following we assume that we have no tears in the fabric, i.e.

the panels are continuous. In views where several panels are visible in the image, we

have to find the seams between the panels in order to determine the panel segments.

We determine the visible seams in the image by identifying dots at the panel boundaries

which are known from the pattern matrix. As additional information we know which

boundary dots of different panels are adjacent to each other at the seams. The boundary

dots lie inside the panel, not on the seam and do not define a smooth boundary due to

5.5 Texture Coordinate Interpolation 56

Figure 5.5: Texture Coordinate Interpolation: The feature positions (left) are interpo-
lated to obtain a uv parameterization of the garment (right).

the discrete nature of the pattern. A smooth boundary polyline is obtained by interpolat-

ing a new seam point between each pair of adjacent boundary dots. We use membrane

interpolation ∆ f = 0 where ∆ is the Laplacian operator to interpolate these seam points.

The position of the boundary dots are fixed and used as boundary condition. In order to

obtain a smooth polyline, we use a weighted Laplacian stencil in the corresponding lin-

ear system which assigns a higher weight to neighboring seam points. The seam points

define an estimate of the panel seam which cannot be determined from the images di-

rectly (Fig. 5.6). The seam polylines are used to cut out a mask for each visible panel

from the foreground mask.

Our goal is a temporally smooth parametrization of the garment region with texture co-

ordinates (Fig. 5.5). Near the silhouettes, the feature trajectories are not stable enough

(due to failure of detection and occlusions). Smoothing individual trajectories would

5.5 Texture Coordinate Interpolation 57

Figure 5.6: Boundary dots (white) and interpolated seam boundary (red) necessary for
texture replacement of separate garment panels.

not be helpful in this case. Therefore we integrate the smoothing into the interpolation

function. Radial Basis Functions (RBF) are commonly used for scattered data interpo-

lation problems like reconstructing surfaces from point clouds [CBC+01]. A trivariate

scalar RBF is defined by a set of centers ci ∈ R
3 and weights wi ∈ R as [CBC+01]

f (x) = p(x)+∑
i

wi ·φ(x− ci) (5.1)

where φ is the basis function and p(x) is a polynomial of low degree. Since basis

functions with local support do not provide the same degree of extrapolation and hole

filling capabilities as functions of global support [CBC+01], we use the global basis

function φ(x) = ‖x‖ where ‖ �‖ is the Euclidean norm, and a linear polynomial p. The

resulting surface is a biharmonic thin-plate spline. For interpolating texture coordinates

(uv)T ∈ R
2 we use a vector-valued RBF

f(x) = p(x)+∑
i

wi ·φ(x− ci) (5.2)

5.6 Shading Maps 58

with f : R
3 → R

2 and wi ∈ R
2, p ∈ R

2 are vectors. f is defined in spatiotemporal 3D

space (x,y, t) for temporally smooth texture interpolation. This means we have to add

a time coordinate to the obtained feature positions x, y. The difference tn+1 − tn of

adjacent video frames is set to the mean distance of neighboring features in frame n in

order to make the method adaptive to feature scale. We now use RBF approximation

(also known as spline smoothing [Wah90]) by solving

Φ−8NπρI P

PT 0

wi

qi

=

f

0

(5.3)

where Φi j = φ(ci − cj), Pi j = p j(ci) for the polynomial basis {p1, p2, p3} = {1,x,y}.

The qi are polynomial coefficients, N is the number of centers and I is the identity ma-

trix. ρ is a parameter that determines the trade-off between smoothness of the surface

and fidelity of the data. This parameter is found empirically. We use ρ = 0.005 for all

examples (the smallest amount of smoothing which leads to reasonable results). The re-

sulting matrix is dense due to the global nature of φ and can be solved directly with LU

decomposition for our problem size of N ≤ 1000 centers. For larger problems special

solvers like the Fast Multipole Method are required [CBC+01]. RBF approximation is

used for overlapping time windows of three video frames to ensure temporal smooth-

ness. The texture coordinates are interpolated for every pixel in the foreground mask

of the middle frame of the temporal window. Larger time windows do not improve the

results significantly.

5.6 Shading Maps

The goal of the shading algorithm is to remove the reflectance contribution of the color

dots from the luminance images I while preserving shading effects. We interpolate the

dot regions with smooth thin-plate splines in order to get a homogeneous shading map.

5.6 Shading Maps 59

(a) (b)

(c) (d)

Figure 5.7: Input image (a), detected dots (b), removed dots (c), and the shading map
(d). Although the input contains strong shadow edges, the interpolation results are satis-
factorily close to the input frame (a). The result video also reveals a faint shadow from
a secondary light source.

The dot pixels identified by adaptive thresholding from Section 5.3 are used as input for

shading map computation. We assume here that the dot edges have a higher contrast

than shadow edges on the garment which is the case in most practical situations. The

detected dots are dilated with a circle-shaped morphological structure element [GW02]

5.6 Shading Maps 60

in order to remove the dots reliably (Fig. 5.7b). The inverse binary image yields a mask

which is multiplied with the image I. We interpolate the deleted dot regions (Fig. 5.7c)

by using a surface interpolation method for height fields [Ter88]. An approximating

thin-plate surface is fitted to the luminance values of the dark garment background and

interpolates the deleted dot regions. In our first experiments we tried to extract shading

information from the dot regions as well but the results where not satisfactory [SM06a].

The surface fitting is done by minimizing the energy functional

E =
∫ xmax

xmin

∫ ymax

ymin

α(x,y)
2

(I − J)2 +(J2
xx +2J2

xy + J2
yy)dxdy (5.4)

where J is the thin-plate surface interpolant, the integration region is a bounding box

of the segmented garment region and α(x,y) a weight for the data compatibility term

(I−J)2. As a smoothness function we use the thin plate model, which minimizes surface

curvature. Another possible smoothness functional is the membrane model [Ter84]

Esmooth =
∫ xmax

xmin

∫ ymax

ymin

J2
x + J2

y dxdy (5.5)

which minimizes surface area and behaves like a rubber surface, i.e. the surface is only

C0-continuous at the border of interpolated regions. We prefer the C1-continuity of the

thin plate model for shading maps without artifacts.

We set α = 0 in dot regions (interpolation) and α = 0.1 for the remaining pixels (ap-

proximation). The value of this regularization parameter was found empirically to obtain

shading maps without artifacts at the dot borders. A larger α value would yield an ex-

act fit to the existing data. On the other hand data noise has to be regularized as the

transition to the noise free interpolated regions would become visible otherwise. The

energy function 5.4 is quadratic, and hence has only one local energy minimum. The

5.6 Shading Maps 61

Figure 5.8: Texture map, shading map and result of multiplication.

corresponding Euler-Lagrange equation is

α(I − J)+∆2J = 0 (5.6)

where ∆2 denotes the Bilaplacian operator. Eq. 5.6 is solved with finite differences on

the pixel grid and uses a 5x5 stencil for the Bilaplacian [Ter88] (5-point stencil for the

Laplacian and 13-point stencil for the Bilaplacian):

0 −1 0

−1 4 −1

0 −1 0

0 0 1 0 0

0 2 −8 2 0

1 −8 20 −8 1

0 2 −8 2 0

0 0 1 0 0

(5.7)

A bounding box of the foreground mask is computed and Eq. 5.6 is solved on this

rectangle. At the bounding box borders not all 13 neighbors in the 5x5 stencil might

exist so we recompute the stencil for the existing neighbors [Ter88]. Here is an example

5.6 Shading Maps 62

where the missing entries are marked with an asterisk (which are actually zero):

0 0 1 0 0

0 2 −6 2 0

1 −6 11 −6 1

0 ∗ ∗ ∗ 0

0 0 ∗ 0 0

(5.8)

This leads to a sparse linear system Ax = b where the number of variables equals the

number of reconstructed pixels. The linear systems have up to n = 400.000 variables

and are solved in MATLAB. The single-frame shading maps show temporal fluctuations.

Therefore we filter the shading maps with a temporal Gaussian filter per pixel (window

size 3-5 frames). In order to get an accurate result for fast image motion, we build

pixel correspondences between different frames by using the feature correspondences

obtained during feature tracking. The features deliver a sparse set of flow vectors (we

compute forward flow to the next frame and backward flow to the previous frame). This

set is interpolated per pixel by fitting a 2D thin-plate smoothing spline [Wah90] with

α = 10. The obtained flow fields are used as spatial offsets during temporal filtering.

The obtained shading maps are applied to the new texture during rendering by multipli-

cation per-texel (Fig. 5.8). For the texture lookup we use bilinear interpolation. As our

garments have a dark background color, we adapt the maps to a higher albedo by rescal-

ing. The maps are rescaled by dividing with a reference white value which is obtained

by recording a reference image with maximum brightness of the fabric. Note that this

is correct for fabric with Lambertian reflectance only. Fortunately, our fabric is close to

Lambertian. As final step we apply a gamma correction to the rendered images as the

camera sensor has an almost linear response.

5.7 Results 63

Figure 5.9: Accuracy of texture distortion visualized as overlayed checkerboard texture.

5.7 Results

We record our sequences with an Imperx MDC-1004C vision camera (1004x1004 pix-

els) at 25 frames per second with raw output in order to avoid compression artifacts. We

put the camera on a tripod. However, our method is not limited to static camera position

and works just as well for hand-held camera sequences. The camera is color-calibrated

with a reference Gretag MacBeth color checker DC. A linear regression model is fitted to

yield a priori known color values, which results in a 3x4 color correction matrix [Ihr07].

