
Signal Processing Methods for

Beat Tracking, Music Segmentation,

and Audio Retrieval

Peter M. Grosche

Max-Planck-Institut für Informatik

Saarbrücken, Germany

Dissertation zur Erlangung des Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)
der Naturwissenschaftlich-Technischen Fakultät I

der Universität des Saarlandes, 2012

http://www.eg.org
http://diglib.eg.org


Dekan / Dean:

Univ.-Prof. Mark Groves
Universität des Saarlandes, Saarbrücken, Germany

Datum des Kolloquiums / Date of Defense:

09. November 2012 / November 9th, 2012
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Abstract

The goal of music information retrieval (MIR) is to develop novel strategies and techniques
for organizing, exploring, accessing, and understanding music data in an efficient manner.
The conversion of waveform-based audio data into semantically meaningful feature repre-
sentations by the use of digital signal processing techniques is at the center of MIR and
constitutes a difficult field of research because of the complexity and diversity of music sig-
nals. In this thesis, we introduce novel signal processing methods that allow for extracting
musically meaningful information from audio signals. As main strategy, we exploit musi-
cal knowledge about the signals’ properties to derive feature representations that show a
significant degree of robustness against musical variations but still exhibit a high musical
expressiveness. We apply this general strategy to three different areas of MIR: Firstly, we
introduce novel techniques for extracting tempo and beat information, where we particu-
larly consider challenging music with changing tempo and soft note onsets. Secondly, we
present novel algorithms for the automated segmentation and analysis of folk song field
recordings, where one has to cope with significant fluctuations in intonation and tempo as
well as recording artifacts. Thirdly, we explore a cross-version approach to content-based
music retrieval based on the query-by-example paradigm. In all three areas, we focus on
application scenarios where strong musical variations make the extraction of musically
meaningful information a challenging task.

Zusammenfassung

Ziel der automatisierten Musikverarbeitung ist die Entwicklung neuer Strategien und Tech-
niken zur effizienten Organisation großer Musiksammlungen. Ein Schwerpunkt liegt in der
Anwendung von Methoden der digitalen Signalverarbeitung zur Umwandlung von Audio-
signalen in musikalisch aussagekräftige Merkmalsdarstellungen. Große Herausforderungen
bei dieser Aufgabe ergeben sich aus der Komplexität und Vielschichtigkeit der Musiksi-
gnale. In dieser Arbeit werden neuartige Methoden vorgestellt, mit deren Hilfe musikalisch
interpretierbare Information aus Musiksignalen extrahiert werden kann. Hierbei besteht ei-
ne grundlegende Strategie in der konsequenten Ausnutzung musikalischen Vorwissens, um
Merkmalsdarstellungen abzuleiten die zum einen ein hohes Maß an Robustheit gegenüber
musikalischen Variationen und zum anderen eine hohe musikalische Ausdruckskraft besit-
zen. Dieses Prinzip wenden wir auf drei verschieden Aufgabenstellungen an: Erstens stellen
wir neuartige Ansätze zur Extraktion von Tempo- und Beat-Information aus Audiosignalen
vor, die insbesondere auf anspruchsvolle Szenarien mit wechselnden Tempo und weichen
Notenanfängen angewendet werden. Zweitens tragen wir mit neuartigen Algorithmen zur
Segmentierung und Analyse von Feldaufnahmen von Volksliedern unter Vorliegen großer
Intonationsschwankungen bei. Drittens enwickeln wir effiziente Verfahren zur inhaltsba-
sierten Suche in großen Datenbeständen mit dem Ziel, verschiedene Interpretationen eines
Musikstückes zu detektieren. In allen betrachteten Szenarien richten wir unser Augenmerk
insbesondere auf die Fälle in denen auf Grund erheblicher musikalischer Variationen die
Extraktion musikalisch aussagekräftiger Informationen eine große Herausforderung dar-
stellt.
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Chapter 1

Introduction

Music plays an exceptional role in our society. The everyday lives of billions of people
worldwide are notably affected by the omnipresence of music, e. g., by its widespread use
in mass media, its ubiquitous presence in public places, and its essential role in enter-
tainment or social activities such as music creation and dance. In the last decades, the
way how music is produced, stored, accessed, distributed, and consumed underwent a
radical change. Nowadays, large music collections containing millions of audio documents
in digital form are at any moment accessible from anywhere around the world. Personal
music collections easily comprise ten thousands of songs adding up to over 1000 hours of
playback time. Stored on portable audio devices, personal music collections have become
the daily companion of many people. Such abundance of digital music content, together
with the relative ease of access, not only fosters that nowadays more music is consumed
than ever before, but, in turn, also requires novel strategies and modes of access that allow
users to organize and explore large music collections as well as to discover novel songs and
artists in a convenient and enjoyable way. As a consequence, information technology is
now deeply interwoven with almost every aspect of music consumption and production.

One main goal in the field of music information retrieval (MIR) is to develop tools that
enrich the experience of users when interacting with music—be it for music production,
music organization, music consumption, or music analysis. Intensive research has been
conducted with the goal to develop automated methods for extracting musically meaning-
ful information from music in all its different facets. As audio is the most natural form of
music, the conversion of waveform-based audio data into semantically meaningful feature
representations by the use of digital signal processing techniques is at the center of MIR.
Music signal processing constitutes a difficult field of research because of the complexity
and diversity of music signals. When dealing with specific audio domains such as speech
or music, the understanding of acoustic, linguistic, and musical properties is of foremost
importance for extracting meaningful and semantically interpretable information [125].
For example, language models play an outstanding role in speech processing and are an
essential part in modern speech recognition systems. Similarly, music signals are by no
means chaotic, or random. Quite contrary, music exhibits strong regularities, is highly
structured, and follows certain “rules”. As a result, when analyzing music signals, one has
to account for various musical dimensions such as pitch, harmony, timbre, and rhythm.

1



2 CHAPTER 1. INTRODUCTION

Exploiting musical knowledge and model assumptions, various mid-level representations
have been proposed that robustly capture and reveal musically meaningful information
concealed in the audio waveform.

One key aspect of music, however, is that the rules are not strict but leave a lot of
room for artistic freedom in the realization by a performer. In the case of strong musical
variations, the model assumptions are often not completely satisfied or even violated. In
such cases, the extraction of musically meaningful information becomes a very challenging
problem. For example, the aspects of tempo and beat are of fundamental importance
for understanding and interacting with music [139]. It is the beat, the steady pulse that
drives music forward and provides the temporal framework of a piece of music [166].
Intuitively, the beat can be described as a sequence of perceived pulses that are equally
spaced in time. The beat corresponds to the pulse a human taps along when listening
to music [112]. The term tempo then refers to the rate of the pulse. When listening
to a piece of music, most humans are able to tap to the musical beat without difficulty.
Exploiting knowledge about beat and tempo one can employ signal processing methods
for transferring the cognitive process into an automated beat tracking system. Typically,
such a system can cope with modern pop and rock music with a strong beat and steady
tempo, where the model assumptions are typically satisfied. For classical music, however,
the rules are less strictly followed. Musicians do not play mechanically at a fixed tempo,
but form their interpretation of a music piece by constantly changing the tempo, slowing
down at certain positions, or accelerating to create tension. As a consequence, extracting
the beat locations from highly expressive performances of, e.g., romantic piano music is a
very challenging task.

Another musical key concept is pitch. Pitch is a perceptual attribute which allows
the ordering of sounds on a frequency-related scale extending from low to high [101;
103]. Exploiting the fact that most Western music is based on the equal-tempered scale,
signal processing approaches allow for decomposing the signals into musically meaningful
logarithmically spaced frequency bands corresponding to the pitch scale [123]. Exploit-
ing such musical knowledge on the frequency content, one again relies on the fact that
the musicians stick to the rules—an unrealistic assumption. For example, in the case of
field recordings of folk songs, one typically has to deal with recordings performed by non-
professional elderly singers that have significant problems with the intonation, fluctuating
with their voices even over several semitones throughout a song. In that scenario, imposing
strict pitch model assumptions results in the extraction of meaningless audio features and
requires a careful adaption of the model assumptions to the actual musical content. The
main challenge lies in incorporating robustness to musical variations without sacrificing
the musical expressiveness of the feature representations.

The superordinate goal of this thesis is to introduce novel music signal processing meth-
ods that particularly address the key characteristics of music signals. Firstly, we exploit
knowledge about the musical properties of the signals to derive compact and precise fea-
ture representations that reveal musically meaningful and highly expressive information.
Furthermore, in this thesis, we particularly focus on the challenging cases where musical
variations lead to not completely satisfied or even violated model assumptions. As main
goal, we introduce compact feature representations that show a significantly increased
robustness against musical variations but still exhibit a very high musical expressiveness.
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1.1 Contributions

This thesis introduces various music signal processing approaches that contribute to three
areas of MIR. Firstly, Part I of this thesis deals with the extraction of tempo and beat
information in particular for complex music with changing tempo and soft note onsets.
Secondly, Part II contributes to the segmentation and performance analysis of field record-
ings of folk songs that are performed by singers with serious intonation problems under
poor recording conditions. Thirdly, Part III of this thesis covers content-based music
retrieval following the query-by-example paradigm. In particular, we address scalability
issues in a cross-version retrieval scenario where strong musical variations occur.

In Part I of the thesis, we address the aspects of tempo and beat. Because tempo and beat
are of fundamental musical importance, the automated extraction of this information from
music recordings is a central topic in the field of MIR. In recent years, various different
algorithmic solutions for automatically extracting beat position from audio recordings
have been proposed that can handle modern pop and rock music with a strong beat and
steady tempo. For non-percussive music with soft note onsets, however, the extraction of
beat and tempo information becomes a difficult problem. Even more challenging becomes
the detection of local periodic patterns in the presence of tempo changes as typically
occurring in highly expressive performances of, e.g., romantic piano music. In Chapter 2,
as first contribution of Part I, we introduce a novel mid-level representation that captures
musically meaningful local pulse information even for the case of music exhibiting tempo
changes. Our main idea is to derive for each time position a sinusoidal kernel that best
explains the local periodic nature of a previously extracted (possibly very noisy) note onset
representation. Then, we employ an overlap-add technique accumulating all these kernels
over time to obtain a single function that reveals the predominant local pulse (PLP). Our
concept introduces a high degree of robustness to noise and distortions resulting from
weak and blurry onsets. Furthermore, the resulting PLP curve reveals the local pulse
information even in the presence of continuous tempo changes and indicates a kind of
confidence in the periodicity estimation. We show how our PLP concept can be used as a
flexible tool for enhancing state-of-the-art tempo estimation and beat tracking procedures.
The practical relevance is demonstrated by extensive experiments based on challenging
music recordings of various genres.

As it turns out, our PLP concept is capable of capturing continuous tempo changes as
implied by ritardando or accelerando. However, especially in the case of expressive per-
formances, current beat tracking approaches still have significant problems to accurately
capture local tempo deviations and beat positions. In Chapter 3, as second contribution
of Part I, we introduce a novel evaluation framework for detecting critical passages in a
piece of music that are prone to tracking errors. Our idea is to look for consistencies in
the beat tracking results over multiple performances of the same underlying piece. Our
investigation does not analyze beat tracking performance for entire recordings or even
collections of recordings, but provides information about critical passages within a given
piece where the tracking errors occur. As another contribution, we further classify the
critical passages by specifying musical properties of certain beats that frequently evoke
tracking errors. Finally, considering three conceptually different beat tracking procedures,
we conduct a case study on the basis of a challenging test set of five Chopin Mazurkas
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containing in average over 50 performances for each piece. Our experimental results not
only make the limitations of state-of-the-art beat trackers explicit but also deepen the
understanding of the underlying music material.

The tempo and in particular the local changes of the tempo are a key characteristic of a
music performance. Instead of playing mechanically musicians speed up at some places
and slow down at others in order to shape a piece of music. Furthermore, local changes
of the tempo indicate boundaries of structural elements of music recordings. As indicated
above, the detection of locally periodic patterns becomes a challenging problem in the case
that the music recording reveals significant tempo changes. Furthermore, the existence of
various pulse levels such as measure, tactus, and tatum often makes the determination of
absolute tempo problematic. In Chapter 4, as third contribution of Part I, we generalize
the concept of tempograms encoding local tempo information using two different methods
for periodicity analysis. In particular, we avoid the error-prone determination of an explicit
tempo value. As a result, the obtained mid-level representations are highly robust to
extraction errors. As further contribution, we introduce the concept of cyclic tempograms.
Similar to the well-known chroma features where pitches differing by octaves are identified,
we identify tempi differing by a power of two to derive the cyclic tempograms. The
resulting mid-level representation robustly reveals local tempo characteristics of music
signals in a compact form and is invariant to changes in the pulse level. In summary, the
novel concepts introduced in Part I of the thesis enhance state-of-the-art in beat tracking
and tempo estimation in particular in the case of complex music with significant musical
variations and give a better understanding of musical reasons for the shortcomings of
current solutions.

In Part II of this thesis, we are dealing with applications of music signal processing to
automatically segmenting field recordings of folk songs. Generally, a folk song is referred
to as a song that is sung by the common people of a region or culture during work
or social activities. As a result, folk music is closely related to the musical culture of
a specific nation or region. Even though folk songs have been passed down mainly by
oral tradition, most musicologists study the relation between folk songs on the basis of
score-based transcriptions. Due to the complexity of audio recordings, once having the
transcriptions, the original recorded tunes are often no longer considered, although they
still may contain valuable information. It is the object of this part of the thesis to indicate
how the original recordings can be made more easily accessible for folk song researches and
listeners by bridging the gap between the symbolic and the audio domain. In Chapter 5, as
first contribution of Part II, we introduce an automated approach for segmenting folk song
recordings that consist of several repetitions of the same tune into its constituent stanzas.
As main idea, we introduce a reference-based segmentation procedure that exploits the
existence of a symbolically given transcription of an idealized stanza. Performed by elderly
non-professional singers under poor recording conditions, the main challenge arises from
the fact that most singers often deviate significantly from the expected pitches and have
serious problems with the intonation. Even worse, their voices often fluctuate by several
semitones downwards or upwards across the various stanzas of the same recording. As one
main contribution, we introduce a combination of robust audio features along with various
cleaning and audio matching strategies to account for such deviations and inaccuracies in
the audio recordings. As it turns out, the reference-based segmentation procedure yields
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accurate segmentation results even in the presence of strong deviations. However, one
drawback of this approach is that it crucially depends on the availability of a manually
generated reference transcription.

In Chapter 6, as second contribution of Part II, we introduce a reference-free segmentation
procedure, which is driven by an audio thumbnailing procedure based on self similarity
matrices (SSMs). The main idea is to identify the most repetitive segment in a given
recording which can then take over the role of the reference transcription in the segmen-
tation procedure. As further contribution, for handling the strong temporal and spectral
variations occurring in the field recordings, we introduce various enhancement strategies to
absorb a high degree of these deviations and deformations already on the feature and SSM
level. Our experiments show that the reference-free segmentation results are comparable
to the ones obtained by the reference-based method.

The generated relations and structural information can then be utilized to create novel
navigation and retrieval interfaces which assist folk song researchers or listeners in con-
veniently accessing, comparing, and analyzing the audio recordings. Furthermore, the
generated segmentations can also be used to automatically locate and capture interesting
performance aspects that are lost in the notated form of the song. As third contribu-
tion of Part II, in Chapter 7, various techniques are presented that allow for analyzing
temporal and melodic variations within the stanzas of the recorded folk song material.
It is important to note that variabilities and inconsistencies may be, to a significant ex-
tent, properties of the repertoire and not necessarily errors of the singers. To measure
such deviations and variations within the acoustic audio material, we use a multimodal
approach by exploiting the existence of a symbolically given transcription of an idealized
stanza. Then, a novel method is proposed that allows for capturing temporal and melodic
characteristics and variations of the various stanzas of a recorded song in a compact and
semantically interpretable matrix representation, which we refer to as chroma template.
In particular, the chroma templates reveal consistent and inconsistent aspects across the
various stanzas of a recorded song in the form of an explicit and semantically interpretable
matrix representation. Altogether, our framework allows for capturing differences in vari-
ous musical dimensions such as tempo, key, tuning, and melody. As further contribution,
we present an application of an user interface that assists folk song researchers in conve-
niently accessing, listening, and in particular comparing the individual stanzas of a given
field recording. In combination, the techniques presented in Part II of the thesis make the
actual field recordings more accessible to folk song researcher and constitute a first step
towards including the actual recordings and the enclosed performance aspects into folk
song research.

In Part III of the thesis, we are dealing with content-based music retrieval. The rapidly
growing corpus of digital audio material requires novel retrieval strategies for exploring
large music collections and discovering new music. Traditional retrieval strategies rely on
metadata that describe the actual audio content in words. In the case that such textual
descriptions are not available, one requires content-based retrieval strategies which only
utilize the raw audio material. In Chapter 8, we give an overview on content-based re-
trieval strategies that follow the query-by-example paradigm: given an audio fragment as
query, the task is to retrieve all documents that are somehow similar or related to the
query from a music collection. Such strategies can be loosely classified according to their



6 CHAPTER 1. INTRODUCTION

specificity, which refers to the degree of similarity between the query and the database
documents. High specificity refers to a strict notion of similarity, whereas low specificity
to a rather vague one. Furthermore, we introduce a second classification principle based
on granularity, where one distinguishes between fragment-level and document-level re-
trieval. Using a classification scheme based on specificity and granularity, we identify
various classes of retrieval scenarios, which comprise audio identification, audio match-
ing, and version identification. For these three important classes, we give an overview
of representative state-of-the-art approaches, which also illustrate the sometimes subtle
but crucial differences between the retrieval scenarios. Finally, we give an outlook on an
user-oriented retrieval system, which combines the various retrieval strategies in a unified
framework.

Furthermore, as main technical contribution of Part III, we deal with the question on how
to accelerate cross-version music retrieval. The general goal of cross-version music retrieval
is to identify all versions of a given piece of music by means of a short query audio fragment.
In particular, we address the fundamental issue on how to build efficient retrieval systems
of lower specificity by employing indexing procedures that still exhibit a high degree of
robustness against musical variations in the versions. In Chapter 9, we investigate to
which extent well-established audio fingerprints, which aim at identifying a specific audio
recording, can be modified to also deal with more musical variations between different
versions of a piece of music. To this end, we exploit musical knowledge to replace the
traditional peak fingerprints based on a spectrogram by peak fingerprints based on other
more “musical” feature representations derived from the spectrogram. Our systematic
experiments show that such modified peak fingerprints allow for a robust identification of
different versions and performances of the same piece of music if the query length is at
least 15 seconds. This indicates that highly efficient audio fingerprinting techniques can
also be applied to accelerate mid-specific retrieval tasks such as audio matching or cover
song identification.

In Chapter 10, we investigate how cross-version retrieval can be accelerated by employing
index structures that are based on a shingling approach. To this end, the audio material is
split up into small overlapping shingles that consist of short chroma feature subsequences.
These shingles are indexed using locality sensitive hashing. Our main idea is to use a
shingling approach, where an individual shingle covers a relatively large portion of the
audio material (between 10 and 30 seconds). Compared to short shingles, such large
shingles have a higher musical relevance so that a much lower number of shingles suffices
to characterize a given piece of music. However, increasing the size of a shingle comes
at the cost of increasing the dimensionality and possibly loosing robustness to variations.
We systematically investigate the delicate trade-off between the query length, feature
parameters, shingle dimension, and index settings. In particular, we show that large
shingles can still be indexed using locality sensitive hashing with only a small degradation
in retrieval quality. In summary, the contributions of Part III of the thesis give valuable
insights and indicate solutions that are of fundamental importance for building efficient
cross-version retrieval systems that scale to millions of songs and at the same time exhibit
a high degree of robustness against musical variations.
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[163] Joan Serrà, Meinard Müller, Peter Grosche, and Josep Lluis Arcos. Unsupervised detection of
music boundaries by time series structure features. In Proceedings of the AAAI International
Conference on Artificial Intelligence, Toronto, Ontario, Canada, 2012.

[81] Peter Grosche, Björn Schuller, Meinard Müller, and Gerhard Rigoll. Automatic transcription
of recorded music. Acta Acustica united with Acustica, 98(2):199–215, 2012.

[93] Nanzhu Jiang, Peter Grosche, Verena Konz, and Meinard Müller. Analyzing chroma feature
types for automated chord recognition. In Proceedings of the 42nd AES Conference on
Semantic Audio, Ilmenau, Germany, 2011.

[129] Meinard Müller, Peter Grosche, and Nanzhu Jiang. A segment-based fitness measure for
capturing repetitive structures of music recordings. In Proceedings of the 12th International
Conference on Music Information Retrieval (ISMIR), pages 615–620, Miami, FL, USA, 2011.

[156] Hendrik Schreiber, Peter Grosche, and Meinard Müller. A re-ordering strategy for acceler-
ating index-based audio fingerprinting. In Proceedings of the 12th International Conference
on Music Information Retrieval (ISMIR), pages 127–132, Miami, FL, USA, 2011.

[78] Peter Grosche, Meinard Müller, and Frank Kurth. Tempobasierte Segmentierung von
Musikaufnahmen. In Proceedings of the 36th Deutsche Jahrestagung für Akustik (DAGA),
Berlin, Germany, 2010.