This step improves the separation of the garments’ dot colors in color space for feature

classification. For the garments we use a cotton fabric with a custom-printed color pat-

tern using a medium gray tone as background. A high-brightness contrast between the

color dots and background is needed for robust feature recognition (adaptive threshold-

ing), whereas the shading algorithm needs a reasonably bright fabric, so we meet both

requirements with a medium gray tone. While this is a decent choice, the background

turned out darker than expected after printing. In retrospect, we would choose a brighter

shade of gray to simplify the shading map extraction.

The dot spacing is 3.2 cm and the diameter is 2.1 cm which is a compromise between

5.7 Results 64

Figure 5.10: Shadows are preserved in our renderings. They appear softer because we
regularize the solution. The shadow contrast is higher than in Fig. 5.7 (d) because the
shading map is rescaled during rendering.

high sampling rate of the surface and sufficient dot size in the image when capturing a

whole person. Digital printing makes it easy to design such a pattern and send it to a

company specialized on fabric printing. The garments are manufactured by a profes-

sional tailor for the recorded person.

All experiments are performed on a Pentium IV 3.2 GHz with 2 GB RAM. The aver-

age computation time for the automatic processing steps (Fig. 5.2) in our unoptimized

MATLAB implementation for a 1004x1004 video frame is 60 seconds (45 seconds for

the shading map). Selected algorithms are implemented in C++: labeling, RBF evalua-

tion, bilinear texture lookup and optical flow. Fig. 5.9 shows the accuracy of our texture

interpolation algorithm. The corners of the overlayed checkerboard texture lie on the

geometric centers of the color dots, although the RBF approximation has a smoothing

effect. At the garment borders, the parameterization is less accurate because fewer fea-

tures are detected (Fig. 5.9, right example). The temporal smoothness of the result can

be assessed in the accompanying video. 1 We obtain realistic shading maps which pre-

serve shadows and the shading of cloth folds (Fig. 5.7, 5.10-5.15). While our pattern

1http://www.mpi-inf.mpg.de/˜vscholz/egsr06/texturereplace.wmv

5.8 Conclusions 65

cannot capture fine folds, the shading maps contain this information. The catwalk se-

quence (Fig. 5.12-5.13) shows also the robustness of feature recognition against lighting

changes (the garment is rather dark in the beginning of the sequence). Two sequences

show fast jumping motion to validate the feature tracking ability (Fig. 5.14).

One limitation of our method is that video segmentation still requires user interaction.

This is a notoriously difficult problem (e.g. due to shadows adjacent to the garment

borders) where most automatic approaches require manual correction for an accurate

result. However, segmentation is not the main focus of our work. Our RBF model han-

dles discontinuities at self-occlusions only in an approximate way (the discontinuities

are smoothed). For very loose garments the results might not be visually satisfactory

in this case. In our experiments self-occlusion due to folding is barely observable be-

cause the dots are quite far apart. Self-occlusions between different garment panels

however (e.g. between two legs for trousers) are not a problem as the RBF fitting is

done separately for every panel. Our texture maps require spatiotemporal smoothing at

the garment borders because feature detection is affected by foreshortening, especially

when the overall feature size is small (full person capture). This is an inevitable draw-

back of a monocular method. Still, our proposed method is able to replace the fabric

texture with realistic deformation and lighting for a wide range of real-world scenes. It

can robustly deal with deformation, fast motion, lighting changes and feature occlusion.

5.8 Conclusions

We have presented a system for automatic texture replacement of color-coded garments.

Visually convincing replacement results are obtained by using 3D spatiotemporal RBF

approximation. We also show that our shading maps can capture small details at cloth

folds. A single-view method is more challenging than a multi-view approach but opens

up new applications for video post-processing in TV and film production.

5.8 Conclusions 66

Figure 5.11: Replacement results with different patterns.

5.8 Conclusions 67

Figure 5.12: Catwalk sequence. We are able to replace the original, recorded color-dot
texture on the apparel with arbitrary pattern designs. Note that feature recognition works
also for oblique surface angles (right side, left back panel of the dress) and the lighting
changes in the video when the actor comes closer to the camera.

5.8 Conclusions 68

(a) (b)

(c) (d)

Figure 5.13: Closeup zooms show the shading at cloth folds.

5.8 Conclusions 69

(a) (b)

(c) (d)

Figure 5.14: Our method can track fast motion because it can re-initialize at every video
frame (see video).

5.8 Conclusions 70

(a) (b)

(c) (d)

Figure 5.15: Shading effects near wrinkles and cloth folds. The shading maps faithfully
represent the main cloth folds.

6

Keyframe Editing of Video Objects

In this chapter, we extend the scope of our work from cloth editing to general video

editing. We present a framework for interactive video editing, where our focus is on

footage from a conventional camcorder. After introducing texture replacement methods

in the last two chapters, we now explore further transformations and manipulations of

video objects. By relying on image-based, spatio-temporal techniques, we do not need

to recover 3D scene geometry. Our framework is capable of removing and inserting

objects, object motion editing, non-rigid object deformations, keyframe interpolation,

as well as emulating camera motion. For evaluation, we show how movie shots can be

persuasively modified during post-processing.

Figure 6.1: Camera push motion towards the actor by differently scaling foreground and
background.

6.1 Introduction 72

6.1 Introduction

Digitally retouching photographs has become routine in the publishing industry. For

still images, a number of professional editing products such as Photoshop exist, offering

a wide variety of different manipulation techniques that leave little to ask for [BC02].

In contrast, retouching video recordings is still a tedious per-frame editing procedure.

Existing software tools that modify the content of video footage, like Adobe’s After Ef-

fects [Ado07] and Apple’s Shake [App07], offer tools for matte extraction [CAC+02]

and rotoscoping [AHSS04]. However, more advanced retouching operations like editing

object motion and shape are not supported. Similarly, tools for object segmentation do

not address the challenges of altering the motion and shape of objects in video footage,

either [WTXC04, WBC+05, LSS05, CCBK06]. The potential applications of a power-

ful video editing framework are, nevertheless, imposing.

In this project we address the challenge of convincingly altering the content of real-

world video footage. For example, a tool to post-process movie sequences enables re-

moving any accidentally visible crew member or equipment. Another common flaw

of many movies is missing continuity between film shots. Such annoyances are easily

eliminated if scene objects can still be rearranged during post-processing. Finally, a

powerful video post-processing framework gives the movie director additional artistic

freedom to tell the visual story of a film during editing.

To enable sophisticated video editing operations on general, real-world footage, our

processing framework consists of several modules. Instead of attempting to augment

real-world scenes with synthetic 3D models, we opt for editing spatio-temporal video

objects. Video segmentation is needed to select the objects which the user wants to

alter. To fill in the holes left behind by (re)moved objects, we rely on a video inpaint-

ing algorithm. Finally, compositing is applied to authentically blend modified objects

into inpainted video frames. Object shapes and motions are specified interactively at

keyframes. Our video editing framework achieves visually convincing results while re-

6.1 Introduction 73

Figure 6.2: System overview. The segmentation and editing steps are interactive, while
inpainting and compositing are automatic.

quiring only moderate user effort. Technical contributions of our framework include

1. a color-based video segmentation algorithm exploiting temporal coherence, in-

cluding an improved boundary-editing user interface,

2. an efficient spatio-temporal background hole filling method that can handle fast

camera motion,

3. a keyframe-based interpolation method for 2D object animation in video,

4. a new border matting method, and

5. various visual effects: editing of object trajectories, non-rigid deformation and

emulation of camera motion.

We present the first video processing system that offers a wide variety of object transfor-

mation effects to the user where missing background inpainting is performed automati-

cally. Our goal is an easy-to-use interactive system that leaves the user in full control of

the editing result.

6.2 Overview 74

Figure 6.3: Result of segmentation during preprocessing. Left: input image, right:
segmentation result, each colored region is a superpixel.

6.2 Overview

Our framework consists of several processing components (Fig. 6.2), which we describe

in the following sections. The first task is interactive video segmentation for simple

object selection (Section 6.3). As for still images, this interactive step is the key to any

object editing operation. The second task is automatic video inpainting (Section 6.4), to

fill in the holes in the video background that are left behind when the segmented objects

are cut out and edited. In Section 6.5, we present the interactive editing operations of

our framework, before in Section 6.6 we describe the final compositing step. We show

how our system can be applied to edit camera motion, to modify object trajectories, and

to apply non-rigid deformations (Section 6.7), before we conclude in Section 6.8.

6.3 Video Segmentation

In order to be able to separately edit individual objects in a video, the recorded video

frames must first be segmented.

6.3 Video Segmentation 75

6.3.1 Preprocessing

In the preprocessing step we use the image segmentation algorithm by Felzenszwalb

et al. [FH04b] in a batch procedure to create regions of homogeneous color, so-called

superpixels, for each video frame (Fig. 6.3). The main idea of this algorithm is to merge

the most similar pixels first in a pixel graph data structure. As merging criterion the cur-

rent graph edge which connects two regions is compared with the internal color variation

of the regions. The merging threshold can be steered by a parameter, which controls the

coarseness of the segmentation result. A detailed description can be found in [FH04b].

This preprocessing reduces the amount of data for the subsequent steps and makes the

following graphcut video segmentation feasible. Segmenting an image at VGA res-

olution takes a few seconds. Previous video segmentation systems [LSS05] used the

watershed algorithm, which generates a larger amount of superpixels, or mean-shift

segmentation [WBC+05], which requires more computational effort.

In order to group the computed 2D regions into 3D regions for video segmentation,

we apply the same merging algorithm to a newly constructed 3D graph in a second step.

Every superpixel region is connected with an edge to its superpixel neighbors in the same

frame. We determine region adjacency by a contour following algorithm [SA85] for

every superpixel and the spatially overlapping regions in the adjacent frames (Fig. 6.4,

blue edges between different frames). We use a search radius of typically 25 pixels to

connect a region in frame t to its neighbors in frames t − 1 and t + 1. A graph edge

for every overlapping pair, weighted with the squared RGB color difference of the two

regions, is added to the graph. Finally the region merging algorithm [FH04b] computes

3D regions from the 2D regions.

6.3 Video Segmentation 76

Figure 6.4: 3D graph for graphcut minimization. Every region is connected to neighbor
regions within a frame (red edges E1) and to neighbor regions in adjacent frames (blue
edges E2).

6.3.2 Min-cut Segmentation on Superpixels

After this data reduction step we apply a min-cut minimization [BJ01, LSS05] to the

following energy function for all 3D regions ri ∈ V in the graph G = (V ∪{S,T},E1 ∪

E2 ∪E3) (Fig. 6.4):

E = ∑
ri∈V

ED(xi)+λ ∑
(ri,r j)∈E1

EN(xi,x j)+ µ ∑
(ri,r j)∈E2

EN(xi,x j) (6.1)

In the graph G, the node set V is augmented with two terminal nodes S and T , which

represent foreground and background labels respectively. Every node in V is connected

with S and T (edge set E3). The edge weights of E3 are given by ED(xi) , the color

likelihood for region ri, a measure of conformity with foreground/background color

models. The edge weights of E1 ∪E2 are given by the second and third term (neigh-

borhood energy EN). xi ∈ {0,1} denotes the background/foreground label of the region.

A min-cut between the terminal nodes partitions the node set V in a foreground and a

background region and minimizes the energy in Eq. 6.1. Typical values for the neigh-

borhood energy weights are λ = 20 and µ = 10. This energy function is similar to

[LSS05, WBC+05], but we use a different color model. We get color samples for fore-

6.3 Video Segmentation 77

Figure 6.5: User-defined polygon (red) in unknown region and distance Di j of pixel p
to polygon.

ground and background regions from user input and build two color models from them

by clustering them with the k-means algorithm. When k is large enough (a typical value

is k = 64) we get more robust classification results than with standard Gaussian mix-

ture models (GMM), where often a fixed number of mixture components is used (like in

[LSS05, WBC+05]). We also avoid convergence problems of the EM algorithm which is

normally used to fit the GMM. The cluster centers KF
k and KB

k from the k-means cluster-

ing are then used to compute the minimum distance from a region color ci to foreground

clusters dF
i = mink‖ci −KF

k ‖ and similarly for the background dB
i = mink‖ci −KB

k ‖.

ED(xi = 0) =
dF

i
dF

i +dB
i

(6.2)

ED(xi = 1) =
dB

i

dF
i +dB

i
(6.3)

is the color likelihood ED [LSTS04], a proximity measure to cluster centers normal-

ized by the sum of distances to foreground and background clusters. EN(xi,x j) = g(Ci j)

is the neighborhood energy EN between neighboring regions [LSTS04], where Ci j =

‖ci − c j‖2 is the squared RGB color difference of the regions ri and r j, and g(x) = 1
1+x

is a weighting function. We choose this neighborhood energy instead of the one pro-

posed in [BJ01] as it has no additional parameter and gives slightly better segmentation

results. The user marks foreground and background regions with some paint strokes

6.3 Video Segmentation 78

p

np

∇Ip

Ω

Ω

I \

Ψp

Ψq

q

Figure 6.6: Left: Schematic overview of inpainting terminology, see text for details.
Right: bending parameters and the result obtained from bending AB.

(markers) in keyframes which are treated as hard constraints, i.e. for these regions

ED ∈ {0,∞} [BJ01]. The marked pixels are also used as color samples for computing

the color models. The min-cut algorithm [BK04] computes the labels xi which minimize

Eq. 6.1. The user can add additional strokes to refine the result, where only the color

likelihood ED of the affected regions is updated. By defining spatio-temporal slices of

the video cube (x,y, t) [WBC+05] the user can also put markers in several video frames

simultaneously which makes interaction more efficient.

6.3.3 Min-cut Refinement

To obtain fine segmentation on the pixel level, we employ the same graphcut technique

in a corridor around the segmentation boundary obtained in the first step. A typical corri-

dor width is 12 pixels. The min-cut graph G = (V ∪{S,T},E1∪E2∪E3) for the corridor

pixels V is constructed with a 10-neighborhood (8 spatial and 2 temporal neighbors) and

edge weights according to Eq. 6.1. The diagonal edge weights are multiplied with a fac-

tor 1√
2

which gives smoother segmentation boundaries [BJ01]. Typical parameter values

for this step are λ = µ = 0.1.

6.3 Video Segmentation 79

6.3.4 Boundary Editing Tool

The color-based segmentation algorithm fails at low contrast edges and the min-cut

minimization does not preserve thin structures well. We provide two boundary editing

tools for the user to correct these errors. First, the segmentation result is converted into

boundary polygons with a contour following algorithm [SA85]. With the overriding

brush as described in [LSTS04] the user can specify a corridor for the boundary with a

paint stroke and min-cut optimization is used to find the actual boundary for one video

frame. The neighborhood energy EN is now defined differently. In addition to the color

difference, it also uses the paint stroke (polygon) as a soft constraint in order to deal

with low contrast edges. Similar to [LSTS04], the neighborhood energy for two pixels

pi, p j with labels xi,x j is

EN(xi,x j) = g((1−β) ·Ci j +β ·η ·g(D2
i j)) (6.4)

g is the weight function introduced earlier, Di j is the distance of the center of the edge

(pi, p j) to the polygon (Fig. 6.5) and η a scaling factor (typical value η = 10). By

varying β the user can control the influence of Di j, a typical value is β = 0.5. We

drop the color likelihood term ED in Eq. 6.1 as it is often misleading if the automatic

segmentation fails and reduce the energy equation to

E = ∑
(xi,x j)∈E1

EN(xi,x j) (6.5)

which we minimize per video frame. The min-cut optimization is performed in a cor-

ridor around the whole segmentation boundary and only the paint stroke region is up-

dated. We extend this image editing method to video. The user can put paint strokes at

two different keyframes and the system interpolates the strokes linearly for the frames

in between. We use a nearest neighbor matching algorithm to obtain vertex correspon-

6.4 Video Inpainting 80

dences for the two polylines. The boundary refinement is then computed for all frames

so that the user only needs to edit keyframes. The segmentation result is temporally

smooth for the interpolated frames.

Thin structures are difficult to obtain by min-cut minimization, so we also provide a

user interface (UI) tool where the user can add vertices to the boundary polygons. The

result of the video segmentation step is a binary alpha mask for each video frame. The

different segmentation steps are summarized in Fig. 6.7.

6.4 Video Inpainting

We use two approaches for the hole filling problem: a texture synthesis algorithm and a

mosaicking technique. This section describes work done by Sascha El-Abed during his

master thesis [EA07].

6.4.1 Image Inpainting Revisited

We start with the patch-based image inpainting algorithm proposed by Criminisi et

al. [CPT03]. Given an image I, the pixels of the hole Ω to be filled are given by a

binary mask. Let p be a pixel located on the hole’s boundary, and Ψp be a squared patch

centered at p. To guide the filling order, a priority value P(p) is computed for each pixel

p on the hole’s boundary:

P(p) = C(p) ·D(p), (6.6)

where the con f idence term C(p) and the data term D(p) are computed by

C(p) =

∑
q∈Ψp∩Ω̄

C(q)

|Ψp|
and D(p) =

|∇I⊥p ·np|
α

. (6.7)

6.4 Video Inpainting 81

(a) (b)

(c) (d)

Figure 6.7: Segmentation steps. First row: User-defined paint strokes for foreground
(red) and background (blue) (a) and segmentation result at the superpixel level (b). Sec-
ond row: Pixel-level segmentation with red paint stroke near the T-shirt border which
serves as input for our boundary editing tool (c), and result after correction (d).

6.4 Video Inpainting 82

Figure 6.8: Video inpainting results. Left: Original frame. Right: inpainted frame. The
missing facial texture was reconstructed from other frames.

|Ψp| is the area of Ψp, α is a normalization factor, np is the unit vector orthogonal to the

hole boundary at p and ∇I⊥p is the isophote direction at p, see also Fig. 6.6 (left). C(p)

is initialized to C(p) = 0 for p ∈ Ω and C(p) = 1 for p ∈ I\Ω. This priority-based filling

aims at propagating linear structures in the texture into the hole region. For the pixel

with the highest priority, the region Ω̄ = I\Ω is searched for a patch Ψq that is most

similar to Ψp in terms of a simple sum-of-squared differences (SSD) error measure.

Finally, the missing pixels of Ψp are replaced with pixels from Ψq; this is repeated until

all pixels of the hole are filled in.

6.4.2 Video Inpainting with Spatio-temporal Patches

To solve the problem of inpainting holes in a spatio-temporal video cube, we extend this

idea by using 3D spatio-temporal patches. The main motivation behind this is to achieve

temporal coherence of the inpainting result, a typical patch size is 9x9x3. Analogously

to the pixels in the 2D case, a priority value is computed for each voxel p = (x,y, t) on

6.4 Video Inpainting 83

the spatio-temporal hole’s boundary as in Eq. 6.6. For the data term, we compute

D(p) =
|∇Ip ×np|

α
(6.8)

where α is a normalization constant, ∇Ip is the spatio-temporal gradient vector of the

video cube I(x,y, t) and np is the normal vector of the spatio-temporal hole at p. We

compute np using the 3D structure tensor J:

J =

M2
x MxMy MxMt

MxMy M2
y MyMt

MxMt MyMt M2
t

, (6.9)

where M ∈ {0,1} is a binary representation of the spatio-temporal hole with Mx, My and

Mt being the spatial and temporal derivatives, respectively. The eigenvector correspond-

ing to the largest eigenvalue of J gives us the direction of the highest variance within

the neighborhood of the considered voxel. This eigenvector equals the normal vector

direction at this voxel, which is equivalent to the normal vector of the surface formed by

the spatio-temporal hole.