[49] Sebastian Ewert, Meinard Müller, and Peter Grosche. High resolution audio synchronization
using chroma onset features. In Proceedings of IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), pages 1869–1872, Taipei, Taiwan, 2009.



Part I

Beat Tracking and Tempo

Estimation



10 CHAPTER 1. INTRODUCTION



Chapter 2

Predominant Local Pulse

Estimation

Most approaches to tempo estimation and beat tracking proceed in two steps. In the
first step, positions of note onsets within the music signal are estimated. Here, most
approaches capture changes of the signal’s energy or spectrum and derive a so-called
novelty curve. The peaks of such a curve yield good indicators for note onset candidates [7;
23; 189]. In the second step, the novelty curve is analyzed to detect reoccurring patterns
and quasi-periodic pulse trains [154; 146; 31; 44]. For non-percussive music with soft
note onsets, however, novelty curves provide noisy and irregular information about onset
candidates, which makes the extraction of beat and tempo information a difficult problem.
Even more challenging becomes the detection of local periodic patterns in the presence of
tempo changes.

In this chapter, we introduce a novel approach that allows for a robust extraction of mu-
sically meaningful local pulse information even for the case of complex music. Intuitively
speaking, our idea is to construct a mid-level representation that explains the local periodic
nature of a given (possibly very noisy) onset representation without determining explicit
note onset positions. More precisely, starting with a novelty curve, we determine for each
time position a sinusoidal kernel that best captures the local peak structure of the novelty
curve. Since these kernels localize well in time, even continuous tempo variations and local
changes of the pulse level can be handled. Now, instead of looking at the local kernels
individually, our crucial idea is to employ an overlap-add technique by accumulating all
local kernels over time. As a result, one obtains a single curve that can be regarded as a
local periodicity enhancement of the original novelty curve. Revealing predominant local
pulse (PLP) information, this curve is referred to as PLP curve.

Our PLP concept yields a powerful mid-level representation that can be applied as a
flexible tool for various music analysis tasks. In particular, we discuss in detail how the
PLP concept can be applied for improving on tempo estimation as well as for validating
the local tempo estimates. Furthermore, we show that state-of-the-art beat trackers can be
improved when using a PLP-enhanced novelty representation. Here, one important feature
of our work is that we particularly consider music recordings that reveal changes in tempo,
whereas most of the previous tempo estimation and beat tracking approaches assume a

11
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(more or less) constant tempo throughout the recording. As it turns out, our PLP concept
is capable of capturing continuous tempo changes as implied by ritardando or accelerando.
However, as our approach relies on the assumption of a locally quasi-periodic behavior of
the signal, it reaches its limits in the presence of strong local tempo distortions as found
in highly expressive music (e. g. romantic piano music). To demonstrate the practical
relevance of our PLP concept, we have conducted extensive experiments based on several
music datasets consisting of 688 recordings amounting to more than 36 hours of annotated
audio material. The datasets cover various genres including popular music, Jazz music
and classical music.

The remainder of this chapter is organized as follows. In Section 2.1, we review re-
lated work and discuss relevant state-of-the-art concepts. In Section 2.2, we then give an
overview of our PLP concept. Subsequently, we elaborate on the mathematical details
of our variant of a novelty curve (Section 2.3), tempograms (Section 2.4), the determi-
nation of the optimal periodicity kernels (Section 2.5), and the computation of the PLP
curves (Section 2.6). Then, we discuss general properties of PLP curves (Section 2.7)
and describe an iterative approach (Section 2.8). The applications to tempo estimation
and beat tracking as well as the corresponding experiments are discussed in Section 2.9.
Conclusions of this chapter are given in Section 2.10.

2.1 Related Work

In general, the beat is a perceptual phenomenon and perceptual beat times do not neces-
sarily coincide with physical beat times [42]. Furthermore, the perception of beats varies
between listeners. However, beat positions typically go along with note onsets or percus-
sive events. Therefore, in most tempo and beat tracking approaches, the first step consists
in locating such events in the given signal—a task often referred to as onset detection or
novelty detection. To determine the physical starting times of the notes occurring in the
music recording, the general idea is to capture changes of certain properties of the signal
to derive a novelty curve. The peaks of this curve indicate candidates for note onsets.

Many different methods for computing novelty curves have been proposed, see [7; 23;
39] for an overview. When playing a note, the onset typically goes along with a sudden
increase of the signal’s energy. In the case of a pronounced attack phase, note onset
candidates may be determined by locating time positions, where the signal’s amplitude
envelope starts to increase [7; 67]. Much more challenging, however, is the detection of
onsets in the case of non-percussive music, where one has to deal with soft onsets or
blurred note transitions. This is often the case for classical music dominated by string
instruments. As a result, more refined methods have to be used for computing a novelty
curve, e. g., by analyzing the signal’s spectral content [88; 7; 189; 50], pitch [88; 189;
24], harmony [47; 61], or phase [88; 7; 86]. To handle the variety of signal types, a
combination of novelty curves and signal features can improve the detection accuracy [88;
35; 189; 169; 50]. Also supervised classification approaches were proposed [108; 50].

Furthermore, in complex polyphonic mixtures of music, simultaneously occurring events of
high intensities lead to masking effects that prevent any observation of an energy increase
of a low intensity onset. To circumvent these masking effects, detection functions were
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proposed that analyze the signal in a bandwise fashion [100] to extract transients occurring
in certain frequency regions of the signal. As a side-effect of a sudden energy increase,
there appears an accompanying broadband noise burst in the signal’s spectrum. This effect
is mostly masked by the signal’s energy in lower frequency regions but well detectable in
the higher frequency regions [118] of the spectrum. Here, logarithmic compression [100]

and spectral whitening [167] are techniques for enhancing the high-frequency information.
Some of these approaches are employed for computing our novelty curves, see Section 2.3.

To derive the beat period and the tempo from a novelty curve, one strategy is to explicitly
determine note onset positions and then to reveal the structure of these events. For
the selection of onset candidates, one typically employs peak picking strategies based on
adaptive thresholding [7]. Each pair of note onset positions then defines an inter-onset-
interval (IOI). Considering suitable histograms or probabilities of the occurring IOIs, one
may derive hypotheses on the beat period and tempo [40; 37; 67; 159; 33]. The idea is that
IOIs frequently appear at integer multiples and fractions of the beat period. Similarly,
one may compute the autocorrelation of the extracted onset times [61] to derive the beat
period. The drawback of these approaches is that they rely on an explicit localization of
a discrete set of note onsets—a fragile and error-prone step. In particular, in the case
of weak and blurry onsets the selection of the relevant peaks of the novelty curve that
correspond to true note onsets becomes a difficult or even infeasible problem.

Avoiding the explicit extraction of note onset, the novelty curves can directly be ana-
lyzed with respect to reoccurring or quasi-periodic patterns. Here, generally speaking,
one can distinguish between three different methods for measuring periodicities. The au-
tocorrelation method allows for detecting periodic self-similarities by comparing a nov-
elty curve with time-shifted copies [31; 44; 145; 146; 160; 36]. Another widely used
method is based on a bank of comb filter resonators, where a novelty curve is compared
with templates consisting of equally spaced spikes representing various frequencies [102;
154]. Similarly, one can use a short-time Fourier transform [146; 147; 187] or a non-
stationary Gabor transform [89] to derive a frequency representation of the novelty curve.
Here, the novelty curve is compared with sinusoidal templates representing specific fre-
quencies. Each of the methods reveals periodicities of the underlying novelty curve, from
which one can estimate the tempo or beat. The characteristics of the periodicities typi-
cally change over time and can be visualized by means of spectrogram-like representations
referred to as tempogram [21], rhythmogram [92], or beat spectrogram [54].

More challenging becomes the detection of periodic patterns in the case that the music
recordings reveal significant tempo changes. This often occurs in performances of classical
music as a result of ritardandi, accelerandi, fermatas, and so on [37]. Furthermore, the
extraction problem is complicated by the fact that the notions of tempo and beat are
ill-defined and highly subjective due to the complex hierarchical structure of rhythm [139;
66]. For example, there are various levels that contribute to the human perception of
tempo and beat. Typically, previous work focuses on determining musical pulses on the
tactus (the foot tapping rate or beat [112]) level [44; 146; 31], but only few approaches exist
for analyzing the signal on the measure level [61; 102; 148; 137] or finer tatum level [159;
141; 34]. The tatum or temporal atom refers to the fastest repetition rate of musically
meaningful accents occurring in the signal [13]. Various approaches have been suggested
that simultaneously analyze different pulse levels [148; 160; 27; 68; 102].
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Figure 2.1: Flowchart of the steps involved in the PLP computation.

2.2 Overview of the PLP Concept

We now give an overview of the steps involved in the PLP computation, see Figure 2.1
for a schematic overview and Figure 2.2 for an example. The input of our procedure
consists of a spike-like novelty curve, see Figure 2.2a. In the first step, we derive a time-
pulse representation, referred to as tempogram, by performing a local spectral analysis
of the novelty curve, see Figure 2.2b. Here, we avoid the explicit determination of note
onsets, which generally is an error-prone and fragile step. Then, from the tempogram,
we determine for each time position the sinusoidal periodicity kernel that best explains
the local periodic nature of the novelty curve in terms of period (frequency) and timing
(phase), see Figure 2.2c. Since there may be a number of outliers among these kernels,
one usually obtains unstable information when looking at these kernels in a one-by-one
fashion. Therefore, as one main idea of our approach, we use an overlap-add technique
by accumulating all these kernels over time to obtain a single curve, see Figure 2.3b. In
a final step, we apply a half-wave rectification (only considering the positive part of the
curve) to obtain the mid-level representation we refer to as predominant local pulse (PLP)
curve, see Figure 2.3c. As it turns out, such PLP curves are robust to outliers and reveal
musically meaningful periodicity information even when starting with relatively poor onset
information.

2.3 Novelty Curve

Our PLP concept is based on a novelty curve as typically used for note onset detection
tasks. We now describe the approach for computing novelty curves used in our experi-
ments. In our variant, we combine ideas and fundamental concepts of various state-of-the-
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Figure 2.2: Illustration of the estimation of optimal periodicity kernels. (a) Novelty curve ∆.
(b) Magnitude tempogram |T | with maxima (indicated by circles) shown at five time positions t.
(c) Optimal sinusoidal kernels κt (using a kernel size of 3 seconds) corresponding to the maxima.
Note how the kernels capture the local peak structure of the novelty curve in terms of frequency
and phase.

art methods [7; 100; 102; 189]. Our novelty curve is particularly designed for also revealing
meaningful note onset information for complex music, such as orchestral pieces dominated
by string instruments. Note, however, that the particular design of the novelty curve is
not the focus of this thesis. The mid-level representations as introduced in the following
are designed to work even for noisy novelty curves with a poor peak structure. Naturally,
the overall result may be improved by employing more refined novelty curves as suggested
in [88; 189; 50].

Recall from Section 2.1 that a note onset typically goes along with a sudden change of
the signal’s energy and spectral content. In order to extract such changes, given a music
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Figure 2.3: Illustration of the PLP computation from the optimal periodicity kernels shown in
Figure 2.2c. (a) Novelty curve ∆. (b) Accumulation of all kernels (overlap-add). (c) PLP curve
Γ obtained after half-wave rectification.

recording, a short-time Fourier transform is used to obtain a spectrogram

X = (X(k, t))k,t

with k ∈ [1 : K] and t ∈ [1 : T ]. Here, K denotes the number of Fourier coefficients,
T denotes the number of frames, and X(k, t) denotes the kth Fourier coefficient for time
frame t. In our implementation, the discrete Fourier transforms are calculated over Hann-
windowed frames of length 46 ms with 50% overlap. Consequently, each time parameter
t corresponds to 23 ms of the audio recording.

Note that the Fourier coefficients of X are linearly spaced on the frequency axis. Using
suitable binning strategies, various approaches switch over to a logarithmically spaced fre-
quency axis, e. g., by using mel-frequency bands or pitch bands, see [100]. Here, we keep
the linear frequency axis, since it puts greater emphasis on the high-frequency regions of
the signal, thus accentuating noise bursts that are typically visible in the high-frequency
spectrum. Similar strategies for accentuating the high frequency content for onset detec-
tion are proposed in [118; 23].

In the next step, we apply a logarithm to the magnitude spectrogram |X| of the signal
yielding

Y := log(1 + C · |X|)

for a suitable constant C > 1, see [100; 102]. Such a compression step not only accounts
for the logarithmic sensation of sound intensity but also allows for adjusting the dynamic
range of the signal to enhance the clarity of weaker transients, especially in the high-
frequency regions. In our experiments, we use the value C = 1000, but our results as well
as the findings reported by Klapuri et al. [102] show that the specific choice of C does not
effect the final result in a substantial way. The effect of this compression step is illustrated
by Figure 2.4 for a recording of Beethoven’s Fifth Symphony. Figure 2.4a shows the piano
reduced version of the first 12 measures of the score. The audio recording is an orchestral
version conducted by Bernstein. Figure 2.4c shows the magnitude spectrogram |X| and
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Figure 2.4: First 12 measures of Beethoven’s Symphony No. 5 (Op. 67). (a) Score representation
(in a piano reduced version). (b) Annotated reference onsets (for an orchestral audio record-
ing conducted by Bernstein). (c) Magnitude spectrogram |X|. (d) Logarithmically compressed
magnitude spectrogram Y . (e) Novelty curve ∆̄ and local mean (red curve). (f) Novelty curve ∆.

Figure 2.4d the compressed spectrogram Y using C = 1000. As a result of the logarithmic
compression, events with low intensities are considerably enhanced in Y , especially in the
high frequency range.

To obtain a novelty curve, we basically apply a first order differentiator to compute
the discrete temporal derivative of the compressed spectrum Y . In the following, we
only consider note onsets (positive derivative) and not note offsets (negative derivative).
Therefore, we sum up only over positive intensity changes to obtain the novelty function
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Figure 2.5: Illustrating the effect of the logarithmic compression on the resulting novelty curves.
(a) Novelty curve based on the magnitude spectrogram |X| (see Figure 2.4c). (b) Manually anno-
tated reference onsets. (c) Novelty curve ∆ based on the logarithmically compressed magnitude
spectrogram Y (see Figure 2.4d).

∆̄ : [1 : T − 1] → R:

∆̄(t) :=

K
∑

k=1

|Y (k, t+ 1)− Y (k, t)|≥0. (2.1)

for t ∈ [1 : T − 1], where |x|≥0 := x for a non-negative real number x and |x|≥0 := 0
for a negative real number x. Figure 2.4e shows the resulting curve for the Beethoven
example. To obtain our final novelty function ∆, we subtract the local mean (red curve
in Figure 2.4e) from ∆̄ and only keep the positive part (half-wave rectification), see Fig-
ure 2.4f. In our implementation, we actually use a higher-order smoothed differentiator [2].
Furthermore, we process the spectrum in a bandwise fashion using 5 bands. Similar as
in [154] these bands are logarithmically spaced and non-overlapping. Each band is roughly
one octave wide. The lowest band covers the frequencies from 0 Hz to 500 Hz, the highest
band from 4000 Hz to 11025 Hz. The resulting 5 novelty curves are summed up to yield
the final novelty function.

The resulting novelty curve for our Beethoven example reveals the note onset candidates in
the form of impulse-like spikes. Actually, this piece constitutes a great challenge for onset
detection as, besides very dominant note onsets in the fortissimo section at the beginning
of the piece (measures 1-5), there are soft and blurred note onsets in the piano section
which is mainly played by strings (measures 6-12). This is also reflected by the novelty
curve shown in Figure 2.4f. The strong onsets in the fortissimo section result in very
pronounced peaks. The soft onsets in the piano section (seconds 8-13), however, are much
more difficult to be distinguished from the spurious peaks not related to any note onsets.
In this context, the logarithmic compression plays a major role. Figure 2.5 compares the
novelty curve ∆ with a novelty curve directly derived from the magnitude spectrogram
|X| without applying a logarithmic compression. Actually, omitting the logarithmic com-



2.4. TEMPOGRAM 19

pression (Figure 2.5a) results in a very noisy novelty curve that does not reveal musically
meaningful onset information in the piano section. The novelty curve ∆ (Figure 2.5b),
however, still possesses a regular peak structure in the problematic sections. This clearly
illustrates the benefits of the compression step. Note that the logarithmic compression
of the spectrogram gives higher weight to an absolute intensity difference within a quiet
region of the signal than within a louder region, which follows the psychoacoustic prin-
ciple that a just-noticeable change in intensity is roughly proportional to the absolute
intensity [51]. Furthermore, the compression leads to a better temporal localization of the
onset, because the highest relative slope of the attack phase approaches the actual onset
position and noticeably reduces the influence of amplitude changes (e.g. tremolo) in high
intensity regions. Further examples of our novelty curve are discussed in Section 2.7.

The variant of a novelty curve described in this section combines important design princi-
ples and ideas of various approaches proposed in the literature. The basic idea of consid-
ering temporal differences of a spectrogram representation is well known from the spectral
flux novelty curve, see [7]. This strategy works particularly well for percussive note onsets
but is not suitable for less pronounced onsets (see Figure 2.5a). One well known variant of
the spectral flux strategy is the complex domain method as proposed in [8]. Here, magni-
tude and phase information is combined in a single novelty curve to emphasize weak note
onsets and smooth note transitions. In our experiments, the logarithmic compression has a
similar effect as jointly considering magnitude and phase, but showed more robust results
in many examples. Another advantage of our approach is that the compression constant
C allows for adjusting the compression. The combination of magnitude compression and
phase information did not lead to a further increase in robustness.

2.4 Tempogram

A novelty curve typically reveals the note onset candidates in the form of impulse-like
spikes. Because of extraction errors and local tempo variations, the spikes may be noisy
and irregularly spaced over time. Dealing with spiky novelty curves, autocorrelation meth-
ods [44] as well as comb filter techniques [154] may have difficulties in capturing the quasi-
periodic information. This is due to the fact that spiky structures are hard to identify by
means of spiky analysis functions in the presence of irregularities. In such cases, smoothly
spread analysis functions such as sinusoids are better suited to detect locally distorted
quasi-periodic patterns. Therefore, similar to [146], we use a short-time Fourier transform
to analyze the local periodic structure of the novelty curves.

The novelty curve as described in Section 2.3 is simply a function ∆ : [1 : T ] → R

indicating note onset candidates in the form of peaks, where [1 : T ] := {1, 2, . . . , T}, for
some T ∈ N, represents the sampled time axis with respect to a fixed sampling rate. To
avoid boundary problems, we assume that ∆ is defined on Z by setting ∆(t) := 0 for
t ∈ Z \ [1 : T ]. Furthermore, we fix a window function W : Z → R centered at t = 0 with
support [−N : N ] for some N ∈ N. In the following, we use a Hann window of size 2N+1,
which is normalized to yield

∑

t∈ZW (s− t) = 1 for all s ∈ [1 : T ]. Then, for a frequency
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parameter ω ∈ R≥0, the complex Fourier coefficient F(t, ω) is defined by

F(t, ω) =
∑

n∈Z

∆(n) ·W (n− t) · e−2πiωn . (2.2)

Note that the frequency ω corresponds to the period 1/ω. In the context of music, we
rather think of tempo measured in beats per minutes (BPM) than of frequency measured
in Hertz (Hz). Therefore, we use a tempo parameter τ satisfying the equation τ = 60 · ω.

Similar to a spectrogram, which yields a time-frequency representation, a tempogram is
a two-dimensional time-pulse representation indicating the strength of a local pulse over
time, see also [21; 146]. Here, intuitively, a pulse can be thought of a periodic sequence
of accents, spikes or impulses. We specify the periodicity of a pulse in terms of a tempo
value (in BPM). Now, let Θ ⊂ R>0 be a finite set of tempo parameters. Then, we model
a tempogram as a function T : [1 : T ]×Θ → C defined by

T (t, τ) = F(t, τ/60) . (2.3)

For an example, we refer to Figure 2.2b, which shows the magnitude tempogram |T | for the
novelty curve shown in Figure 2.2a. Intuitively, the magnitude tempogram indicates for
each time position how well the novelty curve can be locally represented by a pulse track
of a given tempo. Note that the complex-valued tempogram contains not only magnitude
information, but phase information as well. In our experiments, we mostly compute T
using the set Θ = [30 : 600] covering the (integer) musical tempi between 30 and 600 BPM.
Here, the bounds are motivated by the assumption that only events showing a temporal
separation between roughly 100 ms (600 BPM) and 2 seconds (30 BPM) contribute to the
perception of tempo [139]. This tempo range requires a spectral analysis of high resolution
in the lower frequency range. Therefore, a straightforward FFT is not suitable. However,
since only relatively few frequency bands (tempo values) are needed for the tempogram,
computing the required Fourier coefficients individually according to Eq. (2.2) has still a
reasonable computational complexity. Typically, we set W to be a Hann window with the
size 2N + 1 corresponding to 4-12 seconds of the audio. The overlap of adjacent windows
is adjusted to yield a frame rate of 5 Hz (five frames per second). For a more detailed
explanation and a general overview on different tempogram representations, we refer to
Chapter 4.

2.5 Predominant Local Periodicity

We now make use of both, the magnitudes and the phases given by T , to derive a mid-level
representation that captures the predominant local pulse (PLP) of the underlying music
signal. Here, the term predominant pulse refers to the pulse that is most noticeable in
the novelty curve in terms of intensity. Furthermore, our representation is local in the
sense that it yields the predominant pulse for each time position, thus making local tempo
information explicit.