The inpainting procedure remains the same as in the 2D case: taking the boundary voxel

p with highest priority, we search for a spatio-temporal patch Ψq being most similar

to the spatio-temporal patch Ψp centered at p in terms of an SSD error measure, and

transfer only those voxel locations of Ψq being empty in Ψp. This is repeated until all

voxels are filled in. The search for a matching patch Ψq for the patch Ψp is restricted

to the spatial and temporal vicinity of the location of Ψp in order to speed up the search

process. For the results shown here, we use a spatial range of 15 voxels and a temporal

range of 8 frames. We perform a grid search on the video cube with spatial mesh size ∆x

and temporal mesh size ∆t. From these samples, the n best matches are determined and

refined by a second pixelwise search in the local neighborhood. The best matching result

6.4 Video Inpainting 84

is taken for inpainting. Although this might not necessarily find the optimal match, the

huge speed-up justifies the small loss of quality. Typical parameter values are ∆x = 3,

∆t = 2 and n = 10. However, this search procedure relies on the assumption that the

neighborhood of Ψp contains texture which should be used for inpainting. Alternatively,

the user can also mark the search area and influence the quality of the inpainting result.

Our SSD error measure is summed over all color channels (we use Lab color space)

and is evaluated only for those voxels of the patch Ψp that are already filled in. To

improve the matching quality, each voxel Ψi
p of the patch is assigned a weighting factor

depending on its location within the spatio-temporal patch. Assigning a high weighting

factor in the center of Ψp helps to find matching patches Ψq that have a similar color

in the patch’s center. On the other hand, high weights on the patch’s corners penalize

huge color deviations on the corners. To this end, we combine both approaches and

set the weights such that each weighting factor is the maximum of Gaussian kernel

functions centered at each patch corner as well as the patch’s center. For simplicity,

these Gaussians have an extent reaching over the whole patch. Finally, we normalize by

dividing by the sum of weights and the number of voxels used for matching:

SSD(Ψp,Ψq) =

∑
i∈F

wi · (Ψi
p −Ψi

q)
2

|F| · ∑
i∈F

wi
(6.10)

Here, F = Ψp ∩ Ω̄ is the set of all voxels in patch Ψp that are already filled in. To

achieve temporal smoothness of the inpainted region Ω, we blend between old voxels

that have already been filled and the voxels from the new patch. This patch blending is

done by averaging between the old and the new voxel values. Fig. 6.8 shows a video

inpainting result. The face behind the removed ball is reconstructed faithfully. Observe

that merely copying the affected region from neighboring video frames would not give

a satisfactory result, since the person is moving.

6.5 Editing Operations 85

6.4.3 Camera Motion

Filling spatio-temporal holes in a video sequence with fast camera motion can also be

handled with the approach described in the previous section, but this might introduce

artifacts if the holes are large. In this case, for example in the trampoline sequence,

we fill holes in the background using a background mosaic. For general camera motion

we make the assumption that the background is planar. This is a good approximation

if the distance between camera and background is large enough as in our example. In

the first step, we use the RANSAC algorithm [HZ00] to estimate homographies Hn

between all pairs of subsequent frames n,n + 1 from Harris corner feature correspon-

dences (xn+1 = Hn ·xn for image coordinates xn,xn+1). The homographies are estimated

with the normalized Direct Linear Transform (DLT) algorithm [HZ00]. The products

Πn
i=0H−1

i are used to project all frames onto the reference frame 0. We filter out mov-

ing objects by employing median filtering in the temporal domain. To obtain a globally

accurately aligned mosaic, the homographies are refined by computing feature corre-

spondences between each frame n and the common mosaic plane. The mosaic is then

recomputed. If parts of the background are occluded throughout the whole sequence,

unknown regions remain. These empty mosaic pixels are filled in using the image in-

painting method of [CPT03]. Finally, we assign to each pixel of the spatio-temporal

hole the color value of its corresponding pixel in the background mosaic.

6.5 Editing Operations

We provide a novel keyframe-based interpolation method for video object animation,

similar to keyframe animation in 3D graphics. The user specifies a rigid transform

(translation, rotation and scale) of the video object at keyframes interactively and the

system interpolates the transformations of the object pixels for the remaining video

frames.

6.5 Editing Operations 86

Figure 6.9: Editing results from our bending operator. Left: original frame. Right: the
forearm was edited by applying the bending operator.

6.5.1 Translation

To preserve the characteristics of the original motion, we warp the motion by a smooth

offset function. For the case of translation, the object trajectory p(t)= (px, py) is warped

to p′(t) = p(t)+d(t). d(t) is a 2D natural cubic spline [BBB98], a C2-continuous curve

which interpolates the user constraints d(t0), . . . ,d(tk) at keyframes. At the curve end-

points, the second derivative is set to zero. Linear interpolation would not give satisfac-

tory results in most cases. While Kochanek-Bartels splines [KB84] with more manipu-

lation options could be used, we found that interpolation with natural cubic splines was

satisfactory in our examples.

6.5.2 Scaling and Rotation

For uniform 2D scaling and rotation we have to interpolate one transformation parame-

ter (scaling factor and rotation angle, respectively). We use again a 2D-spline, where the

first coordinate corresponds to frame time t and the second coordinate to the transfor-

mation parameter. Also, the scaling and rotation center is user-defined and interpolated

6.5 Editing Operations 87

in the same way. For mirroring objects vertically or horizontally a negative scale factor

is used.

6.5.3 Non-rigid Deformation

As an example for non-rigid deformation, our system contains a bending operator. It

can be used to bend an articulated structure, e.g. the forearm in the waving example

(Fig. 6.9). Our use of this image editing operation [BC02] for video is novel. The bend-

ing transform contains three user-specified parameters, two points A and B defining the

y-axis of a local coordinate system (x′,y′) centered at A and a bending angle θ (Fig. 6.6,

right). A and B are interpolated with a separate 2D cubic spline between keyframes. For

interpolating θ we augment it again with the time t. The bending operation essentially

rotates the object, but with a linear decreasing attenuation factor a(y′) = c · y′ [BC02]

towards the pivot point A. The rotation is applied to all pixels of the selected object with

y′ ≥ 0:

(x′′,y′′) =

cos(a ·θ) −sin(a ·θ)

sin(a ·θ) cos(a ·θ)

x′

y′

(6.11)

Fig. 6.10 shows the user interface for the non-rigid bending operator.

6.5.4 Simulated Camera Motion

To emulate camera motion, we use the alpha mask from segmentation to construct fore-

ground and background depth layers. We simulate two different camera motion ef-

fects. Since image disparity is inversely proportional to object depth (parallax effect),

we generate a freeze-and-translate effect by shifting foreground and background layers

by different amounts. We apply this operation to a frame of the sequence and interpo-

late user-specified shift vectors dxB of the background at keyframes with a cubic spline.

The foreground shift is then dxF = α ·dxB where the α parameter controls the paral-

6.5 Editing Operations 88

(a) (b)

(c) (d)

Figure 6.10: Editing steps. First row: User-specified bending angles at keyframes (a),
(b). Second row: Compositing result after applying the bending transform (c), (d).

lax effect. The second effect, camera motion along the z-axis of the camera, is depth-

dependent scaling according to the pinhole equation x′ = f · x
z . We simulate this effect

by linear interpolation of z, which results in different scaling factors for the foreground

and background layers.

6.6 Compositing 89

Figure 6.11: Results from our border matting algorithm. Left column: raw alpha mattes.
Right column: regularized alpha mattes.

6.6 Compositing

Our segmentation results in binary alpha masks. To obtain a spatio-temporally coherent

alpha matte with continuous alpha values, we first parameterize the boundary with a

contour following algorithm. We then run a new border matting algorithm to generate

smooth alpha mattes. We modify border matting [RKB04] in two important aspects.

Border matting constructs a local foreground and background color model for each con-

tour point by fitting a Gaussian to each of the distributions. In contrast, we use the color

model from Section 6.3 to also handle the case when multiple colors are present. Then,

we compute a raw alpha matte α0 by using the right-hand side of Eq. 6.3 which is de-

picted in Fig. 6.11 (left). The original border matting algorithm defines a soft α-profile

function along each normal of the contour which is fitted by dynamic programming.

We use a different regularization approach by casting this as a surface fitting problem.

An approximating thin-plate surface [Ter88] (cf. Section 5.6) is fitted to the raw alpha

matte in a corridor Ω (typically 10 pixels wide) around the contour. In our experience,

the smoothness of the matte can be controlled more easily this way, since no smoothness

6.7 Results 90

parameters for adjacent profiles are needed. The sparse linear system

α −α0 +λ ·∆2α = 0 (6.12)

is solved on Ω, where α is the resulting alpha matte, ∆2 denotes the Bilaplacian operator

(cf. Eq. 5.7) and λ is a regularization parameter. We use Dirichlet boundary conditions

α = 0 near the background and α = 1 near the object on ∂Ω to constrain the solution

and use the solver CHOLMOD [DH05] for sparse Cholesky factorization. The result of

this regularization is shown in Fig. 6.11 (right).

The foreground object color can be estimated with the Bayesian matting algorithm

[CCSS01]. The transforms obtained from keyframe interpolation (Section 6.5) are then

applied to the original video object. We use bilinear interpolation for the pixel lookup.

The transformed object is composited into the video inpainting result with alpha blend-

ing.