For each t ∈ [1 : T ] we compute the tempo parameter τt ∈ Θ that maximizes the magnitude
of T (t, τ):

τt := argmax
τ∈Θ

|T (t, τ)| . (2.4)
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Figure 2.2b exemplarily shows the predominant local periodicity τt for five t ∈ [1 : T ] of
the magnitude tempogram. The corresponding phase ϕt is defined by [123]:

ϕt :=
1

2π
arccos

(

Re(T (t, τt))

|T (t, τt)|

)

. (2.5)

Using τt and ϕt, the optimal sinusoidal kernel κt : Z → R for t ∈ [1 : T ] is defined as the
windowed sinusoid

κt(n) :=W (n− t) cos(2π(n · τt/60− ϕt)) (2.6)

for n ∈ Z and the same window function W as used for the tempogram computation in
Eq. (2.2). Figure 2.2c shows the five optimal sinusoidal kernels for the five time parameters
indicated in Figure 2.2b using a Hann window of three seconds. Intuitively, the sinusoid κt
best explains the local periodic nature of the novelty curve at time position t with respect
to the set Θ. The period 60/τt corresponds to the predominant periodicity of the novelty
curve and the phase information ϕt takes care of accurately aligning the maxima of κt
and the peaks of the novelty curve. The properties of the kernels κt depend not only on
the quality of the novelty curve, but also on the window size 2N + 1 of W and the set of
frequencies Θ. Increasing the parameter N yields more robust estimates for τt at the cost
of temporal flexibility. In the following, this duration is referred to as kernel size (KS)
and is specified in seconds.

2.6 PLP Curve

The estimation of optimal periodicity kernels in regions with a strongly corrupted peak
structure is problematic. This particularly holds in the case of small kernel sizes. To make
the periodicity estimation more robust, our idea is to apply an overlap-add technique,
where we accumulate these kernels over all time positions to form a single function instead
of looking at the kernels in a one-by-one fashion. Furthermore, we only consider the
positive part of the resulting curve (half-wave rectification). More precisely, we define a
function Γ : [1 : T ] → R≥0 as follows:

Γ(n) =

∣

∣

∣

∣

∣

∣

∑

t∈[1:T ]

κt(n)

∣

∣

∣

∣

∣

∣

≥0

(2.7)

for n ∈ [1 : T ], where |x|≥0 := x for a non-negative real number x and |x|≥0 := 0 for a
negative real number x. The resulting function is our mid-level representation referred to
as PLP curve. Figure 2.3b shows the accumulated curve for the five optimal periodicity
kernels shown in Figure 2.2c. Note, how the maxima of the periodicity kernels not only
align well with the peaks of the novelty curve, but also with the maxima of neighboring
kernels in the overlapping areas, which leads to constructive interferences. Furthermore
note that, because of the normalization of the window W (see Section 2.4), the values of
the curve lie in the interval [−1, 1] and a local maximum is close to the value one if and
only if the overlapping kernels align well. From this, the final PLP curve Γ is obtained
through half-wave rectification, see Figure 2.3c.
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Note that taking the framewise maximum as in Eq. (2.4) has its assets and drawbacks. On
the one hand, it allows the PLP curve to quickly adjust to even sudden changes in tempo
and in the dominating pulse level, see Figure 2.6 for an example. On the other hand,
taking the framewise maximum may lead to unwanted jumps such as random switches
between tempo octaves in the tempo trajectory defined by the maximizing tempo param-
eter. Here, instead of simply using the context-independent framewise maximum, one may
use optimization techniques based on dynamic programming to obtain a context-sensitive
smooth tempo trajectory [146; 3]. Similarly, one may constrain the set Θ of tempo pa-
rameters in the maximization covering only tempo parameters in a suitable neighborhood
of an expected (average) tempo value. Because of the subsequent accumulation step, a
small number of outliers does not effect the overall properties of the PLP curve. A larger
number of outliers or unwanted switches between tempo octaves, however, may deterio-
rate the result. Our PLP framework allows for incorporating additional constraints and
smoothness strategies in the kernel selection to adjust the properties of the resulting PLP
curve according to the requirements of a specific application. The issue of kernel selection
will be further discussed in Section 2.7 and Section 2.9.6.

2.7 Discussion of Properties

We now discuss various properties of PLP curves based on representative examples to
demonstrate the benefits of our concept. For an extensive quantitative analysis, we refer
to Section 2.9.

As first example, we consider the Waltz No. 2 from Dimitri Shostakovich’s Suite for Variety
Orchestra No. 1. Figure 2.6a shows an excerpt (measures 25 to 36) of a piano reduced
version of the score of this piece. The audio recording in this example is an orchestral
version conducted by Yablonsky. (The audio excerpt corresponding to measures 25 to 36
has a duration of ten seconds.) The manually annotated reference onset positions in this
audio excerpt are indicated by the vertical lines in Figure 2.6b. The novelty curve for
this except is shown in Figure 2.6c. Note that the peaks of this curve strongly correlate
with the onset positions. However, the first beats (downbeats) in this 3/4 Waltz are played
softly by non-percussive instruments leading to relatively weak and blurred onsets, whereas
the second and third beats are played staccato supported by percussive instruments. As a
result, the peaks of the novelty curve corresponding to downbeats are hardly visible or even
missing, whereas peaks corresponding to the percussive beats are much more pronounced.

Figure 2.6d shows the magnitude tempogram computed from the novelty curve using
a kernel size KS = 3 sec. Obviously, this tempogram indicates a significant tempo at
210 BPM throughout the audio excerpt, which actually corresponds to the quarter note
pulse (tactus level) of the piece. Note that this tempo is clearly indicated despite of
poor and missing peaks in the novelty curve. Furthermore, the magnitude tempogram
additionally reveals high intensities at 420 BPM, which corresponds to the double tempo
or eighth note pulse (tatum) level of the piece. Looking at the score, one would expect
a predominant tempo which corresponds to the tactus level (score reveals quarter note
pulse) for measures 25-28, 31/32 and 35/36 and to the tatum level (score reveals eighth
note pulse) for measures 29/30 and 33/34. Indeed, this is exactly reflected by the lines
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Figure 2.6: Excerpt of Shostakovich’s Waltz No. 2 from the Suite for Variety Orchestra No. 1. (a)
Score representation of measures 25 to 36 (in a piano reduced version). (b) Annotated reference
onsets (for an orchestral audio recording conducted by Yablonsky). (c) Novelty curve ∆. (d)
Magnitude tempogram |T | using Θ = [30 : 600]. (e) Magnitude tempogram |T | with indication of
the predominant tempo. (f) PLP curve Γ.

in Figure 2.6e, which indicate the predominant tempo (maximum intensity) for each time
position. Note that one has a pulse level switch to the tatum level exactly for the seconds
4-5 (measures 29/30) and seconds 7-8 (measures 33/34).

The PLP curve Γ shown in Figure 2.6f is obtained from the local tempo estimates. Note
that the predominant pulse positions are clearly indicated by the peaks of the PLP curve
even though some of the expected peaks where missing in the original novelty curve. Also,
the switches between the tactus and tatum level are captured by the PLP curve. In other
words, the PLP curve can be regarded as a local periodicity enhancement of the original
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Figure 2.7: Magnitude tempogram and resulting PLP curve using a constrained tempo set for
the Shostakovich example shown in Figure 2.6. Left: Θ = [100 : 300] (quarter note tempo range).
Right: Θ = [300 : 500] (eighth note tempo range).

novelty curve, where the predominant pulse level is taken into account. Although our
concept is designed to reveal such locally predominant information, for some applications
the local nature of these estimates might not be desirable. Actually, our PLP framework
allows for incorporating prior knowledge on the expected tempo range to exhibit informa-
tion on different pulse levels. Here, the idea is to constrain the set Θ of tempo parameters
in the maximization, see Eq. (2.4). For example, using a constrained set Θ = [100 : 300]
instead of the original set Θ = [30 : 600], one obtains the tempogram and PLP curve shown
in Figure 2.7 on the left. In this case, the PLP curve correctly reveals the quarter note
(tactus) pulse positions with a tempo of 210 BPM. Similarly, using the set Θ = [300 : 500]
reveals the eighth (tatum) note pulse positions and the corresponding tempo of 420 BPM,
see Figure 2.7 on the right. In other words, in the case there is a dominant pulse of (pos-
sibly varying) tempo within the specified tempo range Θ, the PLP curve yields a good
pulse tracking on the corresponding pulse level.

As second example, we again consider the orchestral version of Beethoven’s Fifth Sym-
phony conducted by Bernstein. Figure 2.8a shows the piano reduced version of the first
12 measures of the score. Recall that this piece constitutes a great challenge for novelty
detection as there are soft and blurred note onsets in the piano section which is mainly
played by strings. In particular, the height of a peak in the resulting novelty curve (see
Figure 2.8b) is not necessarily a good indicator for the relevance of the peak. However,
even though corrupted, the peak structure still possesses some local periodic regularities.
These regularities are captured by the periodicity kernels and revealed in the magnitude
tempogram shown in Figure 2.8c. Here, at the beginning (second 0 to 6), a tempo of
roughly 280 BPM dominates the tempogram. During the second fermata (second 6-7)
the tempogram does not show any pronounced tempo. However, in the piano section,
the tempogram again indicates a dominating tempo of roughly 300 BPM, which actually
corresponds to the eighth note pulse level. Finally, Figure 2.8d shows the PLP curve Γ.
Note that the peaks of Γ align well with the musically relevant onset positions. While
note onset positions in the fortissimo section can be directly determined from the original
novelty curve, this becomes problematic for the onsets in the piano section. However,
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Figure 2.8: First 12 measures of Beethoven’s Symphony No. 5 (Op. 67). (a) Piano reduced version
of the score. (b) Novelty curve ∆. (c) Magnitude tempogram |T |. (d) PLP curve Γ.

exploiting that the note onsets lie on a local rhythmic grid, the PLP curve is capable of
capturing meaningful onset information even in the piano passage.

As another important property of our concept, a PLP curve not only reveals positions of
predominant pulses but also indicates a kind of confidence in the estimation. Note that
the amplitudes of the periodicity kernels do not depend on the amplitude of the novelty
curve. This makes a PLP curve invariant under changes in dynamics of the underlying
music signal. Recall that we estimate the periodicity kernels using a sliding window
technique and add up the kernels over all considered time positions. Since neighboring
kernels overlap, constructive and destructive interference phenomena in the overlapping
regions influence the amplitude of the resulting PLP curve Γ. Consistent local tempo
estimates result in consistent kernels, which in turn produce constructive interferences in
the overlap-add synthesis. In such regions, the peaks of the PLP curve assume a value
close to one. In contrast, random local tempo estimates result in inconsistent kernels,
which in turn cause destructive interferences and lower values of Γ. In Figure 2.8d, this
effect is visible in the fermata section (seconds 5 to 8). In Section 2.9.4, we show how this
property of PLP curves can be used to detect problematic passages in audio recordings.

Finally, we give a first indication in which way our PLP concept is capable of capturing
local tempo changes. To this end, we distinguish between two types of tempo changes.
The first type concerns moderate and continuous tempo changes as typically implied by
an accelerando or ritardando. To simulate such tempo changes, we generated a pulse train
of increasing tempo in the first half and of decreasing tempo in the second half. Figure 2.9
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Figure 2.9: Behavior of PLP curves under continuous tempo changes (accelerando, ritardando).
(a) Impulse train of increasing tempo (80 to 160 BPM, first part) and decreasing tempo (160 to
80 BPM, second part). (b) Magnitude tempogram |T | for KS = 4 sec. (c) PLP curve.

shows the resulting novelty curve, the magnitude tempogram, and the PLP curve. As this
example indicates, the PLP curve captures well such types of continuous tempo changes—
even the amplitude of the PLP curve indicates a high confidence of the estimation. The
second type concerns strong local tempo distortions as found in highly expressive music
(e. g. romantic piano music). To simulate such tempo changes, we first generated a pulse
train of constant tempo (160 BPM) and then locally displaced the impulses in a random
fashion. Figure 2.10 shows the resulting novelty curve, the magnitude tempogram, and
the PLP curve. As this example indicates, the PLP curve fails to capture such extreme
distortions—also note the low confidence values. This is not surprising since our PLP
concept relies on the assumption of a locally quasi-periodic behavior of the signal. Using
a constrained tempo set Θ = [110 : 220] (similar effects are obtained by using a context-
sensitive smooth tempo trajectory, see Section 2.9.6), one obtains an improved PLP curve
as shown in Figure 2.10d. However, note that the quasi-periodically spaced peaks of the
PLP curve often deviate from the real pulse positions. In Section 2.9, we will further
discuss these issues using romantic piano music as extreme example.

2.8 Iterative Refinement of Local Pulse Estimates

In this section, we indicate how the PLP concept can be applied in an iterative fashion
to stabilize local tempo estimations. As example, we consider Brahm’s Hungarian Dance
No. 5. Figure 2.11 shows a piano reduced score of measures 26-38. The audio recording is
an orchestral version conducted by Ormandi. This excerpt is very challenging because of
several abrupt changes in tempo. Additionally, the novelty curve is rather noisy because
of many weak note onsets played by strings. Figure 2.11a-c show the extracted novelty
curve, the tempogram, and the extracted tempo, respectively. Despite of poor note onset
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Figure 2.10: Behavior of PLP curves under strong local tempo distortions. (a) Impulse train of
constant tempo (160 BPM) with random local distortions. (b) Magnitude tempogram |T |. (c)
PLP curve. (d) PLP curve for the constrained tempo set Θ = [110 : 220]. Ground-truth pulse
positions are indicated by vertical lines.

information, the tempogram correctly captures the predominant eighth note pulse and the
tempo for most time positions. A manual inspection reveals that the excerpt starts with
a tempo of 180 BPM (measures 26-28, seconds 0-4), then abruptly changes to 280 BPM
(measures 29-32, seconds 4-6), and continues with 150 BPM (measures 33-38, seconds
6-18).

Due to the corrupted novelty curve and the rather diffuse tempogram, the extraction of the
predominant sinusoidal kernels is problematic. However, accumulating all these kernels
leads to an elimination of many of the extraction errors. The peaks of the resulting PLP
curve Γ (Figure 2.12a) correctly indicate the musically relevant eighth note pulse positions
in the novelty curve. Again, the lower amplitude of Γ in the region of the sudden tempo
change indicates the lower confidence in the periodicity estimation. As noted above, PLP
curves can be regarded as a periodicity enhancement of the original novelty curve. Based
on this observation, we compute a second tempogram now based on the PLP instead of
the original novelty curve. Comparing the resulting tempogram (Figure 2.12b) with the
original tempogram (Figure 2.11b), one can note a significant cleaning effect, where only
the tempo information of the dominant pulse (and its harmonics) is maintained. This
example shows how our PLP concept can be used in an iterative framework to stabilize
local tempo estimations. Finally, Figure 2.13a shows the manually generated ground truth
onsets as well as the resulting tempogram (using the onsets as idealized novelty curve).
Comparing the three tempograms and local tempo estimates of Figure 2.11, Figure 2.12,
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Figure 2.11: Excerpt of an orchestral version conducted by Ormandy of Brahms’s Hungarian
Dance No. 5. The score shows measures 26 to 38 in a piano reduced version. (a) Novelty curve ∆.
(b) Tempogram derived from ∆ using KS = 4 sec. (c) Estimated tempo.

and Figure 2.13 again indicates the robustness of PLP curves to noisy input data and
outliers.

2.9 Experiments

In the last sections, we have discussed various properties of the PLP concept by means
of several challenging music examples. In this section, we report on various experiments
to demonstrate how our PLP concept can be applied for improving and stabilizing tempo
estimation and beat tracking. We start with describing two baseline experiments in the
context of tempo estimation and note onset detection (Section 2.9.1). We then continue
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Figure 2.12: PLP concept applied in an iterative fashion for the Brahms example as shown in
Figure 2.11. (a) PLP curve Γ. (b) Tempogram derived from Γ using KS = 4 sec. (c) Estimated
tempo.

with describing our datasets which consist of real audio material and are used in the subse-
quent experiments (Section 2.9.2), report on our extensive tempo estimation experiments
(Section 2.9.3), and show how our PLP concept can be used to measure the confidence
of the estimated tempo values (Section 2.9.4). Subsequently, we address the task of beat
tracking, which extends tempo estimation in the sense that it additionally considers the
phase of the pulses. In Section 2.9.5, we start by reviewing a state-of-the-art beat tracker
used in our experiments. Then we report on various experiments, showing that the com-
bined usage of PLP curves with original novelty information significantly improves beat
tracking results (Section 2.9.6). Finally, we introduce a novel beat tracking evaluation
measure that considers beats in their temporal context (Section 2.9.7).

2.9.1 Baseline Experiments

Before describing our evaluation based on real audio data, we report on two baseline
experiments. Firstly, we describe a baseline experiment using synthesized audio material,
where we show that our PLP concept can locally estimate the tempo even in the presence
of continuous tempo changes. This extends previous approaches to tempo estimation [47;
121] where often one global tempo for the entire recording is determined and used for the
evaluation. Secondly, we describe a baseline experiment to note onset detection, showing
that the PLP curves reveal musically meaningful pulse positions.
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Figure 2.13: Ground truth representation for the Brahms example as shown in Figure 2.11 and
Figure 2.12. (a) Ground-truth pulses. (b) Tempogram derived from these pulses using KS = 4 sec.
(c) Estimated tempo.

Baseline Experiment to Tempo Estimation

In Section 2.7, we indicated that our PLP concept can handle continuous tempo changes,
see also Figure 2.9. We now give a quantitative evaluation to confirm this property. To this
end, we use a representative set of ten pieces from the RWC music database [64] consisting
of five classical pieces, three jazz, and two popular pieces, see Table 2.1 (first column).
The pieces have different instrumentations containing percussive as well as non-percussive
passages of high rhythmic complexity. Using the MIDI files supplied by [64], we manually
determined the pulse level that dominates the piece (making the simplistic assumption
that the predominant pulse does not change throughout the piece) and set the tempo
to a constant value with regard to this pulse, see Table 2.1 (second and third columns).
The resulting MIDI files are referred to as original MIDIs. To simulate continuous tempo
changes as implied by accelerandi and ritardandi, we divided the original MIDIs into 20-
seconds segments and alternately applied to each segment a continuous speed up or slow
down (referred to as warping procedure) so that the resulting tempo of the dominant pulse
fluctuates between +30% and −30% of the original tempo. The resulting MIDI files are
referred to as distorted MIDIs. Finally, audio files were generated from the original and
distorted MIDIs using a high-quality synthesizer.

To evaluate the tempo extraction capability of our PLP concept, we proceed as follows.
Given an original MIDI, let τ denote the tempo and let Θ be the set of integer tempo
parameters covering the tempo range of ±40% of the original tempo τ . This coarse tempo
range reflects the prior knowledge of the respective pulse level (in this experiment, we do
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original MIDI distorted MIDI
Piece Tempo Level 4 6 8 12 4 6 8 12

C003 360 1/16 74.5 81.6 83.7 85.4 73.9 81.1 83.3 86.2
C015 320 1/16 71.4 78.5 82.5 89.2 61.8 67.3 71.2 76.0
C022 240 1/8 95.9 100.0 100.0 100.0 95.0 98.1 99.4 89.2
C025 240 1/16 99.6 100.0 100.0 100.0 99.6 100.0 100.0 96.2
C044 180 1/8 95.7 100.0 100.0 100.0 82.6 85.4 77.4 59.8
J001 300 1/16 43.1 54.0 60.6 67.4 37.8 48.4 52.7 52.7
J038 360 1/12 98.6 99.7 100.0 100.0 99.2 99.8 100.0 96.7
J041 315 1/12 97.4 98.4 99.2 99.7 95.8 96.6 97.1 95.5
P031 260 1/8 92.2 93.0 93.6 94.7 92.7 93.7 93.9 93.5
P093 180 1/8 97.4 100.0 100.0 100.0 96.4 100.0 100.0 100.0

average: 86.6 90.5 92.0 93.6 83.5 87.1 87.5 84.6

average (after iteration): 89.2 92.0 93.0 95.2 86.0 88.8 88.5 83.1

Table 2.1: Percentage of correctly estimated local tempi using original MIDI files (constant
tempo) and distorted MIDI files for different kernel sizes KS = 4, 6, 8, 12 sec.

not want to deal with tempo octave confusions) and comprises the tempo values of the
distorted MIDI. Based on Θ, we compute for each time position t the maximizing tempo
parameter τt ∈ Θ as defined in Eq. (2.4) for the original MIDI using various kernel sizes.
We consider the local tempo estimate τt correct, if it falls within a 2% deviation of the
original tempo τ . The left part of Table 2.1 shows the percentage of correctly estimated
local tempi for each piece. Note that, even having a constant tempo, there are time
positions with incorrect tempo estimates. Here, one reason is that for certain passages
the pulse level or the onset information is not suited or simply not sufficient for yielding
good local tempo estimations, e. g., caused by musical rests or local rhythmic offsets. For
example, for the piece C003 (Beethoven’s Fifth), the tempo estimation is correct for 74.5%
of the time parameters when using a kernel size (KS) of 4 sec. Assuming a constant tempo,
it is not surprising that the tempo estimation stabilizes when using a longer kernel. In
case of C003, the percentage increases to 85.4% for KS = 12 sec.

In any case, the tempo estimates for the original MIDIs with constant tempo only serve
as reference values for the second part of our experiment. Using the distorted MIDIs, we
again compute the maximizing tempo parameter τt ∈ Θ for each time position. Now, these
values are compared to the time-dependent distorted tempo values that can be determined
from the warping procedure. Analogous to the left part, the right part of Table 2.1 shows
the percentage of correctly estimated local tempi for the distorted case. The crucial point
is that even when using the distorted MIDIs, the quality of the tempo estimations only
slightly decreases. For example, in the case of C003, the tempo estimation is correct for
73.9% of the time parameters when using a kernel size of 4 sec (compared to 74.5% in the
original case). Averaging over all pieces, the percentage decreases from 86.6% (original
MIDIs) to 83.5% (distorted MIDIs), for KS = 4 sec. This clearly demonstrates that our
concept allows for capturing even significant tempo changes. As mentioned above, using
longer kernels naturally stabilizes the tempo estimation in the case of constant tempo.
This, however, does not hold when having music with constantly changing tempo. For
example, looking at the results for the distorted MIDI of C044 (Rimski-Korsakov, The
Flight of the Bumble Bee), we can note a drop from 82.6% (4 sec kernel) to 59.8% (12 sec
kernel).
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Furthermore, we investigated the iterative approach already sketched for the Brahms
example in Section 2.8. Here, we use the PLP curve as basis for computing a second
tempogram from which the tempo estimates are derived. As indicated by the last line
of Table 2.1, this iteration indeed yields an improvement for the tempo estimation for
the original as well as the distorted MIDI files. For example, in the distorted case with
KS = 4 sec the estimation rate raises from 83.5% (tempogram based on ∆) to 86.0%
(tempogram based on Γ).

Baseline Experiment to Onset Detection

As discussed in Section 2.7, a PLP curve can be seen as a local periodicity enhancement of
the original novelty curve where the peaks of the PLP curve indicate likely pulse positions.
We now describe an application of our PLP concept to the task of onset detection in order
to evaluate the quality of the PLP peaks.

Recall from Section 2.1 that most approaches for onset detection proceed in two steps.
First, a novelty curve ∆ is extracted from the given music signal. Then, to determine the
note onsets, one tries to locate the positions of relevant peaks of ∆. For music with soft
note onsets or strong fluctuation such as vibrato, however, the discrimination of relevant
and spurious peaks becomes nearly impossible. Here, additional model assumptions on
the rhythmic nature of the music signal may be exploited to support note onset detection.
The musical motivation is that the periodic structure of notes plays an important role
in the sensation of note onsets. In particular, weak note onsets may only be perceptible
within a rhythmic context. For example, in [34] a global rhythmic structure is determined
in terms of IOI statistics of previously extracted note onset candidates. Then, assuming
constant tempo, this structure is used to determine the relevant onset positions.

Following these lines, we also exploit the quasi-periodic nature of note onsets in our PLP-
based enhancement strategy. However, in our approach, we avoid the fragile peak picking
step at an early stage. Furthermore, we do not presuppose a global rhythmic structure but
only assume local periodicity thus allowing tempo changes. More precisely, given a novelty
curve ∆, we compute a PLP curve Γ. Being local quasi-periodic, the peak positions of Γ
define a grid of pulse positions where note onset positions are likely to occur. Furthermore,
the peak structure of Γ is much more pronounced than in ∆. Actually, the peaks are simply
the local maxima and peak picking becomes a straightforward task. Assuming that note
onsets are likely to lie on the PLP-defined grid, we select all peak positions of Γ as detected
onsets.

We compare the pulse positions obtained from the PLP-curve with the onsets extracted
from the novelty curve using a peak picking strategy [7]. In the experiment, we use
two evaluation datasets containing audio recordings along with manually labeled onset
positions used as reference onsets. The first dataset is publicly available [113] and has been
used in the evaluation of various onset detection algorithms, e.g., [189]. This dataset, in
the following referred to as PUBLIC, consists of 242 seconds of audio (17 music excerpts of
different genre) with 671 labeled onsets. The second dataset particularly contains classical
music with soft onsets and significant tempo changes. This dataset, in the following
referred to as PRIVATE, consists of 201 seconds of audio with 569 manually labeled onsets.
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PUBLIC PRIVATE

Curve KS P R F P R F

∆ 0.783 0.821 0.793 0.694 0.732 0.698
Γ 4 sec 0.591 0.933 0.695 0.588 0.913 0.679
Γ 6 sec 0.599 0.955 0.705 0.599 0.907 0.689
Γ 8 sec 0.597 0.944 0.701 0.588 0.877 0.674

Table 2.2: Mean precision P, recall R, and F-measure F values for the onset detection task using
the novelty curve ∆ and PLP curves Γ of kernel sizes KS = 4, 6, 8 sec.

Following the MIREX 2011 Audio Onset Detection evaluation procedure1, each reference
onset is considered a correct detection (CD) if there is a detected onset within an error
tolerance of 50 ms, otherwise a false negative (FN). Each detected onset outside of all
tolerance regions is called a false positive (FP). The corresponding number of onsets is
denoted NCD, NFN, and NFP, respectively. From this one obtains the precision, recall,
and F-measure defined by

P =
NCD

NCD+NFP
, R =

NCD

NCD+NFN
, F =

2 · P · R

P + R
. (2.8)

These values are computed separately for each piece. The final values are obtained by
averaging over all pieces of the respective dataset.

Table 2.2 shows the resulting average P, R, and F values for the original novelty curve ∆
as well as for the PLP curve Γ using periodicity kernels of different sizes. As the results
show, our PLP-concept indeed reveals musically meaningful pulse positions. For example,
using the PLP curve Γ with a kernel size 4 seconds instead of the original novelty curve ∆,
the mean recall R increases from 0.821 to 0.933 for the PUBLIC set and from 0.732 to 0.913
for the PRIVATE set. This shows that a vast majority of the relevant note onsets indeed
lie on the PLP-defined pulse grid. Especially for the PRIVATE set, the PLP curve allows
for inferring a large number of soft note onsets that are missed when using the original
novelty curve. On the other side, the precision values for Γ are lower than those for ∆.
This is not surprising, since in our PLP-based approach we select all peak positions of Γ.
Even though most note onsets fall on PLP peaks, not all PLP peaks necessarily correspond
to note onsets. For example, in the Shostakovich example shown in Figure 2.6, the PLP
curve infers three onset positions for measures 31 and 35, respectively. In these measures,
however, the second beats correspond to rests without any note onsets. Similarly, in
our Beethoven example shown in Figure 2.8d, the fermata passage is periodically filled
with non-relevant pulses. On the other hand, all relevant onsets in the soft piano section
(measures 8-13) are identified correctly. These string onsets can not be recovered correctly
using the original novelty curve. This experiment indicates that our PLP curve indeed
reveals musically meaningful pulse positions. As a consequence, our concept allows for
recovering soft note onsets.

Finally, we look at the influence of the kernel size on the detection quality. Here, note
that most of the excerpts in the PUBLIC dataset have a constant tempo. Therefore, using
a kernel size of 6 seconds instead of 4 seconds, the kernel estimation is more robust leading
to an increase of recall (from R = 0.933 to R = 0.955). Contrary, the PRIVATE dataset

1http://www.music-ir.org/mirex/wiki/2011:Audio Onset Detection

http://www.music-ir.org/mirex/wiki/2011:Audio_Onset_Detection
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Audio Length Beats Unannotated Mean Tempo Std. Tempo
Dataset [#] [sec] [#] [sec] [BPM] [%]

BEATLES 179 28831 52729 1422 116.7 3.3
RWC-POP 100 24406 43659 0 111.7 1.1
RWC-JAZZ 50 13434 19021 0 89.7 4.5
RWC-CLASSIC 61 19741 32733 725 104.8 15.2
MAZURKA 298 45177 85163 1462 126.0 24.6

Table 2.3: The five beat-annotated datasets used in our experiments. The first four columns
indicate the name, the number of audio recordings, the total length, and the total number of
annotated beat positions.

contains classic music with many tempo changes. Here, kernels of smaller sizes are better
suited for adjusting the local periodicity estimations to the changing tempo.

2.9.2 Audio Datasets

For our subsequent experiments and evaluations, we use five different datasets that consists
of real audio recordings (opposed to the synthesized audio material used in Section 2.9.1)
and comprise music of various genres and complexities. For all audio recordings, manually
generated beat annotations are available. The first collection BEATLES consists of the 12
studio albums by “The Beatles” containing a total number of 179 recordings2 of Rock/Pop
music [119]. Furthermore, we use audio recordings from the RWC Music Database [64],
which consists of subcollections of different genres. From this database, we use the three
subcollections RWC-POP, RWC-CLASSIC, and RWC-JAZZ containing a total number of 211
recordings. Our fifth dataset MAZURKA consists of piano recordings taken from a collection
of 2700 recorded performances for the 49 Mazurkas by Frédéric Chopin. These recordings
were collected in the Mazurka Project3. For 298 of the 2700 recordings, manually generated
beat annotations exist, which have been previously used for the purpose of performance
analysis [152]. The dataset MAZURKA consists of exactly these 298 recordings (corresponding
to five of the 49 Mazurkas).

Table 2.3 gives an overview of the five different datasets. The first four columns of the table
indicate the name of the dataset, the number of contained audio recordings, the total length
of all audio recordings, and the total number of annotated beat positions. Some recordings
contain passages where no meaningful notion of a beat is perceivable. For example, the
datasets MAZURKA and RWC-CLASSIC contain some audio files with long passages of silence.
Furthermore, in BEATLES, some songs contain noise-like improvisational passages where
the musicians refrain from following any rhythmic pattern. All these passages have not
been annotated and are left unconsidered in our evaluation (if not stated otherwise). The
fifth column (Unannotated) of Table 2.3 indicates the total length of the unannotated
passages.

From the beat positions, one can directly derive the local tempo given in beats per minute

2Actually, there are 180 songs, but for the song “Revolution 9” no annotations were available. This
song is a collage of vocal and music sound clips without any meaningful notion of a beat.

3http://mazurka.org.uk/
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Dataset 4 sec 6 sec 8 sec 12 sec

BEATLES 94.1 95.4 95.9 96.3
RWC-POP 95.3 96.7 97.3 98.0
RWC-JAZZ 81.8 85.4 86.6 87.2
RWC-CLASSIC 70.4 70.9 70.3 68.7
MAZURKA 44.5 40.1 37.3 34.3

Table 2.4: Percentage of correctly estimated local tempi (±4% tolerance) for the five datasets
using the kernel sizes KS = 4, 6, 8, 12 sec.

(BPM). The last two columns of Table 2.3 indicate the piecewise mean tempo (in BPM)
and standard deviation (in percent) averaged over all recordings of the respective dataset.
Note that popular music is often played with constant tempo. This is also indicated by
the small values for the standard deviation (e. g., 1.1% for RWC-POP). In contrast, classical
music often reveals significant tempo changes, which is indicated by higher values for the
standard deviation (e. g., 15.2% for RWC-CLASSIC). These changes can be abrupt as a result
of a changing tempo marking (e. g., from Andante to Allegro) or continuous as indicated
by tempo marks such as ritardando or accelerando. Another source for tempo changes
is the artistic freedom a musician often takes when interpreting a piece of music. In
particular, for romantic piano music such as the Chopin Mazurkas, the tempo consistently
and significantly changes from one beat to the next, resulting in pulse sequences similar
to the one shown in Figure 2.10a.

2.9.3 Tempo Estimation Experiments

Continuing the evaluation of Section 2.9.1, we now analyze the tempo estimation capability
of our approach on the basis of real audio recordings. To this end, we generate a reference
tempo curve for each audio recording of our datasets from the available beat annotations.
Here, we first compute the local tempo on the quarter-note level, which is determined by
the given inter-beat intervals. The regions before the first beat and after the last beat
are left unconsidered in the evaluation. As the tempo values on such a fine temporal level
tend to be too noisy, we further smooth the resulting tempo values by considering for
each time position the averaged tempo over a range of three consecutive beat intervals.
Using the same sampled time axis [1 : T ] as in Section 2.4, we obtain a tempo curve
τR : [1 : T ] → R≥0 that encodes the local reference tempo for each time position. Now,
for each time position t, we compute the maximizing tempo parameter τt ∈ Θ as defined
in Eq. (2.4). Leaving the problem of tempo octave confusion unconsidered, we say that
an estimated local tempo τt is correct, if it falls within ±4% of an integer multiple4

k ∈ [1, 2, . . . , 5, 6] of the reference tempo τR(t). Here, we choose a tolerance of ±4% as
used in [47]. For each recording, we then compute the percentage of correctly estimated
tempi and average these values over all recordings of a given dataset.

4In general, confusion with integer fractions k ∈ [1/2, 1/3, 1/4, . . .] of the tempo may occur, too. How-
ever, it can be shown that Fourier-based tempograms (as opposed to, e. g. autocorrelation-based tem-
pograms) respond to tempo harmonics (integer multiples) but suppress tempo subharmonics (integer frac-
tions), see Chapter 4. Since we use Fourier-based tempograms, we only consider confusion with tempo
harmonics.
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Table 2.4 shows the evaluation results of the local tempo estimation for the five datasets
and for different kernel sizes. For popular music, one generally obtains high estimation
rates, e. g., an average rate of 94.1% for BEATLES and 95.3% for RWC-POP when using a
kernel size (KS) of 4 seconds. Having constant tempo for most parts, the rates even
increase when using longer kernel sizes. For the RWC-JAZZ dataset, the rate is 81.8%
(KS = 4 sec). This lower rate is partly due to passages with soft onsets and complex
rhythmic patterns. Using longer kernels, the tempo can be correctly identified even for
some of these passages leading to a significantly higher rate of 87.2% (KS = 12 sec).
The situation becomes more complex for classical music, where one has much lower rates,
e. g., 70.4% (KS = 4 sec) for RWC-CLASSIC. Here, a manual inspection reveals two major
reasons leading to degradations in the estimation rates. The first reason is again the
existence of passages with soft onsets—here, longer kernel sizes help in stabilizing the
tempo estimation. The second reason is that for many recordings of classical music one
has significant local tempo fluctuation caused by the artistic freedom a musician takes.
In such passages, the model assumption of local quasi-periodicity is strongly violated—
even within a window of 4 seconds the tempo may significantly change by more than 50%
percent, see also Figure 2.10. Here, it is difficult for the local periodicity kernels to capture
meaningful periodic behavior. For such passages, increasing the kernel size has a negative
effect on the tempo estimation. In other words, the increase of the kernel size is beneficial
for the first type of degradation and detrimental for the second type of degradation. For
RWC-CLASSIC, these two effects neutralize each other yielding similar estimation rates for all
kernel sizes. However, for the MAZURKA dataset, one mainly has to deal with degradations
of the second type. Containing highly expressive romantic piano music, the estimation
rate is 44.5% when using KS = 4 sec. The rate becomes even worse when increasing the
kernel size, e. g., 34.3% for KS = 12 sec. This type of music reveals the limitations of
a purely onset-based tempo estimation approach—actually, for such music the notion of
local tempo becomes problematic even from a musical point of view, see Section 2.9.4 for
a continuation of this discussion.

2.9.4 Confidence and Limitations

The results for the local tempo estimation significantly degrade in the case that the as-
sumption of local quasi-periodicity is violated. We now show how the PLP concept allows
for detecting such problematic passages automatically. As mentioned in Section 2.7, con-
structive and destructive interference phenomena in the overlap-add synthesis influence
the amplitude of the resulting PLP curve Γ : [1 : T ] → [0, 1]. Locally consistent tempo es-
timations result in amplitude values for the peaks close to one, whereas inconsistent kernel
estimations result in lower values. We now exploit this property of Γ to derive a confidence
measure for the tempo estimation. To this end, we fix a confidence threshold θ ∈ [0, 1]
and a length parameter λ. Then, a time interval I ⊆ [1 : T ] of length λ is called reliable if
all peaks (local maxima) of Γ positioned in I have a value above θ, otherwise I is called
unreliable. The idea is that when I contains at least one peak of lower amplitude, there
are inconsistent kernel estimates that make a tempo estimation in I unreliable. Finally,
we define the subset I(θ, λ) ⊆ [1 : T ] to be the union of all reliable intervals of length λ.

We show that I(θ, λ) indeed corresponds to passages yielding reliable tempo estimates by
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Database 0.95 0.90 0.80 0.70 0 (All)

BEATLES 98.5 (59.4) 98.1 (62.9) 97.5 (64.3) 97.2 (66.2) 89.0 (100)
RWC-POP 99.5 (66.5) 99.2 (67.2) 99.1 (69.3) 98.8 (72.5) 92.8 (100)
RWC-JAZZ 94.2 (35.0) 91.4 (40.0) 89.8 (43.8) 89.6 (47.4) 79.0 (100)
RWC-CLASSIC 89.4 (31.4) 84.7 (38.5) 82.4 (43.7) 81.8 (47.1) 67.6 (100)
MAZURKA 74.1 (6.4) 69.2 (11.8) 65.6 (17.8) 62.4 (22.0) 42.0 (100)

Table 2.5: Percentage of correctly estimated local tempi for the five datasets using restricted
regions I(θ, λ). The parameters are λ = KS = 4 sec and θ = 0.95, 0.90, 0.80, 0.70. The unrestricted
case (last column) corresponds to θ = 0. The relative size of I(θ, λ) (in percent) is specified in
parentheses.

conducting experiments based on the five datasets of Table 2.3. This time, we include all
time positions in the evaluation, even the previously excluded regions without any beat
annotations and the regions before the first and after the last beats. Since no meaningful
tempo can be assigned to these regions, all estimates within these regions are considered
wrong in the evaluation. Here, our motivation is that these regions should automatically
be classified as unreliable. The last column of Table 2.5 shows the estimation rates using a
kernel size of 4 sec. Naturally, including unannotated regions, the rates are lower compared
to the ones reported in the first column of Table 2.4. For example, for the dataset BEATLES,
one now has a rate of 89.0% instead of 94.1%.

In our experiments, we use an interval length of λ = 4 sec corresponding to the kernel
size KS = 4 sec. We then compute I(θ, λ) for a fixed threshold θ and evaluate the tempo
estimates only on the restricted region I(θ, λ) ⊆ [1 : T ]. Table 2.5 shows the percentages of
correctly estimated local tempi within I(θ, λ) for various thresholds θ ∈ {0.95, 0.9, 0.8, 0.7}.
Furthermore, the size of I(θ, λ) relative to [1 : T ] is indicated in parentheses (given in
percent). For example, for the dataset BEATLES, the restricted region I(θ, λ) with θ = 0.95
covers in average 59.4% of all time positions, while the estimation rate amounts to 98.5%.
Lowering the threshold θ, the region I(θ, λ) increases, while the estimation rate decreases.
The values of the last column can be seen as the special case θ = 0 resulting in the
unrestricted case I(θ, λ) = [1 : T ].

Also, for the other datasets, the estimation rates significantly improve when using the
restricted region I(θ, λ). In particular, for RWC-POP, the estimation error drops to less
than one percent when using θ ≥ 0.8, while still covering more than two thirds of all time
positions. Actually, for popular music, most of the unreliable regions result from pulse
level changes (see Figure 2.6f) rather than poor tempo estimates. Also, for the classical
music dataset RWC-CLASSIC, the estimation rates increase significantly reaching 89.4% for
θ = 0.95. However, in this case the restricted regions only cover one third (31.4%) of the
time positions. This is even worse for the MAZURKA dataset, where only 6.4% are left when
using θ = 0.95. Figure 2.14 illustrates one main problem that arises when dealing with
highly expressive music where the assumption of local quasi-periodicity is often violated.
The passage shows significant tempo fluctuations of the interpretation of the Mazurka
Op. 30-2 as indicated by the reference tempo curve τR in Figure 2.14a. Indeed, the PLP
curve allows for detecting regions of locally consistent tempo estimates (indicated by the
thick blue lines in Figure 2.14b). For these regions the local tempo estimates largely
overlap with the reference tempo, see Figure 2.14a.
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Figure 2.14: Tempo estimation for a highly expressive recording (pid9065-14) of Chopin’s
Mazurka Op30-2. (a) Magnitude tempogram |T | of the first 35 seconds using Θ = [50 : 250]
with the reference tempo τR (cyan) and the tempo estimates (thick blue) on I(θ, λ). (b) PLP
curve and restricted region I(θ, λ) (blue) for θ = 0.8 and λ = 4 sec.