6.7 Results

The accompanying video shows video editing results for four sequences, juggling, wav-

ing, girl and trampoline. For the first three sequences we use a Sony HDR-HC3E cam-

corder recording in HDV format 1080i (frame size 1440x1080 interlaced, frame rate 25

fps). Each sequence contains 100 frames. To avoid artifacts from interlaced recording

we downsample the images by dropping every second image row and resize the frames

to VGA resolution (640x480 pixels). The fourth sequence trampoline is MPEG-2 com-

pressed at 720x576 pixels and contains 50 frames. We present four different applications

of our video editing system to demonstrate the capabilities of our system (Fig. 6.12-

6.15). The quality of the editing results can best be assessed from the accompanying

video. 1

1http://www.mpi-inf.mpg.de/˜vscholz/eg07/keyframe_editor.avi

6.7 Results 91

(a) (b)

(c) (d)

Figure 6.12: Juggling sequence. The position of the pink ball was altered. (a) and (c):
original frames, (b) and (d): edited frames.

Motion editing is shown in the juggling sequence (Fig. 6.12). The trajectory of the pink

ball has been scaled. Only a few keyframes are used to generate the results. We place

more keyframes at the upper part of the ball path to preserve acceleration effects. Notice

that the edited motion looks as natural as if it had been recorded.

6.7 Results 92

Non-rigid deformation is applied to the waving sequence (Fig. 6.13). The bending oper-

ator is applied to the forearm of the person so that the amplitude of the waving motion is

exaggerated. Keyframes specifying the bending parameters at the turning points of the

motion are sufficient. To avoid inpainting artifacts, the shirt region was removed from

the search region by the user. Despite non-rigid deformations, the modified motion

appears authentic.

The trampoline sequence contains considerable camera motion, motion blur, and addi-

tionally also exhibits strong MPEG-2 compression artifacts. Nevertheless, our inpaint-

ing algorithm is able to accurately fill in the background texture from the background

mosaic. We apply a horizontal mirroring transform to reverse the rotation of the athlete

(Fig. 6.14). Note that the background is not mirrored. To increase the accuracy of the

motion estimation algorithm, the foreground object was masked with a uniform color to

eliminate foreground motion.

Simulated camera motion is shown in the girl sequence (Fig. 6.15). To emphasize this

effect, we freeze the video sequence from a handheld camera and apply a parallax effect

in the middle of the sequence. At the end of the sequence we simulate a camera push

motion in z-direction towards the actor (Fig. 6.1). The visual difference to a simple

zoom-in operation is apparent in the accompanying video.

All computations are done on a Pentium IV 3.2 GHz with 2 GB RAM. Depending on the

amount of user interaction, total processing time for video segmentation takes between 5

and 30 minutes for the presented examples. After segmentation, video inpainting is the

only off-line processing step. Our video inpainting algorithm performs automatically,

taking 5 minutes for the juggling sequence and 20 minutes for the waving example. For

the trampoline sequence, mosaic construction and inpainting takes 7 minutes. Interac-

tive animation editing and compositing takes between 3-7 minutes while border matting

takes 2 minutes. One current limitation of our system is the color-based min-cut seg-

mentation which does not perform well if foreground and background have similar color

6.7 Results 93

(a) (b)

(c) (d)

Figure 6.13: Waving sequence. The original motion was magnified by applying a non-
rigid bending deformation to the forearm. (a) and (c): original frames, (b) and (d):
edited frames.

distributions. Furthermore, thin structures are smoothed and must be corrected by the

user. The goal of our boundary editing tool is to make user interaction as efficient as

possible. Our method is generally limited to 2D editing, out-of-plane editing would

require depth information. The mosaicking technique for inpainting assumes a static

background and cannot preserve object motion in the background. The response times

6.8 Conclusions 94

of our user interface for the segmentation and editing steps can be evaluated from the

accompanying video which shows that it is fast enough for interactive editing (a few

seconds).

6.8 Conclusions

We have presented a system for video object segmentation, inpainting and keyframe an-

imation of video objects. With our framework, a number of new video editing options

become possible using conventional camcorder footage as input. While video object

editing is conceptually simple, performing it without introducing objectionable artifacts

requires considerable attention to detail. We have shown results for object motion edit-

ing, non-rigid object deformation and emulation of camera motion. Our system could be

extended in several directions, for example object-based image filters or various painting

effects. Furthermore, computing long-term pixel correspondences as described by Sand

and Teller in their particle video system [ST06] would enable the user to modify pixel

regions in one frame which are automatically tracked throughout the video sequence.

6.8 Conclusions 95

(a) (b)

(c) (d)

Figure 6.14: Trampoline sequence. The rotation of the athlete was reversed and the
missing background was reconstructed. (a) and (c): original frames, (b) and (d): edited
frames.

6.8 Conclusions 96

(a) (b)

(c) (d)

Figure 6.15: Simulating camera motion. (a) and (b): camera motion from left to right.
(c) and (d): camera push motion towards the scene.

7

Conclusions

This thesis presents various contributions aimed towards editing video objects. We have

presented a method that is capable of reconstructing cloth motion for cloth with richly

detailed texture. A combination of optical flow and a deformable model is used to track

motion robustly. We obtain photo-realistic results and can track motion over several

hundred frames. Frame-to-frame coherence is achieved by our incremental approach

using optical flow, which adds to the realism of the captured motion.

Furthermore, we have presented a system for acquiring garment motion in a multi-

camera setup. By using color-coded textures, we can establish reliable point corre-

spondences between different camera views. A prior triangle mesh model enables us

to plausibly fill in missing data. Our method provides a surface parameterization that

allows retexturing and rendering the dynamic surfaces realistically from arbitrary view-

points.

We have also presented a novel approach to texture replacement of color-coded garments

for monocular video. Visually convincing replacement results are obtained by using 3D

spatiotemporal RBF approximation. We also show that our shading maps can capture

small details at cloth folds. A single-view method is more challenging than a multi-view

approach but opens up new applications for TV and film production.

Finally, with our video editing framework comprising segmentation, inpainting and

keyframe animation, we can generate convincing visual effects such as motion edit-

ing, non-rigid deformations and simulation of camera motion. We rely on footage from

98

a single camera and can generate plausible visual effects. So far, we have only presented

editing results which still look realistic, but generating scenes which are virtually im-

possible would be just another application of our system. The ability to make up such

scenes was discovered early by the first filmmakers.

To sum up, the key contributions of this thesis are:

– A method for 3D tracking of cloth motion by optical flow in a multi-camera set-

ting.

– The first system for multi-camera capture of garment motion that uses a color-

coded pattern specially designed for robust observation.

– A video editing system for replacing cloth texture with texture deformation and

lighting effects, which makes our color-coded approach useful for single camera

recordings.

– The first system for keyframe editing of shape and motion of video objects which

combines color-based object segmentation with video inpainting methods.

– A new algorithm for matting of video objects.

– A new, fast video inpainting method for static and moving cameras.

Since our work is based on video, videos naturally provide a better impression of the

results than still images. The movies documenting the described projects can be found

at the following project web pages. 1 2 3 4

1http://www.mpi-inf.mpg.de/˜vscholz/vmv04/ClothMotion.html
2http://www.mpi-inf.mpg.de/˜vscholz/eg05/GarmentMotionCapture.html
3http://www.mpi-inf.mpg.de/˜vscholz/egsr06/TextureReplace.html
4http://www.mpi-inf.mpg.de/˜vscholz/eg07/KeyframeEdit.html

7.1 Future Research 99

7.1 Future Research

7.1.1 Cloth Capture

There are several areas for future work in cloth capture which are more or less engineer-

ing problems: increasing the pattern resolution to get fine scale folds, using more cam-

eras to resolve occlusion problems, different garments, more specialized multi-camera

calibration methods such as by Ihrke et al. [IAM04] etc. In research, new methods for

editing and re-using the acquired deformable surfaces could be explored. Re-using the

acquired garments by combining them with skeletal motion capture data is also an in-

teresting research area [WCF07]. A reconstruction method for garments with normal

texture (often uniform or with a periodic pattern) would be desirable, since this would

not require special garments. While image-based 2D editing methods for this kind of

textures exist, a full 3D surface reconstruction remains challenging.

7.1.2 Texture Replacement

A better automation of the segmentation step would improve the usability of our system

and is mainly an engineering problem. Some amount of user interaction, however, will

always be required for video segmentation without prior knowledge about the scene.

Currently, the performance bottleneck in our implementation is the computation of the

shading maps. Using faster solvers (e.g. multigrid) would improve our system’s time

and memory consumption. In research, considering discontinuities in the interpolation

of texture maps would be an improvement over our current RBF approach. By detect-

ing lines of discontinuity in the images, this information could be used in the fitting

algorithm. Existing texture editing methods for uniform [FH06] and periodic textures

[LL05] could be extended in several directions. More automation and explicit handling

of several garment patches would be desirable.

7.1 Future Research 100

7.1.3 Video Editing

On the engineering side, our system could be improved by a segmentation method which

requires less user interaction. On the research side, we would like to give the user more

possibilities to edit the results of automatic video inpainting. There are open issues for

the video hole filling problem, such as video sequences with camera zoom and objects

changing size. In these cases, more elaborate search models are needed. Furthermore,

the introduction of 3D Television in the near future should make acquisition equipment

for full 3D scenes more accessible. A stereo camera would be able to provide additional

depth information, offering even more editing possibilities for video. An additional

depth cue would facilitate tasks such as the segmentation and editing of camera motion.

Appendix A

Publications

The work presented in this thesis was published in the following papers.

[1] Volker Scholz, Sascha El-Abed, Marcus Magnor and Hans-Peter Seidel.

Keyframe Editing of Video Objects. Under review.

[2] Volker Scholz and Marcus Magnor. Texture Replacement of Garments in Monoc-

ular Video Sequences. In: Rendering Techniques ’06 (Proc. of the 17th Euro-

graphics Symposium on Rendering), Nicosia, Cyprus, pp. 305-312, 2006.

[3] Volker Scholz, Timo Stich, Michael Keckeisen, Markus Wacker and Marcus Mag-

nor. Garment Motion Capture Using Color-Coded Patterns. In: Computer Graph-

ics Forum (special issue Eurographics 2005), vol. 24, no. 3, pp. 439-448, August

2005.

[4] Volker Scholz, Timo Stich, Michael Keckeisen, Markus Wacker and Marcus Mag-

nor. Garment Motion Capture Using Color-Coded Patterns. ACM SIGGRAPH

Sketches and Applications, August 2005.

[5] Volker Scholz and Marcus A. Magnor. Cloth Motion from Optical Flow. In:

Proc. Vision, Modeling and Visualization 2004, Stanford, USA, pp. 117-124,

November 2004.

Bibliography

[Ado07] Adobe Systems Inc. http://www.adobe.com, 2007.

[AHSS04] Aseem Agarwala, Aaron Hertzmann, David Salesin, and Steven M. Seitz.

Keyframe-based tracking for rotoscoping and animation. ACM Trans-

actions on Graphics (Proc. of ACM SIGGRAPH 2004), 23(3):584–591,

2004.

[App07] Apple Computer, Inc. http://www.apple.com, 2007.

[Aut07] Autodesk Inc. http://www.autodesk.com, 2007.

[BBB98] R. H. Bartels, J. C. Beatty, and B. A. Barsky. An Introduction to Splines

for Use in Computer Graphics and Geometric Modelling. Morgan Kauf-

mann, 1998.

[BC02] William A. Barrett and Alan S. Cheney. Object-based image editing. In

Proc. of ACM SIGGRAPH 2002, pages 777–784, 2002.

[BFB94] J.L. Barron, D.J. Fleet, and S. Beauchemin. Performance of optical

flow techniques. International Journal of Computer Vision, 12(1):43–

77, 1994.

102

BIBLIOGRAPHY 103

[BJ01] Yuri Boykov and Marie-Pierre Jolly. Interactive graph cuts for optimal

boundary and region segmentation of objects in n-d images. In Proc.

IEEE International Conf. on Computer Vision, pages 105–112, 2001.

[BK04] Yuri Boykov and Vladimir Kolmogorov. An Experimental Compari-

son of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vi-

sion. IEEE Transactions on Pattern Analysis and Machine Intelligence,

26(9):1124–1137, 2004.

[Bou00] Jean-Yves Bouguet. Pyramidal Implementation of the Lucas Kanade

Feature Tracker. http://www.sourceforge.net/projects/

opencvlibrary, 2000.

[Bou05] Jean-Yves Bouguet. Camera Calibration Toolbox for MATLAB. http:

//www.vision.caltech.edu/bouguetj/calib_doc/, Aug

2005.

[BR04] D. Bradley and G. Roth. Augmenting Non-Rigid Objects with Realis-

tic Lighting. Technical Report NRC 47398, National Research Council

Canada, Institute for Information Technology, 2004.

[Bra01] Matthew Brand. Morphable 3d models from video. In Proc. IEEE Conf.

on Computer Vision and Pattern Recognition (2), pages 456–463, 2001.

[BRB+04] Andrew Blake, Carsten Rother, M. Brown, Patrick Pérez, and Philip

H. S. Torr. Interactive Image Segmentation Using an Adaptive GMMRF

Model. In Proc. European Conference on Computer Vision (1), pages

428–441, 2004.

[Bri03] R. Bridson. Computational aspects of dynamic surfaces. PhD thesis,

Stanford University, 2003.

BIBLIOGRAPHY 104

[BSCB00] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester. Image inpainting.

In Proc. of ACM SIGGRAPH 2000, pages 417–424, 2000.

[BTH+03a] K. S. Bhat, C. D. Twigg, J. K. Hodgins, P. K. Khosla, Z. Popovič, and

Steven M. Seitz. Estimating Cloth Simulation Parameters From Video. In

Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Com-

puter Animation , pages 37–51, 2003.

[BTH+03b] K. S. Bhat, C. D. Twigg, J. K. Hodgins, P. K. Khosla, Z. Popovič, and

Steven M. Seitz. Estimating cloth simulation parameters from video. In

SCA ’03: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Sym-

posium on Computer animation, pages 37–51. Eurographics Association,

2003.

[CAC+02] Yung-Yu Chuang, Aseem Agarwala, Brian Curless, David Salesin, and

Richard Szeliski. Video matting of complex scenes. In Proc. of ACM

SIGGRAPH, pages 243–248, 2002.

[Can86] J. Canny. A computational approach to edge detection. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 8(6):679–698, 1986.

[CBC+01] Jonathan C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. Richard

Fright, B. C. McCallum, and T. R. Evans. Reconstruction and represen-

tation of 3D objects with radial basis functions. In Proceedings of ACM

SIGGRAPH 2001, pages 433–442, 2001.

[CCBK06] Antonio Criminisi, G. Cross, A. Blake, and Vladimir Kolmogorov. Bi-

layer Segmentation of Live Video. In Proc. IEEE Conf. on Computer

Vision and Pattern Recognition, pages 53–60, 2006.

[CCSS01] Yung-Yu Chuang, Brian Curless, David Salesin, and Richard Szeliski. A

bayesian approach to digital matting. In Proc. of IEEE Conf. on Com-

BIBLIOGRAPHY 105

puter Vision and Pattern Recognition 2001, volume 2, pages 264–271,

December 2001.

[CK01] Rodrigo L. Carceroni and Kiriakos N. Kutulakos. Multi-View Scene Cap-

ture by Surfel Sampling: From Video Streams to Non-Rigid 3D Motion,

Shape & Reflectance. In Proc. IEEE International Conference on Com-

puter Vision, pages 60–67, 2001.

[CK02] Kwang-Jin Choi and Hyeong-Seok Ko. Stable but Responsive Cloth. In

Proc. SIGGRAPH ’02, pages 604–611, 2002.

[CM02] D. Comaniciu and P. Meer. Mean shift: A robust approach toward fea-

ture space analysis. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 24(5):603–619, 2002.

[CPT03] Antonio Criminisi, Patrick Pérez, and Kentaro Toyama. Object removal

by exemplar-based inpainting. In Proc. IEEE Conf. on Computer Vision

and Pattern Recognition (2), pages 721–728, 2003.

[DH05] T. A. Davis and W. W. Hager. Row modifications of a sparse cholesky

factorization. SIAM Journal on Matrix Analysis and Applications,

26(3):621–639, 2005.

[DM96] Douglas DeCarlo and D. Metaxas. The integration of optical flow and

deformable models with applications to human face shape and motion

estimation. In Proc. of the 1996 Conference on Computer Vision and

Pattern Recognition (CVPR ’96), page 231, 1996.

[EA07] Sascha El-Abed. Hole filling in images and video sequences (to appear).

Master’s thesis, Universität des Saarlandes, 2007.

[Ebe03] D. H. Eberly. Game Physics. Morgan Kaufmann Publishers, 2003.

BIBLIOGRAPHY 106

[EF01a] Alexei A. Efros and William T. Freeman. Image quilting for texture syn-

thesis and transfer. In Proceedings of ACM SIGGRAPH 2001, pages

341–346, 2001.

[EF01b] Alexei A. Efros and William T. Freeman. Image quilting for texture syn-

thesis and transfer. In Proc. of ACM SIGGRAPH 2001, pages 341–346,

2001.

[EKS03] O. Etzmuß, Michael Keckeisen, and Wolfgang Straßer. A Fast Finite

Element Solution for Cloth Modelling. Proc. Pacific Graphics, pages

244–251, 2003.

[EL99] Alexei A. Efros and Thomas K. Leung. Texture synthesis by non-

parametric sampling. In Proc. IEEE International Conf. con Computer

Vision (2), pages 1033–1038, 1999.

[ESD03] A. Ebert, J. Schädlich, and A. Disch. Innovative Retexturing Using Co-

operative Patterns. In IASTED International Conference on Visualization,

Imaging and Image Processing (VIIP 2003), 2003.

[FDB92] Brian V. Funt, Mark S. Drew, and Michael Brockington. Recovering

shading from color images. In Proc. European Conference on Computer

Vision, pages 124–132, 1992.

[FDL04] Graham D. Finlayson, Mark S. Drew, and Cheng Lu. Intrinsic images

by entropy minimization. In Proc. European Conference on Computer

Vision, pages 582–595, 2004.

[FH04a] Hui Fang and John C. Hart. Textureshop: texture synthesis as a photo-

graph editing tool. ACM Transactions on Graphics (Proc. of ACM SIG-

GRAPH 2004), 23(3):354–359, 2004.

BIBLIOGRAPHY 107

[FH04b] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient graph-

based image segmentation. International Journal of Computer Vision,

59(2):167–181, 2004.

[FH04c] Vojtěch Franc and Václav Hlaváč. Statistical pattern recognition toolbox

for matlab. Technical Report CTU–CMP–2004–08, Center for Machine

Perception, Czech Technical University, 2004.

[FH06] Hui Fang and John C. Hart. Rototexture: Automated tools for texturing

raw video. IEEE Transactions on Visualization and Computer Graphics,

12(6):1580–1589, 2006.

[FP02] David A. Forsyth and Jean Ponce. Computer Vision: A Modern Ap-

proach. Prentice Hall, 2002.