2.9.5 Dynamic Programming Beat Tracking

In the following, we summarize the state-of-the-art beat tracking procedure as introduced
in [44]. This procedure is used in the following beat-tracking experiments. The input of
the algorithm consists of a novelty-like function Λ : [1 : T ] → R (indicating note onset
positions) as well as a number ρ ∈ Z that yields an estimate of a global (average) beat
period ρ ∈ Z. Assuming a roughly constant tempo, the difference δ of two neighboring
beats should be close to ρ. To measure the distance between δ and ρ, a neighborhood
function Nρ : N → R

Nρ(δ) := −
(

log2(δ/ρ)
)2

is introduced. This function takes the maximum value of 0 for δ = ρ and is symmetric
on a log-time axis. Now, the task is to estimate a sequence B = (b1, b2, . . . , bK), for some
suitable K ∈ N, of monotonously increasing beat positions bk ∈ [1 : T ] satisfying two
conditions. On the one hand, the value Λ(bk) should be large for all k ∈ [1 : K], and, on
the other hand, the beat intervals δ = bk − bk−1 should be close to ρ. To this end, one
defines the score S(B) of a beat sequence B = (b1, b2, . . . , bK) by

S(B) =
K
∑

k=1

Λ(bk) + α
K
∑

k=2

Nρ(bk − bk−1), (2.9)

where the weight α ∈ R balances out the two conditions. In our experiments, α = 5
turned out to yield a suitable trade-off. Finally, the beat sequence maximizing S yields
the solution of the beat tracking problem. The score-maximizing beat sequence can be
obtained by a straightforward dynamic programming (DP) approach, see [44] for details.
Therefore, in the following, we refer to this procedure as DP beat tracking.
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Peak Picking DP Beat Tracking
Dataset ∆ Γ Γ±40 ΓDP ∆ Γ Ψ

BEATLES 0.619 0.593 0.671 0.663 0.826 0.741 0.861
RWC-POP 0.554 0.507 0.610 0.579 0.786 0.752 0.819
RWC-JAZZ 0.453 0.411 0.407 0.407 0.514 0.573 0.533
RWC-CLASSIC 0.532 0.514 0.521 0.528 0.618 0.609 0.644
MAZURKA 0.757 0.618 0.731 0.685 0.641 0.651 0.684

Table 2.6: Average F-measures for various beat tracking approaches using an error tolerance of
70 ms.

2.9.6 Beat Tracking Experiments

We now report on various beat tracking experiments conducted on the five audio datasets
described in Section 2.9.2. We consider two different approaches to beat tracking. In
the first approach, which serves as baseline, we simply perform peak picking based on an
adaptive thresholding strategy [7] and define the beat positions to be the detected peak
positions. In the second approach, we use the DP beat tracking procedure summarized in
Section 2.9.5.

For each of these two approaches, we compare the beat tracking results for five different
curves using the original novelty curve ∆, the PLP curve Γ, a constrained PLP curve Γ±40,
a PLP curve ΓDP based on a smooth tempo curve, as well as a combined novelty/PLP
curve denoted by Ψ. Here, the PLP curve Γ is computed using Θ = [30 : 600] and
KS = 4 sec). For the constrained PLP curve Γ±40, we use a tempo set covering ±40% of
the mean tempo of the audio recording, where we assume that a rough estimate of this
tempo is given. The curve ΓDP is obtained by first computing a smoothed tempo trajectory
based on dynamic programming as described in [3; 187] and then by using these tempo
values in the PLP computation instead of the maximizing values, cf. Eq. (2.4). Finally,
the combined curve Ψ is defined as Ψ = (∆norm + Γ)/2, where ∆norm denotes a locally
normalized version of ∆ that assumes values in the interval [0, 1] (as the PLP curve). The
normalization is obtained using a sliding maximum filter of length 4 sec (as for the kernel
size).

In a first evaluation, we use the same F-measure as for onset detection experiment (Sec-
tion 2.9.1). A reference beat is considered a correct detection if there is a detected beat
within an error tolerance of 70 ms. The same tolerance value is suggested in the litera-
ture [29] and used in the MIREX 2011 Audio Beat Tracking evaluation procedure5. Then,
precision, recall, and F-measure are defined as in Eq. (2.8).

Table 2.6 shows the F-measure values for both beat tracking approaches in combination
with different curves. Using peak picking based on ∆ one obtains an F-measure of F =
0.619 for the dataset BEATLES. Actually, for most music, beat positions go along with onset
positions. Consequently, onset positions typically lie on beat positions or on positions
corresponding to higher pulse levels. Therefore, even the simple onset detection procedure
already yields reasonable F-measures (resulting from a very high recall and a moderate
precision). At first sight, it may be surprising that when using peak picking on Γ, one

5http://www.music-ir.org/mirex/wiki/2011:Audio Beat Tracking

http://www.music-ir.org/mirex/wiki/2011:Audio_Beat_Tracking
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Figure 2.15: Illustration of the different curves used in the beat tracking experiments with ground
truth beat positions shown as vertical lines. (a) Novelty curve ∆. (b) PLP curve Γ. (c) Combined
curve Ψ.

obtains slightly lower F-measure values (e. g. F = 0.593 for BEATLES). Here, note that the
peak positions of Γ define a locally periodic pulse grid, where beat positions are likely to
occur. As our experiments show, the number of false negatives is reduced in comparison
with ∆ (leading to a higher recall). However, not all PLP peaks necessarily correspond
to beats. Typically, the predominant pulse corresponds to the tatum pulse leading to
many false positives (low precision). The situation already improves when using Γ±40.
Constraining the pulse to the correct pulse level reduces the number of false positives
(e. g. F = 0.671 for BEATLES). Employing a smooth tempo trajectory for computing ΓDP

has a very similar effect (e. g. F = 0.663 for Beatles).

Using the DP beat tracker, the F-measures significantly improve. In general, the best
results are achieved when using the DP beat tracker with the combined curve Ψ. In
particular, Ψ leads to better results than the usual approach exclusively based on ∆.
For example, in the case of BEATLES, the F-measure increases from F = 0.826 for ∆ to
F = 0.861 for Ψ. Using Γ alone, the results seem to degrade (F = 0.741). A manual
investigation shows that the PLP curve robustly provides information about likely pulse
positions typically at the tatum level, whereas the beat positions correspond to the tactus
level. This often results in half-beat shifts (typically one period on the tatum level) in the
beat tracking result. In other words, since the peak values are invariant to dynamics, Γ is
generally not capable of discriminating between on-beats and off-beats, see Figure 2.15b.
The problem of half-beat shifts is not as prominent when using the original novelty curve,
since the onset peaks of ∆ on the on-beat positions are often more pronounced than the
ones on the off-beat positions, see Figure 2.15a. However, the novelty curve ∆ often
reveals passages with noisy and missing peaks. Here, the combination Ψ inherits the
robustness from Γ and the discriminative power from ∆, yielding the best overall beat
tracking results, see last column of Table 2.6. Figure 2.15c illustrates the gain achieved
through the combined usage of Γ and ∆.

The evaluation based on the simple F-measure has several weaknesses. First, even com-
pletely random false positives only slightly degrade the F-measure. Here, one reason is
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that the F-measure only moderately punishes peak positions, even if they are not musically
meaningful. As a consequence, simple peak picking on ∆, even though ignoring any notion
of a beat concept, seems to yield good results. In particular for the MAZURKA dataset, a
peak picking based on ∆ seems to outperform all other strategies (F = 0.757). Further-
more, this evaluation measure does not account for the issue of half-beat shifts. Finally,
evaluating the beats individually, the temporal context of beat tracking is ignored. In
Section 2.9.7, we tackle these problems by introducing a novel context-sensitive evaluation
measure.

2.9.7 Context-Sensitive Evaluation

In the evaluation measure considered so far, the beat positions were evaluated one by one.
However, when tapping to the beat of music a listener obviously requires the temporal
context of several consecutive beats. Therefore, in evaluating beat tracking procedures,
it seems natural to consider beats in the temporal context instead of looking at the beat
positions individually [29]. To account for these temporal dependencies, we now intro-
duce a context-sensitive evaluation measure. Let R = (r1, r2, . . . , rM ) be the sequence of
monotonously increasing reference beat positions rm ∈ [1 : T ], m ∈ [1 : M ]. Similarly, let
B = (b1, b2, . . . , bK) be the sequence of monotonously increasing detected beat positions
bk ∈ [1 : T ], k ∈ [1 : K]. Furthermore, let L ∈ N be a parameter that specifies the
temporal context measured in beats, and let ε be the error tolerance corresponding to
70 milliseconds. Then a reference beat rm is considered an L-correct detection, if there
exists a subsequence rj , . . . , rj+L−1 of R containing rm (i. e. m ∈ [j : j+L− 1]) as well as
a subsequence bi, . . . , bi+L−1 of B such that

|rj+ℓ − bi+ℓ| ≤ ε

for all ℓ ∈ [0 : L − 1]. Intuitively, for a beat being considered L-correct, one requires an
entire track consisting of L consecutive detected beats that match (up to the error tolerance
ε) to a track of L consecutive reference beats. Here, a single outlier in the detected beats
already destroys this property. Let ML be the number of L-correct references beats.
Then, we define the context-sensitive recall RL := ML/M , precision PL := ML/K and
F-measure FL := (2 · PL · RL)/(PL +RL).

In our evaluation, we use the parameter L = 4 corresponding to four consecutive beats
(roughly a measure). Table 2.7a shows the resulting context-sensitive FL-measures for the
same experiments as described in the last section. Now, the weaknesses of a simple peak
picking strategy based on ∆ or Γ become obvious. Compared to the previous F-measure
(cf. Table 2.6), the FL-measures drop significantly for all datasets. In particular for
popular music, these measures are close to zero (e. g. FL = 0.015 for RWC-POP and ∆), which
indicates that basically no four consecutive beats are detected without any intervening
spurious peaks. Actually, the situation already improves significantly when using the
constrained PLP curve Γ±40 (e. g. FL = 0.486 for RWC-POP). This shows that the PLP
curve captures meaningful local beat information when restricted to the desired pulse level.
ΓDP once again obtains similar results. For example, in the case of BEATLES FL = 0.554
for Γ±40 and FL = 0.555 for ΓDP. For MAZURKA, however, exhibiting many abrupt tempo
changes, ΓDP leads to lower FL-measures (FL = 0.484) than Γ±40 (FL = 0.539). Here,
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(a)

(b)

Peak Picking DP Beat Tracking
Dataset ∆ Γ Γ±40 ΓDP ∆ Γ Ψ

BEATLES 0.050 0.044 0.554 0.555 0.789 0.708 0.824
RWC-POP 0.015 0.005 0.486 0.444 0.757 0.743 0.808
RWC-JAZZ 0.014 0.003 0.253 0.231 0.414 0.535 0.493
RWC-CLASSIC 0.124 0.118 0.381 0.393 0.536 0.528 0.560
MAZURKA 0.238 0.225 0.539 0.484 0.451 0.479 0.508

Peak Picking DP Beat Tracking
Dataset ∆ Γ Γ±40 ΓDP ∆ Γ Ψ

BEATLES 0.050 0.044 0.597 0.592 0.902 0.909 0.926
RWC-POP 0.016 0.005 0.528 0.494 0.881 0.917 0.923
RWC-JAZZ 0.014 0.003 0.282 0.259 0.564 0.705 0.708
RWC-CLASSIC 0.125 0.119 0.404 0.420 0.638 0.633 0.661
MAZURKA 0.238 0.226 0.540 0.486 0.466 0.528 0.527

Table 2.7: Beat tracking results based on context-sensitive evaluation measures (L = 4). (a)
FL-measures. (b) Half-shift invariant F̃L-measures.

simply choosing the local maximum from the constrained tempo set allows for locally
adapting to the strongly varying tempo. Actually, peak picking on Γ±40 leads to the best
results for this dataset. For all other datasets, however, employing the DP beat tracking
procedure improves the results. In particular, for popular music with only moderate tempo
changes, the stricter FL-measures come close to the simple F -measures (e. g., FL = 0.824
compared to F = 0.861 for BEATLES and Ψ).

To investigate the role of half-beat shifts as discussed in Section 2.9.6, we make the eval-
uation measure invariant to such errors. To this end, we shift the sequence R of reference
beats by one half-beat to the right (replacing rm by r̃m := (rm+1 + rm)/2) to obtain a
sequence R̃. Then the reference beat rm is considered correct if rm is L-correct w. r. t.
R or if r̃m is L-correct w. r. t. R̃. As before, we define recall and precision to obtain a
half-shift invariant F-measure denoted by F̃L. Table 2.7b shows the corresponding evalua-
tion results. In particular for the DP tracking approach, one obtains a significant increase
in the evaluation measures for all datasets. For example, for BEATLES and Ψ, one has
F̃L = 0.926 opposed to FL = 0.824, which shows that half-beat shifts are a common
problem in beat tracking. Actually, even humans sometimes perceive beats on off-beat
positions, in particular for syncopal passages with strong off-beat events. This also ex-
plains the strong increase in the case of Jazz music (F̃L = 0.708 opposed to FL = 0.493
for RWC-JAZZ and Ψ), where one often encounters syncopal elements. For DP tracking
based on Γ, the improvements are most noticeable over all datasets. As Γ is invariant to
dynamics, the half-shift beat confusion is very distinctive, see Figure 2.15b.

Finally, we note that the context-sensitive evaluation measures much better reveal the
kind of improvements introduced by our PLP-concept, which tends to suppress spurious
peaks. For both approaches, peak picking and DP beat tracking, one obtains the best
results when using a PLP-based enhancement.
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2.10 Conclusion

In this chapter, we introduced a novel concept for deriving musically meaningful local pulse
information from possibly noisy onset information. Opposed to previous approaches that
assume constant tempo, the main benefit of our PLP mid-level representation is that it can
locally adjust to changes in tempo as long as the underlying music signal possesses some
quasi-periodicity. In our representation, we do not aim at extracting pulses at a specific
level. Instead, a PLP curve is able to locally switch to the dominating pulse level, which
typically is the tatum level. Furthermore, our concept allows for integrating additional
knowledge in form of a tempo range to enforce pulse detection on a specific level. Con-
ducting extensive experiments based on well-known datasets of different genres, we have
shown that our PLP concept constitutes a powerful tool for tempo estimation and beat
tracking. Furthermore, initial experiments also revealed that PLP curves are suitable for
supporting higher-level music processing tasks such as music synchronization [49], meter
estimation [102], as well as pulse-adaptive feature design [45] and audio segmentation [114].

Even for classical music with soft onsets, we were able to extract useful tempo and
beat information. However, for highly expressive interpretations of romantic music,
the assumption of local quasi-periodicity is often violated leading to poor results. At
least, our PLP concept yields a confidence measure to reveal such problematic pas-
sages. Highly-expressive music also reveals the limits of purely onset-oriented tempo
and beat tracking procedures. Here, future work is concerned with jointly consid-
ering additional musical aspects regarding meter, harmony, polyphony, or structure
in order to support and stabilize tempo and beat tracking, see [138; 37; 61; 27;
148] for first approaches towards this direction.
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Chapter 3

A Case Study on Chopin

Mazurkas

In the last chapter, we introduced a novel concept for deriving musically meaningful local
pulse information. As it turned out, highly-expressive music reveals the limits of state-of-
the-art tempo and beat tracking procedures. To better understand the shortcomings of
beat tracking methods, significant efforts have been made to compare and investigate the
performance of different strategies on common datasets [43; 188; 121; 69; 38]. However,
most approaches were limited to comparing the different methods by specifying evaluation
measures that refer to an entire recording or even an entire collection of recordings. Such
globally oriented evaluations do not provide any information on the critical passages within
a piece where the tracking errors occur. Thus, no conclusions can be drawn from these
experiments about possible musical reasons that lie behind the beat tracking errors. A
first analysis of musical properties influencing the beat tracking quality was conducted
by Dixon [38], who proposed quantitative measures for the rhythmic complexity and for
variations in tempo and timings. However, no larger evaluations were carried out to show
a correlation between these theoretical measures and the actual beat tracking quality.

In this chapter, we introduce a novel evaluation framework that exploits the existence of
different performances available for a given piece of music. In our case study we revert to
a collection of recordings for the Chopin Mazurkas containing in average over 50 perfor-
mances for each piece. Based on a local, beat-wise histogram, we simultaneously determine
consistencies of beat tracking errors over many performances. The underlying assumption
is, that tracking errors consistently occurring in many performances of a piece are likely
caused by musical properties of the piece, rather than physical properties of a specific per-
formance. These consistencies indicate musically critical passages in the underlying piece,
rather than a specific performance that are prone to tracking errors. As a further contribu-
tion, we classify the beats of the critical passages by introducing various types of beats such
as non-event beats, ornamented beats, weak bass beats, or constant harmony beats. Each
such beat class stands for a musical performance-independent property that frequently
evokes beat tracking errors. In our experiments, we evaluated three conceptually different
beat tracking procedures on a corpus consisting of 298 audio recordings corresponding
to five different Mazurkas. For each recording, the tracking results were compared with
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ID Composer Piece #(Meas.) #(Beats) #(Perf.)

M17-4 Chopin Op. 17, No. 4 132 396 62
M24-2 Chopin Op. 24, No. 2 120 360 64
M30-2 Chopin Op. 30, No. 2 65 193 34
M63-3 Chopin Op. 63, No. 3 77 229 88
M68-3 Chopin Op. 68, No. 3 61 181 50

Table 3.1: The five Chopin Mazurkas and their identifiers used in our study. The last three
columns indicate the number of measures, beats, and performances available for the respective
piece.

manually annotated ground-truth beat positions. Our local evaluation framework and
detailed analysis explicitly indicates various limitations of current state-of-the-art beat
trackers, thus laying the basis for future improvements and research directions.

This chapter is organized as follows: In Section 3.1, we formalize and discuss the beat
tracking problem. In Section 3.2, we describe the underlying music material and specify
various beat classes. After summarizing the three beat tracking strategies (Section 3.3)
used in our case study and introducing the evaluation measure (Section 3.4), we report
on the experimental results in Section 3.5. Finally, we conclude in Section 3.6 with a
discussion of future research directions.

3.1 Specification of the Beat Tracking Problem

For a given piece of music, let N denote the number of musical beats. Enumerating all
beats, we identify the set of musical beats with the set B = [1 : N ] := {1, 2, . . . , N}.
Given a performance of the piece in the form of an audio recording, the musical beats
correspond to specific physical time positions within the audio file. Let π : B → R be the
mapping that assigns each musical beat b ∈ B to the time position π(b) of its occurrence
in the performance. In the following, a time position π(b) is referred to as physical beat
or simply as beat of the performance. Then, the task of beat tracking is to recover the set
{π(b) | b ∈ B} of all beats from a given audio recording.

Note that this specification of the beat tracking problem is somewhat simplistic, as we
only consider physical beats that are defined by onset events. More generally, a beat
is a perceptual phenomenon and perceptual beat times do not necessarily coincide with
physical beat times [41]. Furthermore, the perception of beats varies between listeners.

For determining physical beat times, we now discuss some of the problems, one has to deal
with in practice. Typically, a beat goes along with a note onset revealed by an increase
of the signal’s energy or a change in the spectral content. However, in particular for non-
percussive music, one often has soft note onsets, which lead to blurred note transitions
rather than sharp note onset positions. In such cases, there are no precise timings of note
events within the audio recording, and the assignment of exact physical beat positions
becomes problematic. This issue is aggravated in the presence of tempo changes and
expressive tempo nuances (e.g., ritardando and accelerando).
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ID |B| |B1| |B2| |B3| |B4| |B5| |B∗|

M17-4 396 9 8 51 88 0 154
M24-2 360 10 8 22 4 12 55
M30-2 193 2 8 13 65 0 82
M63-3 229 1 7 9 36 0 47
M68-3 181 17 7 0 14 12 37

Table 3.2: The number of musical beats in each of the different beat classes defined in Section 3.2.
Each beat may be a member of more than one class.

Besides such physical reasons, there may also be a number of musical reasons for beat
tracking becoming a challenging task. For example, there may be beats with no note event
going along with them. Here, a human may still perceive a steady beat, but the automatic
specification of physical beat positions is quite problematic, in particular in passages of
varying tempo where interpolation is not straightforward. Furthermore, auxiliary note
onsets can cause difficulty or ambiguity in defining a specific physical beat time. In music
such as the Chopin Mazurkas, the main melody is often embellished by ornamented notes
such as trills, grace notes, or arpeggios. Also, for the sake of expressiveness, the notes of
a chord need not be played at the same time, but slightly displaced in time. This renders
a precise definition of a physical beat position impossible.

3.2 Five Mazurkas by Frédéric Chopin

The Mazurka Project1 has collected over 2700 recorded performances for 49 Mazurkas by
Frédéric Chopin, ranging from the early stages of music recording (Grünfeld 1902) until
today [153]. In our case study, we use 298 recordings corresponding to five of the 49
Mazurkas, see Table 3.1. For each of theses recordings the beat positions were annotated
manually [153]. These annotations are used as ground truth in our experiments. Further-
more, Humdrum and MIDI files of the underlying musical scores for each performance are
provided, representing the pieces in an uninterpreted symbolic format.

In addition to the physical beat annotations of the performances, we created musical
annotations by grouping the musical beats B in five different beat classes B1 to B5. Each
of these classes represents a musical property that typically constitutes a problem for
determining the beat positions. The colors refer to Figure 3.4, Figure 3.5, and Figure 3.6.

• Non-event beats B1 (black): Beats that do not coincide with any note events,
see Figure 3.1a.

• Boundary beats B2 (blue): Beats of the first measure and last measure of the
piece.

• Ornamented beats B3 (red): Beats that coincide with ornaments such as trills,
grace notes, or arpeggios, see Figure 3.1b.

• Weak bass beats B4 (cyan): Beats where only the left hand is played, see Fig-
ure 3.1e.

1mazurka.org.uk

mazurka.org.uk
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(a)

(b)

(c)

(d)

(e)

Figure 3.1: Scores of example passages for the different beat classes introduced in Section 3.2.
(a) Non-event beats (B1) in M24-2, (b) Ornamented beats (B3) in M30-2, (c) Constant harmony
beats (B5) in M24-2, (d) Constant harmony beats (B5) in M68-3, and (e) Weak bass beats (B4) in
M63-3.

• Constant harmony beats B5 (green): Beats that correspond to consecutive
repetitions of the same chord, see Figure 3.1(c-d).

Furthermore, let B∗ := ∪5
k=1Bk denote the union of the five beat classes. Table 3.2 details

for each Mazurka the number of beats assigned to the respective beat classes. Note that
the beat classes need not be disjoint, i.e., each beat may be assigned to more than one
class. In Section 3.5, we discuss the beat classes and their implications on the beat tracking
results in more detail.

3.3 Beat Tracking Strategies

In our experiments we use three different beat trackers, see Section 2.1 for an overview.
Firstly, we directly use the onset candidates extracted from a novelty curve as explained in
Section 2.3. Figure 3.2c shows a novelty curve for an excerpt of M17-4 (identifier explained
in Table 3.1). Using a peak picking strategy [7] note onsets can be extracted from this
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Figure 3.2: Representations for an excerpt of M17-4. (a) Score representation of beats 60
to 74. (b) Annotated ground truth beats for the performance pid50534-05 by Horowitz (1985).
(c) Novelty curve (note onset candidates indicated by circles). (d) PLP curve (beat candidates
indicated by circles).

curve. In this method, referred to as ONSET in the following sections, each detected note
onset is considered as a beat position. Secondly, we compute a PLP curve from the
novelty curve as introduced in Section 2.6 and consider the PLP peak positions as beat
positions. In the following, this approach is referred to as PLP. We use a window size of
three seconds and initialize the tempo estimation with the mean of the annotated tempo.
More precisely, we define the global tempo range for each performance covering one octave
around the mean tempo, e.g., for a mean tempo of 120 BPM, tempo estimates in the range
[90 : 180] are valid. This prevents tempo doubling or halving errors and robustly allows
for investigating beat tracking errors, rather than tempo estimation errors. The third beat
tracking method (SYNC) employs the MIDI file available for each piece. This MIDI file can
be regarded as additional knowledge, including the pitch, onset time and duration of each
note. Using suitable synchronization techniques [49] on the basis of coarse harmonic and
very precise onset information, we identify for each musical event of the piece (given by the
MIDI file) the corresponding physical position within a performance. This coordination
of MIDI events to the audio is then used to determine the beat positions in a performance
and simplifies the beat tracking task to an alignment problem, where the number of beats
and the sequence of note events is given as prior knowledge.

3.4 Evaluation on the Beat Level

Many evaluation measures have been proposed to quantify the performance of beat track-
ing systems by comparing the beat positions determined by a beat tracking algorithm and
annotated ground truth beats. An extensive review of evaluation measures is given in [29].
These measures can be divided into two groups. Firstly, measures that analyze each beat
position separately and secondly, measures that take the tempo and metrical levels into
account [31; 30; 102; 121]. While the latter gives a better estimate of how well a sequence
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Iτ (p)

π(b− 1) p = π(b) π(b+ 1) Time

H(p)

Figure 3.3: Illustration of the τ -neighborhood Iτ (p) and the half-beat neighborhood H(p) of a
beat p = π(b), b ∈ B.

of retrieved beats correlates with the manual annotation, it does not give any insight into
the beat tracking performance at a specific beat of the piece.

In our evaluation, we consider the beat tracking quality on the beat-level of a piece and
combine the results of all performances available for this piece. This allows for detecting
beats that are prone to errors in many performances. For a given performance, let Π :=
{π(b) | b ∈ B} be the set of manually determined physical beats, which are used as ground
truth. Furthermore, let Φ ⊂ R be the set of beat candidates obtained from a beat tracking
procedure. Given a tolerance parameter τ > 0, we define the τ -neighborhood Iτ (p) ⊂ R

of a beat p ∈ Π to be the interval of length 2τ centered at p, see Figure 3.3. We say that
a beat p has been identified if there is a beat candidate q ∈ Φ in the τ -neighborhood of
p, i.e., q ∈ Φ ∩ Iτ (p). Let Πid ⊂ Π be the set of all identified beats. Furthermore, we say
that a beat candidate q ∈ Φ is correct if q lies in the τ -neighborhood Iτ (p) of some beat
p ∈ Π and there is no other beat candidate lying in Iτ (p) that is closer to p than q. Let
Φco ⊂ Φ be the set of all correct beat candidates. We then define the precision P = Pτ ,
the recall R = Rτ , and F-measure F = Fτ as [29]

P =
|Φco|

|Φ|
, R =

|Πid|

|Π|
, F =

2 · P · R

P + R
. (3.1)

Table 3.3 shows the results of various beat tracking procedures on the Mazurka data. As
it turns out, the F-measure is a relatively soft evaluation measure that only moderately
punishes additional, non-correct beat candidates. As a consequence, the simple onset-
based beat tracker seems to outperform most other beat trackers. As for the Mazurka
data, many note onsets coincide with beats, the onset detection leads to a high recall,
while having only a moderate deduction in the precision.

We now introduce a novel evaluation measure that punishes non-correct beat candidates,
which are often musically meaningless, more heavily. To this end, we define a half-beat
neighborhood H(p) of a beat p = π(b) ∈ Π to be the interval ranging from π(b−1)−π(b)

2 (or

π(b) for b = 1) to π(b+1)−π(b)
2 (or π(b) for b = N), see Figure 3.3. Then, we say that a beat

b ∈ B has been strongly identified if there is a beat candidate q ∈ Φ with q ∈ Φ ∩ Iτ (p)
and if H(p) ∩ Φ = {q} for p = π(b). In other words, q is the only beat candidate in the
half-beat neighborhood of p. Let Πstid ⊂ Π be the set of all strongly identified beats, then
we define the beat accuracy A = Aτ to be

A =
|Πstid|

|Π|
. (3.2)
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SYNC ONSET PLP

ID P/R/F/A P R F A P R F A

M17-4 0.837 0.552 0.958 0.697 0.479 0.615 0.743 0.672 0.639
M24-2 0.931 0.758 0.956 0.845 0.703 0.798 0.940 0.862 0.854
M30-2 0.900 0.692 0.975 0.809 0.623 0.726 0.900 0.803 0.788
M63-3 0.890 0.560 0.975 0.706 0.414 0.597 0.744 0.661 0.631
M68-3 0.875 0.671 0.885 0.758 0.507 0.634 0.755 0.689 0.674

Mean: 0.890 0.634 0.952 0.754 0.535 0.665 0.806 0.728 0.729

MIREX Our Methods
Method DRP3 GP2 OGM2 TL SYNC ONSET PLP

F 0.678 0.547 0.321 0.449 0.890 0.754 0.728

Table 3.3: Comparison of the beat tracking performance of the three strategies used in this
chapter and the MIREX 2009 results based on the evaluation metrics Precision P, Recall R, F-
measure F and the beat accuracy A.

3.5 Experimental Results

We now discuss the experimental results obtained using our evaluation framework and
explain the relations between the beat tracking results and the beat classes introduced in
Section 3.2.

We start with discussing Table 3.3. Here, the results of the different beat tracking ap-
proaches for all performances of the five Mazurkas are summarized, together with some
results from the MIREX 2009 beat tracking task2. All beat trackers used in our evaluation
yield better results for the Mazurkas than all trackers used in the MIREX evaluation. As
noted before, the F-measure only moderately punishes additional beats. In consequence,
ONSET (F = 0.754) seems to outperform all other methods, except SYNC (F = 0.890). In
contrast, the introduced beat accuracy A punishes false positives more heavily, leading
to A = 0.535 for ONSET, which is significantly lower than for PLP (A = 0.729) and SYNC

(A = 0.890). For SYNC, the evaluation metrics P, R, F, and A are equivalent because the
number of detected beats is always correct. Furthermore, SYNC is able to considerably
outperform the other strategies. This is not surprising, as it is equipped with additional
knowledge in the form of the MIDI file.

There are some obvious differences in the beat tracking results of the individual Mazurkas
caused by the musical reasons explained in [38]. First of all, all methods deliver the best
result for M24-2. This piece is rather simple, with many quarter notes in the dominant
melody line. M17-4 is the most challenging for all three trackers because of a frequent use
of ornaments and trills and many beat positions that are not reflected in the dominating
melody line. For the ONSET tracker, M63-3 constitutes a challenge (A = 0.414), although
this piece can be handled well by the SYNC tracker. Here, a large number of notes that do
not fall on beat positions provoke many false positives. This also leads to a low accuracy
of PLP (A = 0.631).

Going beyond this evaluation on a piece-level, Figure 3.4, Figure 3.5, and Figure 3.6

2www.music-ir.org/mirex/wiki/2009:Audio Beat Tracking Results

www.music-ir.org/mirex/wiki/2009:Audio_Beat_Tracking_Results
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Figure 3.4: The beat error histogram for the synchronization based beat tracking (SYNC) shows
for how many performances of each of the five Mazurkas a beat b is not identified. The different
colors of the bars encode the beat class B a beat is assigned to, see Section 3.2.

ID B B\B1 B\B2 B\B3 B\B4 B\B5 B\B∗

M17-4 0.837 0.852 0.842 0.843 0.854 0.837 0.898
M24-2 0.931 0.940 0.936 0.941 0.933 0.939 0.968
M30-2 0.900 0.900 0.903 0.931 0.905 0.900 0.959
M63-3 0.890 0.890 0.898 0.895 0.895 0.890 0.911
M68-3 0.875 0.910 0.889 0.875 0.875 0.887 0.948

Mean: 0.890 0.898 0.894 0.897 0.894 0.892 0.925

Table 3.4: Beat accuracy A results comparing the different beat classes for SYNC: For all beats
B, excluding non-event beats B1, boundary beats B2, ornamented beats B3, weak bass beats B4,
constant harmony beats B5, and the union B∗.

illustrate the beat-level beat tracking results of our evaluation framework for the SYNC,
PLP, and ONSET strategy, respectively. Here, for each beat b ∈ B of a piece, the bar encodes
for how many of the performances of this piece the beat was not strongly identified (see
Section 3.4). High bars indicate beats that are incorrectly identified in many performances,
low bars indicate beats that are identified in most performances without problems. As
a consequence, this representation allows for investigating the musical properties leading
to beat errors. More precisely, beats that are consistently wrong over a large number of
performances of the same piece are likely to be caused by musical properties of the piece,
rather than physical properties of a specific performance. For example, for the tracking
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Figure 3.5: The beat error histogram for the PLP tracker shows for how many performances of
each of the five Mazurkas a beat b is not identified. The different colors of the bars encode the
beat class B a beat is assigned to, see Section 3.2.

ID B B\B1 B\B2 B\B3 B\B4 B\B5 B\B∗

M17-4 0.639 0.650 0.641 0.671 0.593 0.639 0.649
M24-2 0.854 0.857 0.862 0.857 0.856 0.854 0.873
M30-2 0.788 0.788 0.794 0.814 0.772 0.788 0.822
M63-3 0.631 0.631 0.638 0.639 0.647 0.631 0.668
M68-3 0.674 0.705 0.689 0.674 0.678 0.674 0.733

Mean: 0.729 0.735 0.734 0.739 0.723 0.729 0.751

Table 3.5: Beat accuracy A results comparing the different beat classes for PLP: For all beats
B, excluding non-event beats B1, boundary beats B2, ornamented beats B3, weak bass beats B4,
constant harmony beats B5, and the union B∗.

strategies SYNC and PLP and all five pieces, the first and last beats are incorrectly identified
in almost all performances, as shown by the blue bars (B2). This is caused by boundary
problems and adaption times of the algorithms. For ONSET, this effect is less pronounced
as only local information is used for determining beat positions. As a result, there is no
adaption time for ONSET.

Furthermore, there is a number of significant high bars within all pieces. The SYNC strategy
for M68-3 (see Figure 3.4) exhibits a number of isolated black bars. These non-event beats
do not fall on any note-event (B1). As stated in Section 3.1, especially when dealing
with expressive music, simple interpolation techniques do not work to infer these beat
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Figure 3.6: The beat error histogram for the ONSET tracker shows for how many performances
of each of the five Mazurkas a beat b is not identified. The different colors of the bars encode the
beat class B a beat is assigned to, see Section 3.2.

positions automatically. The same beat positions are problematic in the PLP strategy,
see Figure 3.5 and in particular in ONSET, see Figure 3.6. For M30-2 (Figure 3.4) most
of the high bars within the piece are assigned to B3 (red). These beats, which coincide
with ornaments such as trills, grace notes, or arpeggios are physically not well defined
and hard to determine. For the Mazurkas, chords are often played on-beat by the left
hand. However, for notes of lower pitch, onset detection is problematic, especially when
played softly. As a consequence, beats that only coincide with a bass note or chord, but
without any note being played in the main melody, are a frequent source for errors. This
is reflected by the cyan bars (B3) frequently occurring in M17-4 (Figure 3.4). Finally, B5

(green) contains beats falling on consecutive repetitions of the same chord. This constitutes
a challenge for the onset detection, especially when played softly. Both M24-2 and M68-3

exhibit a region of green bars that are incorrectly tracked by the SYNC (Figure 3.4) and
PLP (Figure 3.5) trackers.

As mentioned in Section 3.3, PLP can not handle tempo changes well. As a consequence,
many of the beat errors for PLP that are not assigned to any beat class (e.g., M24-2 in
Figure 3.5, b = [260 : 264] ) are caused by sudden tempo changes appearing in many
of the performances. However, these are considered a performance-dependent property,
rather than a piece-dependent musical property and are not classified in a beat class.

Tables 3.4 and 3.5 summarize the effect of each beat class on the piece-level results.
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Here, the mean beat accuracy is reported for each of the five Mazurkas, when excluding
the beats of a certain class. For example, M30-2 contains many beats of B3. Excluding
these ornamented beats from the evaluation, the overall beat accuracy increases from
A = 0.900 to A = 0.931 for SYNC (Table 3.4) and from 0.788 to 0.814 for PLP (Table 3.5).
The challenge of M68-3 however, are non-event beats (B1). Leaving out these beats, the
accuracy increases from 0.875 to 0.910 for SYNC and from 0.674 to 0.705 for PLP.

Aside from musical properties of a piece causing beat errors, physical properties of certain
performances make beat tracking difficult. In the following, we exemplarily compare the
beat tracking results of the performances of M63-3. Figure 3.7 shows the beat accuracy
A for all 88 performances available for this piece. In case of the SYNC tracker, the beat
accuracy for most of the performances is in the range of 0.8−0.9, with only few exceptions
that deviate significantly (Figure 3.7a). In particular, Michalowski’s 1933 performance
with index 39 (pid9083-16) shows a low accuracy of only A = 0.589 due to a poor condition
of the original recording which contains a low signal-to-noise ratio and many clicks. The
low accuracy (A = 0.716) of performance 1 (Csalog 1996, pid1263b-12) is caused by a
high amount of reverberation, which makes a precise determination of the beat positions
hard. The poor result of performance 81 (Zak 1951, pid918713-20) is caused by a detuning
of the piano. Compensating for this tuning effect, the synchronization results and thus,
the beat accuracy improves from A = 0.767 to A = 0.906. As it turns out, ONSET tends
to be even more sensitive to bad recording conditions. Again, performance 39 shows an
extremely low accuracy (A = 0.087), however, there are more recordings with a very low
accuracy (70, 71, 79, 80, 57, and 58). Further inspection shows that all of these recordings
contain noise, especially clicks and crackling, which proves devastating for onset detectors
and leads to a high number of false positives. Although onset detection is problematic for
low quality recordings, the PLP approach shows a different behavior. Here, the periodicity
enhancement of the novelty curve [72] provides a cleaning effect and is able to eliminate
many spurious peaks caused by recording artifacts and leads to a higher beat accuracy.
However, other performances suffer from a low accuracy (performances 29, 30, and 77). As
it turns out, these examples exhibit extreme local tempo changes that can not be captured
well by the PLP approach, which relies on a constant tempo within the analysis window.
On the other hand, some performances show a noticeably higher accuracy (2, 5, 11, 31,
74, and 87). All oft these recordings are played in a rather constant tempo.

3.6 Further Notes

Our experiments indicate that our approach of considering multiple performances simulta-
neously for a given piece of music for the beat tracking task yields a better understanding
not only of the algorithms’ behavior but also of the underlying music material. The
understanding and consideration of the physical and musical properties that make beat
tracking difficult is of essential importance for improving the performance of beat tracking
approaches. Exploiting the knowledge of the musical properties leading to beat tracking
errors one can design more advanced audio features. For example, in case of the Chopin
Mazurkas the tempo and beat is often revealed only by the left hand, whereas the right
hand often has an improvisatory character. For this kind of music, one may achieve im-
provements when separating the recording into melody (right hand) and accompaniment
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Figure 3.7: Beat accuracy A for the beat tracker SYNC (a), ONSET (b), and PLP (c) of all 88
performances of M63-3.

(left hand) using source separation techniques as proposed in [48]. Analyzing the voices
individually, the quality of the novelty curve can be enhanced to alleviate the negative
effect of the ornamented beats or weak bass beats.

In [85], our concept has now been adopted for investigating beat tracking results obtained
by different beat tracking approaches on the same dataset. Considering inconstistencies
in the beat tracking results obtained from the different procedures, the authors apply
this approach also to music recordings without any manually annotated ground truth.
Here, the underlying assumption is that inconsistencies in the beat tracking result indicate
problematic examples. Consistencies across the different trackers, however, are a result of
a correctly tracked beat. As a result, this approach allows for detecting difficult recordings
that are a challenge for beat tracking algorithms.



Chapter 4

Tempo-Related Audio Features

Our experiments in the preceding chapters indicate that the extraction of tempo and
beat information is a challenging problem. In particular, in the case of weak note onsets
and significant tempo changes, determining explicit tempo values is an error-prone step.
In this chapter, we introduce various robust mid-level representations that capture local
tempo characteristics of music signals. Instead of extracting explicit tempo information
from the music recordings (which is an error-prone step), the mid-level representations
reveal information about local changes of the tempo. First, we generalize the concept of
tempograms. Tempogram representations derived from a novelty curve already played a
major role in the computation of the PLP curves as introduced in Chapter 2. In addition
to the tempogram based on a Fourier transform, we now introduce a second variant based
on an autocorrelation function. As it turnes out, the autocorrelation tempogram naturally
complements the Fourier tempogram [146].

An important property of musical rhythm is that there are various pulse levels that con-
tribute to the human perception of tempo such as the measure, tactus, and tatum lev-
els [102], see Section 2.1. As an analogy, these different levels may be compared to the
existence of harmonics in the pitch context. Inspired by the concept of chroma features, we
introduce the concept of cyclic tempograms, where the idea is to form tempo equivalence
classes by identifying tempi that differ by a power of two. Originally suggested in [104]

we formalize and expand this concept in this chapter. The resulting cyclic tempo features
constitute a robust mid-level representation that reveals local tempo characteristics of
music signals while being invariant to changes in the pulse level. Being the tempo-based
counterpart of the harmony-based chromagrams, cyclic tempograms are suitable for mu-
sic analysis and retrieval tasks, where harmony-based, timbre-based, and rhythm-based
criteria are not relevant or applicable.

The remainder of this chapter is organized as follows. First, in Section 4.1, we generalize
the concept of tempograms and describe the two variants. In Section 4.2, we introduce
the novel concept of cyclic tempograms. In Section 4.3, we sketch various applications of
the resulting mid-level representations and finally conclude in Section 4.4.

57
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Figure 4.1: (a) Novelty curve of click track of increasing tempo (110 to 130 BPM). (b) Fourier
tempogram (showing harmonics). (c) Cyclic tempogram C60 induced by (b). (d) Autocorrelation
tempogram (showing subharmonics). (e) Cyclic tempogram C60 induced by (d).

4.1 Tempogram Representations

In general, a tempogram (similar to a spectrogram that is a time-frequency representa-
tion) is a time-tempo representation of a given time-dependent signal. Mathematically, a
tempogram is a mapping T : R×R>0 → R≥0 depending on a time parameter t ∈ R mea-
sured in seconds and a tempo parameter τ ∈ R>0 measured in beats per minute (BPM).
Intuitively, the value T (t, τ) indicates to which extend a pulse of tempo τ is present at
time t. For example, let us suppose that a music signal has a dominant tempo of 120
BMP around position t = 20 seconds. Then the resulting tempogram T should have a
large value T (t, τ) for τ = 120 and t = 20. Because of the ambiguity concerning the pulse
levels, one typically also has large values of T for integer multiples τ, 2τ, 3τ, . . . (referred
to as harmonics of τ) and integer fractions τ, τ/2, τ/3, . . . (referred to as subharmonics of
τ). For an illustration, we refer to Figure 4.1, which shows various tempograms for a click
track of increasing tempo.

For computing tempograms, one typically first extracts a novelty curve ∆ as introduced in
Section 2.3. The peaks of this curve yield good indicators for note onsets. In a second step,
local periodic patterns are derived from the novelty curve. Here, we discuss two different
methods that yield tempograms with harmonics (Fourier tempogram, Section 4.1.1) and
with subharmonics (autocorrelation tempogram, Section 4.1.2), respectively.