[GGW+98] Brian K. Guenter, Cindy Grimm, Daniel Wood, Henrique S. Malvar, and

Frederic H. Pighin. Making Faces. In Proc. SIGGRAPH, pages 55–66,

1998.

[GKB03] Igor Guskov, Sergey Klibanov, and Benjamin Bryant. Trackable surfaces.

In SCA ’03: Proceedings of the 2003 ACM SIGGRAPH/Eurographics

Symposium on Computer animation, pages 251–257. Eurographics As-

sociation, 2003.

[GL96] G. H. Golub and C. F. Van Loan. Matrix Computations. The John Hop-

kins University Press, 1996.

[GMN+98] B. Galvin, B. McCane, K. Novins, D. Mason, and S. Mills. Recovering

Motion Fields: An Evaluation of Eight Optical Flow Algorithms. In

Proceedings of the British Machine Vision Conference , 1998.

BIBLIOGRAPHY 108

[GMP+04] M. Gruber, C. Michel, S. Pabst, Markus Wacker, Michael Keckeisen,

and S. Kimmerle. tcCloth - An interactive cloth modeling and animation

system. Proc. Graphiktag, pages 361–372, 2004.

[Gus02] Igor Guskov. Efficient tracking of regular patterns on non-rigid geome-

try. In International Conf. on Pattern Recognition (2), pages 1057–1060,

2002.

[GW02] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing.

Prentice Hall, 2002.

[HAR+06] Nils Hasler, Mark Asbach, Bodo Rosenhahn, Jens-Rainer Ohm, and

Hans-Peter Seidel. Physically based tracking of cloth. In Proc. Vision,

Modeling and Visualization (VMV), pages 49–56, 2006.

[HE00] D. H. House and D. E. Breen (Eds.). Cloth Modeling and Animation. AK

Peters, Ltd., Natick, MA, 2000.

[HJO+01] Aaron Hertzmann, Charles E. Jacobs, Nuria Oliver, Brian Curless, and

David Salesin. Image analogies. In Proceedings of ACM SIGGRAPH

2001, pages 327–340, 2001.

[HRA+07] Nils Hasler, Bodo Rosenhahn, Mark Asbach, Jens-Rainer Ohm, and

Hans-Peter Seidel. An analysis-by-synthesis approach to tracking of tex-

tiles. In Proc. of the International Workshop on Motion and Video Com-

puting, February 2007.

[HRS07] Nils Hasler, Bodo Rosenhahn, and Hans-Peter Seidel. Reverse engineer-

ing garments. In Proc. Mirage 2005 - Computer Vision/Computer Graph-

ics Collaboration Techniques and Applications, pages 200–211, 2007.

BIBLIOGRAPHY 109

[HS92] Robert M. Haralick and Linda G. Shapiro. Computer and Robot Vision

Volume I. Addison Wesley, 1992.

[HTF01] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of

Statistical Learning. Springer, 2001.

[HZ00] Richard Hartley and Andrew Zisserman. Multiple View Geometry in

Computer Vision. Cambridge University Press, 2000.

[HZ05] Feng Han and Song-Chun Zhu. Cloth representation by shape from shad-

ing with shading primitives. In CVPR ’05: Proceedings of the 2005 IEEE

Computer Society Conference on Computer Vision and Pattern Recogni-

tion (CVPR’05) - Volume 1, pages 1203–1210, 2005.

[HZ07] Feng Han and Song-Chun Zhu. A two-level generative model for cloth

representation and shape from shading. IEEE Transactions on Pattern

Analysis and Machine Intelligence (To appear), 29, 2007.

[IAM04] Ivo Ihrke, Lukas Ahrenberg, and Marcus Magnor. External camera cali-

bration for synchronized multi-video systems. Journal of WSCG (Inter-

national Conf. in Central Europe on Computer Graphics, Visualization

and Computer Vision), 12(1-3):537–544, January 2004.

[Ihr07] Ivo Ihrke. Reconstruction and Rendering of Time-Varying Natural Phe-

nomena (to appear). PhD thesis, Universität des Saarlandes, 2007.

[Int01] Intel Corporation. Open Source Computer Vision Library, 2001.

[KB84] D. H. U. Kochanek and R. H. Bartels. Interpolating splines with local

tension, continuity, and bias control. In Proc. SIGGRAPH ’84, pages

33–41, 1984.

BIBLIOGRAPHY 110

[KCVS98] Leif Kobbelt, Swen Campagna, Jens Vorsatz, and Hans-Peter Seidel. In-

teractive multi-resolution modeling on arbitrary meshes. In SIGGRAPH

’98: Proceedings of the 25th annual conference on Computer graphics

and interactive techniques, pages 105–114. ACM Press, 1998.

[KFW04] Michael Keckeisen, Matthias Feurer, and Markus Wacker. Tailor Tools

for Interactive Design of Clothing in Virtual Environments. In Proceed-

ings of ACM Symposium on Virtual Reality Software and Technology

(VRST), pages 182–185, 2004.

[KWT88] M. Kass, A. P. Witkin, and Demetri Terzopoulos. Snakes: Active con-

tour models. International Journal of Computer Vision, 1(4):321–331,

January 1988.

[Lau94] A. Laurentini. The visual hull concept for silhouette-based image under-

standing. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 16(2):150–162, 1994.

[LF04] Anthony Lobay and David A. Forsyth. Recovering Shape and Irradiance

Maps from Rich Dense Texton Fields. In Proc. IEEE Conf. on Computer

Vision and Pattern Recognition (1), pages 400–406, 2004.

[Lin05] Wen-Chieh Lin. A Lattice-based MRF Model for Dynamic Near-regular

Texture Tracking and Manipulation. PhD thesis, Carnegie Mellon Uni-

versity, 2005.

[LK81a] B. D. Lucas and T. Kanade. An Iterative Image Registration Technique

with an Application to Stereo Vision. In Proceedings of the Seventh In-

ternational Joint Conference on Artifical Intelligence , pages 674–679,

1981.

BIBLIOGRAPHY 111

[LK81b] B. D. Lucas and T. Kanade. An iterative image registration technique

with an application to stereo vision. In Proc. Seventh International Joint

Conference on Artificial Intelligence, pages 674–679, 1981.

[LL05] Wen-Chieh Lin and Yanxi Liu. NRT-based Texture Replacement in Real

Videos. In SIGGRAPH ’05: ACM SIGGRAPH 2005 Sketches, page 133,

2005.

[LL06] Wen-Chieh Lin and Yanxi Liu. Tracking dynamic near-regular textures

under occlusion and rapid movements. In Proc. European Conference on

Computer Vision, May 2006.

[LL07] Wen-Chieh Lin and Yanxi Liu. A Lattice-Based MRF Model for Dy-

namic Near-Regular Texture Tracking. IEEE Trans. on Pattern Analysis

and Machine Intelligence, 29(5):777–792, 2007.

[LLH04] Yanxi Liu, Wen-Chieh Lin, and James Hays. Near-regular texture anal-

ysis and manipulation. ACM Transactions on Graphics (Proc. of ACM

SIGGRAPH 2004), 23(3):368–376, 2004.

[LLW06] Anat Levin, Dani Lischinski, and Yair Weiss. A closed form solution to

natural image matting. In CVPR ’06: Proc. of the 2006 IEEE Conf. on

Computer Vision and Pattern Recognition, pages 61–68, 2006.

[Low04] David G. Lowe. Distinctive image features from scale-invariant key-

points. International Journal of Computer Vision, 60(2):91–110, 2004.

[LSS05] Yin Li, Jian Sun, and Heung-Yeung Shum. Video object cut and paste.

ACM Trans. on Graphics (Proc. of ACM SIGGRAPH 2005), 24(3):595–

600, 2005.

BIBLIOGRAPHY 112

[LSTS04] Yin Li, Jian Sun, Chi-Keung Tang, and Heung-Yeung Shum. Lazy

snapping. ACM Trans. on Graphics (Proc. of ACM SIGGRAPH 2004),

23(3):303–308, 2004.

[LTF+05] Ce Liu, Antonio Torralba, William T. Freeman, Fredo Durand, and Ed-

ward H. Adelson. Motion magnification. In ACM Trans. on Graphics

(Proc. of ACM SIGGRAPH 2005), pages 519–526, 2005.

[Met96] D. Metaxas. Physics-Based Deformable Models Applications to Com-

puter Vision, Graphics and Medical Imaging. Kluwer, November 1996.

[MOC+98] Raymond A. Morano, Cengizhan Ozturk, Robert Conn, Stephen Dubin,

Stanley Zietz, and Jonathan Nissanov. Structured Light Using Pseudo-

random Codes. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 20(3):322–327, 1998.

[MS97] S. Malassiotis and M. G. Strintzis. Model-Based Joint Motion and Struc-

ture Estimation from Stereo Images. Computer Vision and Image Under-

standing, 65(1):79–94, 1997.

[MTCK+04] N. Magnenat-Thalmann, F. Cordier, Michael Keckeisen, S. Kimmerle,

R. Klein, and J. Meseth. Simulation of Clothes for Real-time Applica-

tions. In Proc. of Eurographics, Tutorial 1, 2004.

[MTVTW05] N. Magnenat-Thalmann, P. Volino, B. Thomaszewski, and Markus

Wacker. Key techniques for interactive virtual garment simulation. In

Proc. of Eurographics, Tutorial 4, 2005.

[OCDD01] Byong Mok Oh, Max Chen, Julie Dorsey, and Frédo Durand. Image-

based modeling and photo editing. In Proceedings of ACM SIGGRAPH

2001, pages 433–442, 2001.

BIBLIOGRAPHY 113

[PFTV92] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Nu-

merical Recipes in C. Cambridge University Press, 1992.