4.1.1 Fourier Tempogram

As first strategy, we analyze the novelty curve ∆ with respect to local periodic patterns
using a short-time Fourier transform. To this end, we fix a window function W : Z → R
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Figure 4.2: (a) Novelty curve ∆ of an audio recording of a Waltz by Shostakovich. (b) Fourier
tempogram T F. (c) Cyclic tempogram CF

60. (d) Autocorrelation tempogram T A. (e) Cyclic tem-
pogram CA

60.

centered at t = 0 with support [−N : N ]. In our experiments, we use a Hann window of
size 2N + 1 corresponding to six seconds of the audio recording. Then, for a frequency
parameter ω ∈ R≥0, the complex Fourier coefficient F(t, ω) is defined by

F(t, ω) =
∑

n∈Z

∆(n) ·W (n− t) · e−2πiωn . (4.1)

In the musical context, we rather think of tempo measured in beats per minutes (BPM)
than of frequency measured in Hertz (Hz). Therefore, we use a tempo parameter τ sat-
isfying the equation τ = 60 · ω. Furthermore, we compute the tempi only for a finite
set Θ ⊂ R>0. In our implementation, we cover four tempo octaves ranging from τ = 30
to τ = 480. Furthermore, we sample this interval in a logarithmic fashion covering each
tempo octave byM samples, where the integerM determines the tempo resolution. Then,
the discrete Fourier tempogram T F : Z×Θ → R≥0 is defined by

T F(t, τ) = |F(t, τ/60)|. (4.2)

As an example, Figure 4.2b shows the tempogram T F of a recording of a Waltz by
Shostakovich. In T F, the tempo on the beat level (roughly τ = 216 BPM) and the
second harmonics of this tempo are dominant. However, the tempo on the measure level
of the three-quarter Waltz (roughly 72 BPM, third subharmonics of τ = 216) is hardly
noticeable. Actually, since the novelty curve ∆ locally behaves like a track of positive
clicks, it is not hard to see that Fourier analysis responds to harmonics but suppresses
subharmonics, see also [145].



60 CHAPTER 4. TEMPO-RELATED AUDIO FEATURES

4.1.2 Autocorrelation Tempogram

In the context of tempo estimation, also autocorrelation-based methods are widely used
to estimate local periodicities [44]. Since these methods, as it turns out, respond to sub-
harmonics while suppressing harmonics, they ideally complement Fourier-based methods,
see [145]. To obtain a discrete autocorrelation tempogram, we proceed as follows. Again, we
fix a window function W : Z → R centered at t = 0 with support [−N : N ], N ∈ N. This
time, we use a box window of size 2N + 1 corresponding to six seconds of the underlying
music recording. The local autocorrelation is then computed by comparing the windowed
novelty curve with time shifted copies of itself. More precisely, we use the unbiased local
autocorrelation

A(t, ℓ) =

∑

n∈Z∆(n) ·W (n− t)∆(n+ ℓ) ·W (n− t+ ℓ)

2N + 1− ℓ
, (4.3)

for time t ∈ Z and time lag ℓ ∈ [0 : N ]. Each time parameter t ∈ Z of the novelty curve
corresponds to r seconds of the audio (in our implementation we used r = 0.023).

Then, the lag ℓ corresponds to the tempo

τ = 60/(r · ℓ)

in BPM. We therefore define the autocorrelation tempogram T A by

T A(t, τ) = A(t, ℓ). (4.4)

for each tempo τ = 60/(r · ℓ), ℓ ∈ [1 : N ]. Finally, using standard resampling and
interpolation techniques applied to the tempo domain, we derive an autocorrelation tem-
pogram T A : Z × Θ → R≥0 that is defined on the same tempo set Θ as the Fourier
tempogram T F, see Section 4.1.1. The tempogram T A for our Shostakovich example is
shown in Figure 4.2d, which clearly indicates the subharmonics. This fact is also illus-
trated by comparing the Fourier tempogram shown in Figure 4.2b and the autocorrelation
tempogram shown in Figure 4.2d.

4.2 Cyclic Tempograms

The different pulse levels as present in the audio recordings and revealed by the tem-
pograms (either harmonics or subharmonics) lead to octave confusions when determining
absolute tempo information, see Section 2.1. To reduce the impact of such kind of tempo
confusions, we apply a similar strategy as in the computation of chroma features [4]. Re-
call that two pitches having fundamental frequencies f1 and f2 are considered as octave
equivalent, if they are related by f1 = 2kf2 for some k ∈ Z. Similarly, we say that two
tempi τ1 and τ2 are octave equivalent, if they are related by τ1 = 2kτ2 for some k ∈ Z.
Then, for a given tempo parameter τ , the resulting tempo equivalence class is denoted by
[τ ]. For example, for τ = 120 one has [τ ] = {. . . , 30, 60, 120, 240, 480 . . .}. Now, the cyclic
tempogram C induced by T is defined by

C(t, [τ ]) :=
∑

λ∈[τ ]

T (t, λ) . (4.5)
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Figure 4.3: Cyclic tempogram CF
60 (top) and CA

60 (middle) with M = 15 as well as tempo-
based segmentations (bottom) for In The Year 2525 by Zager and Evans. Intro and interlude are
annotated.

Note that the tempo equivalence classes topologically correspond to a circle. Fixing a
reference tempo ρ (e. g., ρ = 60 BPM), the cyclic tempogram can be represented by a
mapping Cρ : R× R>0 → R≥0 defined by

Cρ(t, s) := C(t, [s · ρ]), (4.6)

for t ∈ R and s ∈ R>0. Note that Cρ(t, s) = Cρ(t, 2
ks) for k ∈ Z and Cρ is completely

determined by its values s ∈ [1, 2). Here, we use the representation Cρ with ρ = 60. As
illustration, Figure 4.1 shows various tempograms for a click track of increasing tempo with
a tempo increasing from τ = 110 to τ = 130 BPM. Figure 4.1b shows a Fourier tempogram
with harmonics and Figure 4.1c the resulting cyclic tempogram. As in the pitch context,
the tempo class [3τ ] is referred to as the tempo dominant and corresponds to the third
harmonics 3τ . In Figure 4.1c, the tempo dominant is visible as the increasing line in the
middle. Similarly, Figure 4.1d shows an autocorrelation tempogram with subharmonics
and Figure 4.1e the resulting cyclic tempogram. Here, the tempo class [τ/3] is referred
to as the tempo subdominant and corresponds to the third subharmonics τ/3, see the
increasing line in the middle of Figure 4.1e.

For computing cyclic tempograms, recall that the tempo parameter set Θ introduced in
Section 4.1.1 comprises four tempo octaves ranging from τ = 30 to τ = 480, where each
octave is covered by M logarithmically spaced samples. Therefore, one obtains a discrete
cyclic tempogram CF (resp. CA) from the tempogram T F (resp. T A) simply by adding up
the corresponding values of the four octaves as described in Eq. (4.5). Using a reference
tempo of ρ = 60 BPM, we obtain the cyclic tempogram CF

60 (resp. CA
60). Note that these

discrete cyclic tempograms are M -dimensional, where the cylic tempo axis is sampled at
M positions. For our Shostakovich example, Figure 4.2c (resp. Figure 4.2e) shows the
discrete cyclic tempogram CF

60 (resp. CA
60), where we used a time resolution of r = 0.023

seconds and a tempo resolution ofM = 120. Note that the subharmonic tempo at measure
level corresponding to roughly 72 BPM (s = 1.2) is clearly visible in CA

60, but not in CF
60.



62 CHAPTER 4. TEMPO-RELATED AUDIO FEATURES

 

 

0 100 200 300 400 500
1

1.5

2

0

0.1

0.2

0.3

0.4

0.5

 

 

0 100 200 300 400 500
1

1.5

2

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500

P
a
ra
m
et
er
s

P
a
ra
m
et
er
s

Time (sec)

Figure 4.4: Cyclic tempogram CF
60 (top) and CA

60 (middle) with M = 15 as well as tempo-
based segmentations (bottom) for Piano Sonata Op. 13 (Pathétique) by Beethoven performed by
Barenboim. All Grave parts are annotated.

4.3 Applications to Music Segmentation

As mentioned before, the cyclic tempograms are the tempo-based counterparts of the
harmony-based chromagrams. Compared to usual tempograms, the cyclic versions are
more robust to tempo ambiguities that are caused by the various pulse levels. Furthermore,
one can simulate changes in tempo simply by cyclically shifting a cyclic tempogram. Note
that this is similar to the property of chromagrams, which can be cyclically shifted to
simulate modulations in pitch. As one further advantage, even low-dimensional versions
of discrete cyclic tempograms still bear valuable local tempo information of the underlying
musical signal.

To illustrate the potential of our concept, we sketch how cyclic tempograms can be used
for automated music segmentation, which is a central task in the field of music information
retrieval [123; 91; 114]. Actually, there are many different strategies for segmenting music
signals such as novelty-based, repetition-based, and homogeneity-based strategies. In
the latter, the idea is to partition the music signal into segments that are homogenous
with regard to a specific musical property [114]. In this context, timbre-related audio
features such as MFCCs or spectral envelopes are frequently used, resulting in timbre-based
segmentations. Similarly, using chroma-based audio features results in harmony-based
segmentations. We now indicate, how our cyclic tempograms can be applied to obtain
tempo-based segmentations (using a simple two-class clustering procedure for illustration).
In the following examples, we use low-dimensional versions of CA

60 and CF
60 based onM = 15

different tempo classes. In our first example, we consider the song In The Year 2525 by
Zager and Evans. This song starts with a slow intro and contains a slow interlude of
the same tempo. The remaining parts (basically eight repetitions of the chorus section)
are played in a different, much faster tempo. As can be seen in Figure 4.3, both cyclic
tempograms, CF

60 and CA
60, allow for separating the slow from the fast parts. As second
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Figure 4.5: Cyclic tempogram CF
60 (top) and CA

60 (middle) with M = 15 as well as tempo-based
segmentations (bottom) for Hungarian Dance No. 5 by Brahms.

example, we consider a recording of the first movement of Beethoven’s Piano Sonata Op. 13
(Pathétique). After a dramatic Grave introduction, the piece continues with Allegro di
molto e con brio. However, it returns twice to Grave—at the beginning of the development
section as well as in the coda. Using a purely tempo-based segmentation, the occurrences
of the three Grave sections can be recovered, see Figure 4.4. Here, in particular the
autocorrelation tempogram CA

60 yields a clear discrimination. Finally, as a third example,
we consider a piano version of Brahms’ Hungarian Dance No. 5, a piece with many abrupt
changes in tempo. This property is well reflected by the cyclic tempograms shown in
Figure 4.5. In particular, the Fourier tempogram CF

60 separates well the slow middle part
from the other, much faster parts.

4.4 Further Notes

As shown in this chapter, tempogram representations constitute a class of powerful mid-
level representations that reveal local tempo information for music with significant tempo
changes while being invariant to extraction errors. Being the tempo-based counterpart
of the harmony-based chromagrams, cyclic tempograms are suitable for music analysis
and retrieval tasks, where harmony-based criteria are not relevant. In the three example
discussed in this chapter, the cyclic tempograms yield musically meaningful segmentations
purely based on a low-dimensional representation of tempo. Actually, these segments can
not be recovered using MFCCs or chroma features, since the homogeneity assumption does
not hold with regard to timbre or harmony.

For the future, one could integrate our concept of cyclic tempo features into a segmentation
and structure extraction framework. In practice, various strategies based on different
musical dimensions are needed to cope with the richness and diversity of music [91; 142].
In this context, our features reveal musically meaningful segmentation purely based on
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tempo information, while being invariant to rhythmic [92], harmonic [84], and timbre [114]

properties. Furthermore, having low-dimensional tempo features (in the order of the 12-20
dimensions of chroma and MFCC features), makes it possible to employ index-based range
and nearest neighbor searches, which is important in view of efficient music retrieval.
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Music Segmentation





Chapter 5

Reference-Based Folk Song

Segmentation

Generally, a folk song is referred to as a song that is sung by the common people of a
region or culture during work or social activities. As a result, folk music is closely related
to the musical culture of a specific nation or region. Since many decades, significant
efforts have been carried out to assemble and study large collections of folk songs [95; 178;
94] which are not only part of the nations’ cultural heritage but also allow musicologists
to conduct folk song research on a large scale. Among others, researchers are interested
in reconstructing and understanding the genetic relations between variants of folk songs
as well as discovering musical connections and distinctions between different national or
regional cultures [178; 95; 94].

Even though folk songs were typically transmitted only orally without any fixed symbolic
notation, most of the folk song research is conducted on the basis of notated music ma-
terial, which is obtained by transcribing recorded tunes into symbolic, score-based music
representations. These transcriptions are often idealized and tend to represent the pre-
sumed intention of the singer rather than the actual performance. After the transcription,
the audio recordings are often no longer studied in the actual research. This seems some-
what surprising, since one of the most important characteristics of folk songs is that they
are part of oral culture. Therefore, one may conjecture that performance aspects enclosed
in the recorded audio material are likely to bear valuable information, which is no longer
contained in the transcriptions. Furthermore, even though the notated music material
may be more suitable for classifying and identifying folk songs using automated methods,
the user may want to listen to the original recordings rather than to synthesized versions
of the transcribed tunes.

One reason for folk song researchers to focus on symbolic representations is that, due to
its massive data volume and complexity, audio material is generally hard to deal with. In
a specific folk song recording, musically relevant information such as the occurring notes
(specified by musical onset times, pitches, and durations), the melody, or the rhythm are
not given explicitly, but are somehow hidden in the waveform of the audio signal.

It is the object of this chapter to indicate how the original recordings can be made more
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easily accessible for folk song researches and listeners by bridging the gap between the
symbolic and the audio domain. In particular, we present a procedure for automatically
segmenting a given folk song recording that consists of several repetitions of the same tune
into its individual stanzas. More precisely, for most folk songs a tune is repeated over and
over again with changing lyrics. A typical field recording therefore consists of a sequence
A1A2 . . . AK of stanzas Ak, k ∈ [1 : K] := {1, 2, . . . ,K}, where each Ak corresponds to
the same tune. Given a field recording, the segmentation task consists in identifying the
temporal boundaries of the various stanzas. In this chapter, we introduce a reference-
based segmentation algorithm that employs a manually transcribed reference stanza. The
segmentation is then achieved by locally comparing the field recording with the reference
stanza by means of a suitable distance function.

Main challenges arise from the fact that the folk songs are performed by elderly non-
professional singers under poor recording conditions. The singers often deviate signifi-
cantly from the expected pitches and have serious problems with the intonation. Even
worse, their voices often fluctuate by several semitones downwards or upwards across the
various stanzas of the same recording. As our main contribution, we introduce a combina-
tion of robust audio features along with various cleaning and audio matching strategies to
account for such musical variations and inaccuracies. Our evaluation based on folk song
recordings shows that we obtain a reliable segmentation even in the presence of strong
musical variations.

The remainder of this chapter is organized as follows. In Section 5.1, we give an overview
on computational folk song research and introduce the Dutch folk song collection Onder de
groene linde (OGL). In Section 5.2, we give a short introduction to chroma features, which
lay the basis for our analysis. Then, we describe a distance function for comparing chroma
features (Section 5.3) and show how the segmentation of the audio recordings is derived
(Section 5.4). In Section 5.5, as one main contribution of this chapter, we describe various
enhancement strategies for achieving robustness to the aforementioned pitch fluctuations
and recording artifacts. Then, in Section 5.6, we report on our systematic experiments
conducted on the OGL collection. Finally, further notes are given in Section 5.7.

5.1 Background on Folk Song Research

Folk songs are typically performed by common people of a region or culture during work
or recreation. These songs are generally not fixed by written scores but are learned and
transmitted by listening to and participating in performance. Systematic research on folk
song traditions started in the 19th century. At first researchers wrote down folk songs in
music notation at performance time, but from an early date onwards performances were
recorded using available technologies. Over more than a century of research, enormous
amounts of folk song data have been assembled. Since the late 1990s, digitization of folk
songs has become a matter of course. See [25] for an overview of European collections.

Digitized folk songs offer interesting challenges for computational research, and the avail-
ability of extensive folk song material requires computational methods for large-scale mu-
sicological investigation of this data. Much interdisciplinary research into such methods
has been has been carried out within the context of music information retrieval (MIR).
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An important challenge is to create computational methods that contribute to a bet-
ter musical understanding of the repertoire [177]. For example, using computational
methods, motivic relationships between different folk song repertoires are studied in [94].
Within individual traditions, the notion of tune family is important. Tune families con-
sist of melodies that are considered to be historically related through the process of oral
transmission. In the WITCHCRAFT project, computational models for tune families
are investigated in order to create a melody search engine for Dutch folk songs [179;
186]. In the creation of such models aspects from music cognition play an important role.
The representation of a song in human memory is not literal. During performance, the
actual appearance of the song is recreated. Melodies thus tend to change over time and
between performers. But even within a single performance of a strophic song interesting
variations of the melody may be found.

By systematically studying entire collections of folk songs, researchers try to reconstruct
and understand the genetic relation between variants of folk songs with the goal to discover
musical connections and distinctions between different national or regional cultures [95;
178]. To support such research, several databases of encoded folk song melodies have been
assembled, the best known of which is the Essen folk song database,1 which currently
contains roughly 20000 folk songs from a variety of sources and cultures. This collection
has also been widely used in MIR research. For a survey of folk song research we refer
to [178].

Even though folk songs are typically orally transmitted in performance, much of the re-
search is conducted on the basis of notated musical material and leaves potentially valuable
performance aspects enclosed in the recorded audio material out of consideration. How-
ever, various folk song collections contain a considerable amount of audio data, which has
not yet been explored at a larger scale. An important step in unlocking such collections
of orally transmitted folk songs is the creation of content-based search engines which al-
low users to browse and navigate within these collections on the basis of the different
musical dimensions. The engines should enable a user to search for encoded data using
advanced melodic similarity methods. Furthermore, it should also be possible to not only
visually present the retrieved items, but also to supply the corresponding audio recordings
for acoustic playback. One way of solving this problem is to create robust alignments
between retrieved encodings (for example in MIDI format) and the audio recordings. The
segmentation and annotation procedure described in the following exactly accomplishes
this task.

Since folk songs are part of oral culture, one may conjecture that performance aspects
enclosed in the recorded audio material are likely to bear valuable information, which is
no longer contained in the transcriptions. Performance analysis has become increasingly
important in musicological research and in music psychology. In folk song research (or
more widely, in ethnomusicological research) computational methods are beginning to be
applied to audio recordings as well. Examples are the study of African tone scales [122]

and Turkish rhythms [87]. Comparing the various stanzas of a folksong allows for studying
performance and melodic variation within a single performance of a folk song.

In the Netherlands, folk song ballads (strophic, narrative songs) have been extensively col-

1http://www.esac-data.org/

http://www.esac-data.org/
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lected and studied. A long-term effort to record these songs was started by Will Scheepers
in the early 1950s, and it was continued by Ate Doornbosch until the 1990s [70]. Their field
recordings were usually broadcasted in the radio program Onder de groene linde (Under
the green lime tree). Listeners were encouraged to contact Doornbosch if they knew more
about the songs. Doornbosch would then record their version and broadcast it. In this
manner a collection, in the following referred to as OGL collection, was created that not
only represents part of the Dutch cultural heritage but also documents the textual and
melodic variation resulting from oral transmission.

At the time of the recording, ballad singing had already largely disappeared from popular
culture. Ballads were widely sung during manual work until the first decades of the 20th
century. The tradition came to an end as a consequence of two innovations: the radio and
the mechanization of manual labor. Decades later, when the recordings were made, the
mostly female, elderly singers often had to delve deeply in their memories to retrieve the
melodies. The effect is often audible in the recordings: there are numerous false starts, and
it is evident that singers regularly began to feel comfortable about their performance only
after a few strophes. Part of the effect may have been caused by the fact the recordings
were generally made from solo performances at home, whereas the original performance
setting would often have been a group of singers performing during work.

The OGL collection, which is currently hosted at the Meertens Institute in Amsterdam, is
available through the Nederlandse Liederenbank (NLB)2. The database also gives access
to very rich metadata, including date and location of recording, information about the
singer, and classification by tune family and (textual) topic. The OGL collection contains
7277 audio recordings, which have been digitized as MP3 files (stereo, 160 kbit/s, 44.1
kHz). Nearly all of the field recordings are monophonic and comprise a large number
of stanzas (often more than 10 stanzas). When the collection was assembled, melodies
were transcribed on paper by experts. Usually only one stanza is given in music no-
tation, but variants from other stanzas are regularly included. The transcriptions are
often idealized and tend to represent the presumed intention of the singer rather than
the actual performance. For a large number of melodies, transcribed stanzas are avail-
able in various symbolic formats including LilyPond3 and Humdrum [158], from which
MIDI representations have been generated (with a tempo set at 120 BPM for the quarter
note). At this date, around 2500 folk songs from OGL have been encoded. In addition,
the encoded corpus contains 1400 folk songs from written sources, and 1900 instrumental
melodies from written, historical sources, bringing the total number of encoded melodies
at approximately 5800. A detailed description of the encoded corpus is provided in [180].