[PH91] A. Pentland and B. Horowitz. Recovery of Nonrigid Motion and Struc-

ture. IEEE Transactions on Pattern Analysis and Machine Intelligence,

13(7):730–742, 1991.

[PH03] D. Pritchard and Wolfgang Heidrich. Cloth Motion Capture. Computer

Graphics Forum (special issue Proc. Eurographics 2003), 22(3):263–

272, 2003.

[PLF05a] J. Pilet, V. Lepetit, and P. Fua. Augmenting deformable objects in real-

time. In International Symposium on Mixed and Augmented Reality,

2005.

[PLF05b] J. Pilet, V. Lepetit, and P. Fua. Real-time non-rigid surface detection. In

Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pages

822–828, 2005.

[Pri03] D. Pritchard. Cloth parameters and motion capture. Master’s thesis,

University of British Columbia, 2003.

[PSB05] K. Patwardhan, G. Sapiro, and M. Bertalmio. Video inpainting of oc-

cluding and occluded objects. In Proc. International Conf. on Image

Processing (ICIP) (2), pages 69–72, 2005.

[PSB07] K. A. Patwardhan, G. Sapiro, and M. Bertalmio. Video inpainting under

constrained camera motion. IEEE Transactions On Image Processing,

16(2):545–553, Feb 2007.

[PSGM03] Jordi Pagès, Joaquim Salvi, Rafael Garcı́a, and Carles Matabosch.

Overview of Coded Light Projection Techniques for Automatic 3D Pro-

BIBLIOGRAPHY 114

filing. In Proc. IEEE International Conf. on Robotics and Automation

(ICRA), pages 133–138, 2003.

[RKB04] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. ”GrabCut”:

interactive foreground extraction using iterated graph cuts. ACM Trans.

on Graphics (Proc. of ACM SIGGRAPH 2004), 23(3):309–314, 2004.

[SA85] S. Suzuki and K. Abe. Topological structural analysis of digital images

by border following. Graphical Models and Image Processing (CVGIP),

30(1):32–46, 1985.

[SJTS04] Jian Sun, Jiaya Jia, Chi-Keung Tang, and Heung-Yeung Shum. Poisson

matting. ACM Transactions on Graphics (Proc. of ACM SIGGRAPH

2004), 23(3):315–321, 2004.

[SM04] Volker Scholz and Marcus A. Magnor. Cloth Motion from Optical Flow.

In Proc. Vision, Modeling and Visualization 2004, pages 117–124, Stan-

ford, USA, November 2004.

[SM06a] Volker Scholz and Marcus Magnor. Garment texture editing in monocu-

lar video sequences based on color-coded printing patterns. Research Re-

port MPI-I-2006-5-003, Max-Planck-Institut für Informatik, Stuhlsatzen-

hausweg 85, 66123 Saarbrücken, Germany, April 2006.

[SM06b] Volker Scholz and Marcus Magnor. Texture replacement of garments

in monocular video sequences. In Rendering Techniques 2006 (Proc.

Eurographics Symposium on Rendering EGSR), pages 305–312, 2006.

[SSK+05] Volker Scholz, Timo Stich, Michael Keckeisen, Markus Wacker, and

Marcus Magnor. Garment motion capture using color-coded patterns.

Computer Graphics Forum (Proc. Eurographics EG ’05), 24(3):439–

448, 2005.

BIBLIOGRAPHY 115

[SSY+04] Heung-Yeung Shum, Jian Sun, Shuntaro Yamazaki, Yin Li, and Chi-

Keung Tang. Pop-up light field: An interactive image-based modeling

and rendering system. ACM Transactions on Graphics, 23(2):143–162,

2004.

[ST06] Peter Sand and Seth J. Teller. Particle video: Long-range motion esti-

mation using point trajectories. In Proc. IEEE Conf. on Computer Vision

and Pattern Recognition (2), pages 2195–2202, 2006.

[Tau95] Gabriel Taubin. A signal processing approach to fair surface design. In

Proc. SIGGRAPH ’95, pages 351–358, 1995.

[TB02] Lorenzo Torresani and Christoph Bregler. Space-time tracking. In Proc.

European Conference on Computer Vision (1), pages 801–812, 2002.

[Ter84] Demetri Terzopoulos. Multiresolution computation of visible surface rep-

resentations. PhD thesis, MIT, Cambridge, MA, 1984.

[Ter88] Demetri Terzopoulos. The computation of visible-surface representa-

tions. IEEE Transactions on Pattern Analysis and Machine Intelligence,

10(4):417–438, 1988.

[TFA05] Marshall F. Tappen, William T. Freeman, and Edward H. Adelson. Re-

covering intrinsic images from a single image. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 27(9):1459–1472, 2005.

[TH04] Lorenzo Torresani and Aaron Hertzmann. Automatic non-rigid 3d mod-

eling from video. In Proc. European Conference on Computer Vision (2),

pages 299–312, 2004.

BIBLIOGRAPHY 116

[TLR01] Yanghai Tsin, Yanxi Liu, and Visvanathan Ramesh. Texture replacement

in real images. In Proc. IEEE Conf. on Computer Vision and Pattern

Recognition (2), pages 539–544, 2001.

[TM91] Demetri Terzopoulos and D. Metaxas. Dynamic 3D Models with Lo-

cal and Global Deformations: Deformable Superquadrics. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 13(7):703–714,

1991.

[TPBF87] Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. Elasti-

cally deformable models. In SIGGRAPH ’87: Proceedings of the 14th

annual conference on Computer graphics and interactive techniques,

pages 205–214, 1987.

[TYAB01] Lorenzo Torresani, Danny B. Yang, Eugene J. Alexander, and Christoph

Bregler. Tracking and Modeling Non-Rigid Objects with Rank Con-

straints. In IEEE Conf. on Computer Vision and Pattern Recognition

(1), pages 493–500, 2001.

[VBR+99] S. Vedula, S. Baker, P. Rander, R. Collins, and T. Kanade. Three-

Dimensional Scene Flow. In Proceedings of the 7th International Con-

ference on Computer Vision , pages 722–729, 1999.

[VSA03] V. Vezhnevets, V. Sazonov, and A. Andreeva. A Survey on Pixel-Based

Skin Color Detection Techniques. In Proc. Graphicon 2003, pages 85–

92, 2003.

[Wah90] G. Wahba. Spline Models for Observational Data. SIAM, 1990.

[WBC+05] Jue Wang, Pravin Bhat, R. Alex Colburn, Maneesh Agrawala, and

Michael F. Cohen. Interactive video cutout. ACM Trans. on Graphics

(Proc. of ACM SIGGRAPH 2005), 24(3):585–594, 2005.

BIBLIOGRAPHY 117

[WC05] Jue Wang and Michael F. Cohen. An iterative optimization approach for

unified image segmentation and matting. In ICCV ’05: Proc. of the Tenth

IEEE International Conf. on Computer Vision, pages 936–943, 2005.

[WCF07] Ryan White, Keenan Crane, and David A. Forsyth. Capturing and an-

imating occluded cloth. ACM Trans. on Graphics (Proc. of ACM SIG-

GRAPH 2007) (to appear), 2007.

[WF06] R. White and D.A. Forsyth. Retexturing single views using texture and

shading. In European Conference on Computer Vision, volume LNCS

3954, pages 70–81. Springer, 2006.

[WFV06] Ryan White, David A. Forsyth, and Jai Vasanth. Capturing real folds

in cloth. Technical report, EECS Department, University of California,

Berkeley, 2006.

[Whi05] Ryan White. Capturing cloth. Master’s thesis, University of California,

Berkeley, 2005.

[Wik07] Wikipedia. George Méliès. http://en.wikipedia.org, 2007.

[WL00] Li-Yi Wei and Marc Levoy. Fast texture synthesis using tree-structured

vector quantization. In Proc. of ACM SIGGRAPH 2000, pages 479–488,

2000.

[WLF05] Ryan White, Anthony Lobay, and David A. Forsyth. Cloth capture. In

SIGGRAPH ’05: ACM SIGGRAPH 2005 Sketches, 2005.

[Woo80] Robert J. Woodham. Photometric method for determining surface orien-

tation from multiple images. Optical Engineering, 19(1):139–144, 1980.

BIBLIOGRAPHY 118

[WSI04] Yonatan Wexler, Eli Shechtman, and Michal Irani. Space-time video

completion. Proc. IEEE Conf. on Computer Vision and Pattern Recogni-

tion, 01:120–127, 2004.

[WSI07] Yonatan Wexler, Eli Shechtman, and Michal Irani. Space-time comple-

tion of video. IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, 29(3):463–476, 2007.

[WTXC04] Jue Wang, Bo Thiesson, Yingqing Xu, and Michael F. Cohen. Image and

video segmentation by anisotropic kernel mean shift. In Proc. European

Conference on Computer Vision (2), pages 238–249, 2004.

[ZCS02] Li Zhang, Brian Curless, and Steven M. Seitz. Rapid Shape Acquisition

Using Color Structured Light and Multi-pass Dynamic Programming. In

The 1st IEEE International Symposium on 3D Data Processing, Visual-

ization, and Transmission, pages 24–36, June 2002.

[ZFGH05] Steve Zelinka, Hui Fang, Michael Garland, and John C. Hart. Interactive

material replacement in photographs. In Proc. Graphics Interface, pages

227–232, 2005.

[Zha99] Zhengyou Zhang. Flexible Camera Calibration by Viewing a Plane from

Unknown Orientations. In Proc. IEEE International Conference on Com-

puter Vision, pages 666–673, 1999.

[ZTCS99] Ruo Zhang, Ping-Sing Tsai, James Edwin Cryer, and Mubarak Shah.

Shape from shading: A survey. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 21(8):690–706, 1999.