5.2 Chroma-Based Audio Features

In our segmentation procedure, we assume that we are given a transcription of a reference
tune in the form of a MIDI file. Recall from Section 5.1 that this is exactly the situation
we have with the songs of the OGL collection. In the first step, we transform the MIDI
reference as well as the audio recording into a common mid-level representation. Here, we

2Dutch Song Database, http://www.liederenbank.nl
3www.lilypond.org

www.lilypond.org
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Figure 5.1: Representations of the beginning of the first stanza of the folk song OGL27517.
(a) Score representation of the manually generated reference transcription. (b) Chromagram of
the MIDI representation of the transcription. (c) Smoothed MIDI chromagram (CENS feature).
(d) Chromagram of an audio recording (CENS feature). (e) F0-enhanced chromagram as will be
introduced as first enhancement strategy in Section 5.5.

use the well-known chroma representation, as described in this section.

Chroma features have turned out to be a powerful mid-level representation for relating
harmony-based music, see [4; 6; 90; 123; 143; 162; 164]. Assuming the equal-tempered
scale, the term chroma refers to the elements of the set {C,C♯,D, . . . ,B} that consists of
the twelve pitch spelling attributes as used in Western music notation. Note that in the
equal-tempered scale, different pitch spellings such C♯ and D♭ refer to the same chroma. A
chroma vector can be represented as a 12-dimensional vector x = (x(1), x(2), . . . , x(12))T ,
where x(1) corresponds to chroma C, x(2) to chroma C♯, and so on. Representing the
short-time energy content of the signal in each of the 12 pitch classes, chroma features do
not only account for the close octave relationship in both melody and harmony as it is
prominent in Western music, but also introduce a high degree of robustness to variations in
timbre and articulation [4]. Furthermore, normalizing the features makes them invariant
to dynamic variations.

It is straightforward to transform a MIDI representation into a chroma representation or
chromagram. Using the explicit MIDI pitch and timing information one basically identifies
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Figure 5.2: Magnitude responses in dB for some of the pitch filters of the multirate pitch filter
bank used for the chroma computation. Top: Filters corresponding to MIDI pitches p ∈ [69 : 93]
(with respect to the sampling rate 4410 Hz). Bottom: Filters shifted half a semitone upwards.

pitches that belong to the same chroma class within a sliding window of a fixed size,
see [90]. Disregarding information on dynamics, we derive a binary chromagram assuming
only the values 0 and 1.4 Furthermore, dealing with monophonic tunes, one has for
each frame at most one non-zero chroma entry that is equal to 1. Figure 5.1 shows
various representations for the folk song OGL27517. Figure 5.1b shows a chromagram of
a MIDI reference corresponding to the score shown in Figure 5.1a. In the following, the
chromagram of the reference transcription is referred to as reference chromagram or MIDI
chromagram.

For transforming an audio recording into a chromagram, one has to revert to signal pro-
cessing techniques. There are many ways of computing and enhancing chroma features,
which results in a large number of chroma variants with different properties [4; 58; 59;
123]. Most chroma implementations are based on short-time Fourier transforms in com-
bination with binning strategies [4; 59]. We use chroma features obtained from a pitch
decomposition using a multirate filter bank as described in [123]. A given audio signal is
first decomposed into 88 frequency bands with center frequencies fp corresponding to the
pitches A0 to C8 (MIDI pitches p = 21 to p = 108), where

fp = 440 Hz · 2
p

12 . (5.1)

Then, for each subband, we compute the short-time mean-square power (i. e., the samples
of each subband output are squared) using a rectangular window of a fixed length and an
overlap of 50 %. In the following, we use a window length of 200 milliseconds leading to
a feature rate of 10 Hz (10 features per second). The resulting features measure the local
energy content of each pitch subband and indicate the presence of certain musical notes
within the audio signal, see [123] for further details.

The employed pitch filters possess a relatively wide passband, while still properly sep-
arating adjacent notes thanks to sharp cutoffs in the transition bands, see Figure 5.2.

4Information about note intesities is not captured by the reference transcriptions.
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Actually, the pitch filters are robust to deviations of up to ±25 cents5 from the re-
spective note’s center frequency. The pitch filters will play an important role in the
following sections. We then obtain a chroma representation by simply adding up the
corresponding values that belong to the same chroma. To archive invariance in dy-
namics, chroma vectors are normalized with respect to the Euclidean norm (signal en-
ergy). The resulting chroma features are further processed by applying suitable quan-
tization, smoothing, and downsampling operations resulting in some enhanced chroma
features referred to as CENS (Chroma Energy Normalized Statistics). An implementa-
tion of these features is available online6 and described in [127]. Adding a further degree
of abstraction by considering short-time statistics over energy distributions within the
chroma bands, CENS features constitute a family of scalable and robust audio features
and have turned out to be very useful in audio matching and retrieval applications [135;
105]. These features allow for introducing a temporal smoothing. To this end, feature vec-
tors are averaged using a sliding window technique depending on a window size denoted
by w (given in frames) and a downsampling factor denoted by d, see [123] for details. In
our experiments, we average feature vectors over a window corresponding to one second
of the audio and a feature resolution of 10 Hz (10 features per second). Figure 5.1c shows
the resulting smoothed version of the reference (MIDI) chromagram shown in Figure 5.1b.
Figure 5.1d shows the final smoothed chromagram (CENS) for one of the five stanzas of
the audio recording. For technical details, we refer to the cited literature.

5.3 Distance Function

On the basis of the chroma representations, the idea is to locally compare the reference
with the audio recording by means of a suitable distance function. This distance function
expresses the distance of the MIDI reference chromagram with suitable subsegments of the
audio chromagram while being invariant to temporal variations between the reference and
the various stanzas of the audio recording. More precisely, let X = (x1, x2, . . . , xK) be the
sequence of chroma features obtained from the MIDI reference and let Y = (y1, y2, . . . , yL)
be the one obtained from the audio recording as explained in Section 5.2. The resulting
features X(k) := xk, k ∈ [1 : K] := {1, 2, . . . ,K}, and Y (ℓ) := yℓ, ℓ ∈ [1 : L], are
normalized 12-dimensional vectors. We define the distance function ∆ := ∆X,Y : [1 : L] →
R ∪ {∞} with respect to X and Y using a variant of dynamic time warping (DTW):

∆(ℓ) :=
1

K
min
a∈[1:ℓ]

(

DTW
(

X , Y (a : ℓ)
)

)

, (5.2)

where Y (a : ℓ) denotes the subsequence of Y starting at index a and ending at index
ℓ ∈ [1 : L]. Furthermore, DTW(X,Y (a : ℓ)) denotes the DTW distance between X and
Y (a : ℓ) with respect to a suitable local cost measure (in our case, the cosine distance).
The distance function ∆ can be computed efficiently using dynamic programming. For
details on DTW and the distance function, we refer to [123]. The interpretation of ∆
is as follows: a small value ∆(ℓ) for some ℓ ∈ [1 : L] indicates that the subsequence of

5The cent is a logarithmic unit to measure musical intervals. The semitone interval of the equally-
tempered scale equals 100 cents.

6www.mpi-inf.mpg.de/resources/MIR/chromatoolbox/

www.mpi-inf.mpg.de/resources/MIR/chromatoolbox/
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Figure 5.3: Top: Distance function ∆ for OGL27517 using original chroma features (gray) and
F0-enhanced chroma features (black). Bottom: Resulting segmentation.

Y starting at index aℓ (with aℓ ∈ [1 : ℓ] denoting the minimizing index in Eq. (5.2))
and ending at index ℓ is similar to X. Here, the index aℓ can be recovered by a simple
backtracking algorithm within the DTW computation procedure. The distance function
∆ for OGL27517 is shown in Figure 5.3 as gray curve. The five pronounced minima of ∆
indicate the endings of the five stanzas of the audio recording.

5.4 Segmentation of the Audio Recording

Recall that we assume that a folk song audio recording basically consists of a number of
repeating stanzas. Exploiting the existence of a MIDI reference and assuming the repetitive
structure of the recording, we apply the following simple greedy segmentation strategy.
Using the distance function ∆, we look for the index ℓ ∈ [1 : L] minimizing ∆ and compute
the starting index aℓ. Then, the interval S1 := [aℓ : ℓ] constitutes the first segment. The
value ∆(ℓ) is referred to as the cost of the segment. To avoid large overlaps between the
various segments to be computed, we exclude a neighborhood [Lℓ : Rℓ] ⊂ [1 : L] around
the index ℓ from further consideration. In our strategy, we set Lℓ := max(1, ℓ− 2

3K) and
Rℓ := min(L, ℓ+ 2

3K), thus excluding a range of two thirds of the reference length to the
left as well as to the right of ℓ. To achieve the exclusion, we modify ∆ simply by setting
∆(m) := ∞ for m ∈ [Lℓ : Rℓ]. To determine the next segment S2, the same procedure is
repeated using the modified distance function, and so on. This results in a sequence of
segments S1, S2, S3, . . .. The procedure is repeated until all values of the modified ∆ lie
above a suitably chosen quality threshold τ > 0. Let N denote the number of resulting
segments, then S1, S2, . . . , SN constitutes the final segmentation result, see Figure 5.3 for
an illustration.

5.5 Enhancement Strategies

This basic segmentation approach works well as long as the singer roughly follows the
reference tune and stays in tune. However, for the field recordings, this is an unrealistic
assumption. In particular, most singers have significant problems with the intonation.
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Their voices often fluctuate by several semitones downwards or upwards across the various
stanzas of the same recording. In this section, we show how the segmentation procedure
can be improved to account for poor recording conditions, intonation problems, and pitch
fluctuations.

Recall that the comparison of the MIDI reference and the audio recording is performed
on the basis of chroma representations. Therefore, the segmentation algorithm described
so far only works well in the case that the MIDI reference and the audio recording are in
the same musical key. Furthermore, the singer has to stick roughly to the pitches of the
well-tempered scale. Both assumptions are violated for most of the songs. Even worse,
the singers often fluctuate with their voice by several semitones within a single recording.
This often leads to poor local minima or even completely useless distance functions as
illustrated Figure 5.4. To deal with local and global pitch deviations as well as with poor
recording conditions, we use a combination of various enhancement strategies.

5.5.1 F0-Enhanced Chromagrams

In our first strategy, we enhance the quality of the chroma features similar to [59; 46]

by picking only dominant spectral coefficients, which results in a significant attenuation
of noise components. Dealing with monophonic music, we can go even one step further
by only picking spectral components that correspond to the fundamental frequency (F0).
More precisely, we use a modified autocorrelation method as suggested in [32] to estimate
the fundamental frequency for each audio frame. For each frame, we then determine the
MIDI pitch p ∈ [1 : 120] having center frequency

fp = 2
p−69

12 · 440 Hz

that is closest to the estimated fundamental frequency. Next, in the pitch decomposition
used for the chroma computation (as explained in Section 5.2), we assign energy only to the
pitch subband that corresponds to the determined MIDI pitch—all other pitch subbands
are set to zero within this frame. Finally, the resulting sparse pitch representation is
projected onto a chroma representation and smoothed as explained in Section 5.2. The
F0-based pitch assignment is capable of suppressing most of the noise resulting from
poor recording conditions and local pitch deviations caused by the singers’ intonation
problems as well as vibrato are compensated to a substantial degree. The cleaning effect
on the resulting chromagram, which is also referred to as F0-enhanced chromagram, is
illustrated by Figure 5.1e, showing the F0-enhanced variant of the audio chromagram
(see Figure 5.1d). This enhancement strategy leads to audio chromagrams that exhibit
a much higher similarity to the reference chromagram (see Figure 5.1c) than the original
chromagrams. As a result, the desired local minima of the distance function ∆, which
are crucial in our segmentation procedure, become more pronounced. This effect is also
illustrated by the distance functions shown in Figure 5.3.

Even though the folk song recordings are monophonic, the F0 estimation is often not
accurate enough in view of applications such as automated transcription. However, using
chroma representations, octave errors as typical in F0 estimations become irrelevant.
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Figure 5.4: Distance functions ∆ (light gray), ∆trans (dark gray), and ∆fluc (black) as well as
the resulting segmentations for the song OGL25010.

5.5.2 Transposition-Invariant Distance Function

Next, we show how to deal with global pitch deviations and continuous fluctuation across
several semitones. To account for a global difference in key between the MIDI reference and
the audio recording, we revert to the observation by Goto [62] that the twelve cyclic shifts of
a 12-dimensional chroma vector naturally correspond to the twelve possible transpositions.
Therefore, it suffices to determine the shift index that minimizes the chroma distance of
the audio recording and MIDI reference and then to cyclically shift the audio chromagram
according to this index. Note that instead of shifting the audio chromagram, one can
also shift the MIDI chromagram in the inverse direction. The minimizing shift index can
be determined either globally by using averaged chroma vectors as suggested in [162] or
locally by computing twelve different distance functions for the twelve shifts, which are
then minimized to obtain a single transposition-invariant distance functions. We detail
on the latter strategy, since it also solves part of the problem having a fluctuating voice
within the audio recording. A similar strategy was used in [124] to achieve transposition
invariance for music structure analysis tasks.

We simulate the various pitch shifts by considering all twelve possible cyclic shifts of the
MIDI reference chromagram. We then compute a separate distance function for each of the
shifted reference chromagrams and the original audio chromagram. Finally, we minimize
the twelve resulting distance functions, say ∆0, . . . ,∆11, to obtain a single transposition-
invariant distance function ∆trans : [1 : L] → R ∪ {∞}:

∆trans(ℓ) := min
i∈[0:11]

(

∆i(ℓ)
)

. (5.3)
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Stanza 1 2 3 4 5 6 7 8 9 10

12 shift 5 5 5 4 4 4 4 3 3 3
24 shift 5.0 5.0 4.5 4.5 4.0 4.0 3.5 3.5 3.0 3.0

Table 5.1: Shift indices (cyclically shifting the audio chromagrams upwards) used for transposing
the various stanzas of the audio recording of OGL25010 to optimally match the MIDI reference, see
also Figure 5.4. The shift indices are given in semitones (obtained by ∆trans) and in half semitones
(obtained by ∆fluc).

Figure 5.4 shows the resulting function ∆trans for a folk song recording with strong fluc-
tuations. In contrast to the original distance function ∆, the function ∆trans exhibits a
number of significant local minima that correctly indicate the segmentation boundaries of
the stanzas.

5.5.3 Fluctuation-Invariant Distance Function

So far, we have accounted for transpositions that refer to the pitch scale of the equal-
tempered scale. However, the above mentioned voice fluctuation are fluent in frequency
and do not stick to a strict pitch grid. Recall from Section 5.2 that our pitch filters can
cope with fluctuations of up to ±25 cents. To cope with pitch deviations between 25 and 50
cents, we employ a second filter bank, in the following referred to as half-shifted filter bank,
where all pitch filters are shifted by half a semitone (50 cents) upwards, see Figure 5.2.
Using the half-shifted filter bank, one can compute a second chromagram, referred to as
half-shifted chromagram. A similar strategy is suggested in [59; 162] where generalized
chroma representations with 24 or 36 bins (instead of the usual 12 bins) are derived from
a short-time Fourier transform. Now, using the original chromagram as well as the half-
shifted chromagram in combination with the respective 12 cyclic shifts, one obtains 24
different distance functions in the same way as described above. Minimization over the
24 functions yields a single function ∆fluc referred to as fluctuation-invariant distance
function. The improvements achieved by this novel distance function are illustrated by
Figure 5.4. In regions with a bad intonation, the local minima of ∆fluc are much more
significant than those of ∆trans. Table 5.1 shows the optimal shift indices derived from the
transposition and fluctuation-invariant strategies, where the decreasing indices indicate to
which extend the singer’s voice rises across the various stanzas of the song.

5.6 Experiments

Our evaluation is based on a dataset consisting of 47 representative folk song recordings
selected from the OGL collection described in Section 5.1. The audio dataset has a to-
tal length of 156 minutes, where each of the recorded song consists of 4 to 34 stanzas
amounting to a total number of 465 stanzas. The recordings reveal significant deterio-
rations concerning the audio quality as well as the singer’s performance. Furthermore,
in various recordings, the tunes are overlayed with sounds such as ringing bells, singing
birds, or barking dogs, and sometimes the songs are interrupted by remarks of the singers.
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Strategy F0 P R F α β γ

∆ − 0.898 0.628 0.739 0.338 0.467 0.713
∆ + 0.884 0.688 0.774 0.288 0.447 0.624
∆trans − 0.866 0.817 0.841 0.294 0.430 0.677
∆trans + 0.890 0.890 0.890 0.229 0.402 0.559

∆fluc − 0.899 0.901 0.900 0.266 0.409 0.641

∆fluc + 0.912 0.940 0.926 0.189 0.374 0.494

Table 5.2: Performance measures for the reference-based segmentation procedure using the
tolerance parameter δ = 2 and the quality threshold τ = 0.4. The second column indicates
whether original (−) or F0-enhanced (+) chromagrams are used.

We manually annotated all audio recordings by specifying the segment boundaries of the
stanzas’ occurrences in the recordings. Since for most cases the end of a stanza more or
less coincides with the beginning of the next stanza and since the beginnings are more
important in view of retrieval and navigation applications, we only consider the start-
ing boundaries of the segments in our evaluation. In the following, these boundaries are
referred to as ground truth boundaries.

To assess the quality of the final segmentation result, we use precision and recall values.
To this end, we check to what extent the 465 manually annotated stanzas within the
evaluation dataset have been identified correctly by the segmentation procedure. More
precisely, we say that a computed starting boundary is a true positive, if it coincidences
with a ground truth boundary up to a small tolerance given by a parameter δ measured in
seconds. Otherwise, the computed boundary is referred to as a false positive. Furthermore,
a ground truth boundary that is not in a δ-neighborhood of a computed boundary is
referred to as a false negative. We then compute the precision P and the recall R for
the set of computed boundaries with respect to the ground truth boundaries. From these
values one obtains the F-measure

F := 2 · P · R/(P + R) .

Table 5.2 shows the PR-based performance measures of our reference-based segmentation
procedure using different distance functions with original as well as F0-enhanced chroma-
grams. In this first experiment, the tolerance parameter is set to δ = 2 and the quality
threshold to τ = 0.4. Here, a tolerance of up to δ = 2 seconds seems to us an accept-
able deviation in view of our intended applications and the accuracy of the annotations.
For example, the most basic distance function ∆ with original chromagrams yields an
F-measure of F = 0.739. Using F0-enhanced chromagrams instead of the original ones
results in F = 0.774. The best result of F = 0.926 is obtained when using ∆fluc with
F0-enhanced chromagrams. Note that all of our introduced enhancement strategies result
in an improvement in the F-measure. In particular, the recall values improve significantly
when using the transposition and fluctuation-invariant distance functions.

A manual inspection of the segmentation results showed that most of the false negatives
as well as false positives are due to deviations in particular at the stanzas’ beginnings.
The entry into a new stanza seems to be a problem for some of the singers, who need some
seconds before getting stable in intonation and pitch. A typical example is NLB72355.
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δ P R F

1 0.637 0.639 0.638
2 0.912 0.940 0.926
3 0.939 0.968 0.953
4 0.950 0.978 0.964
5 0.958 0.987 0.972

τ P R F

0.1 0.987 0.168 0.287
0.2 0.967 0.628 0.761
0.3 0.950 0.860 0.903
0.4 0.912 0.940 0.926
0.5 0.894 0.944 0.918

Table 5.3: Dependency of the PR-based performance measures on the tolerance parameter δ and
the quality threshold τ . All values refer to the reference-based segmentation procedure with ∆fluc

using F0-enhanced chromagrams. Left: PR-based performance measures for various δ and fixed
τ = 0.4. Right: PR-based performance measures for various τ and fixed δ = 2.

Increasing the tolerance parameter δ, the average quality improves substantially, as in-
dicated by Table 5.3 (left). For example, using δ = 3 instead of δ = 2, the F-measure
increase from F = 0.926 to F = 0.953. Other sources of error are that the transcriptions
sometimes differ significantly from what is actually sung, as is the case for NLB72395.
Here, as was already mentioned in Section 5.1, the transcripts represent the presumed
intention of the singer rather than the actual performance. Finally, structural differences
between the various stanzas are a further reason for segmentation errors. In a further
experiment, we investigated the role of the quality threshold τ (see Section 5.4) on the
final segmentation results, see Table 5.3 (right). Not surprisingly, a small τ yields a high
precision and a low recall. Increasing τ , the recall increases at the cost of a decrease in
precision. The value τ = 0.4 was chosen, since it constitutes a good trade-off between
recall and precision.

Finally, to complement our PR-based evaluation, we introduce a second type of more softer
performance measures that indicate the significance of the desired minima of the distance
functions. To this end, we consider the distance functions for all songs with respect to
a fixed strategy and chroma type. Let α be the average over the cost of all ground
truth segments (given by the value of the distance function at the corresponding ending
boundary). Furthermore, let β be the average over all values of all distance functions. Then
the quotient γ = α/β is a weak indicator on how well the desired minima (the desired true
positives) are separated from possible irrelevant minima (the potential false positives). A
low value for γ indicates a good separability property of the distance functions. As for
the PR-based evaluation, the soft performance measures shown in Table 5.2 support the
usefulness of our enhancement strategies.

5.7 Further Notes

The reference-based segmentation procedure provides robust segmentation results even in
the case of strong musical variations in the stanzas. As main ingridient, we introduced
enhancement strategies for dealing with the special characteristics of the folk song record-
ings performed by elderly non-professional solo singers: F0-enhanced chromagrams for
efficiently reducing background noise as well as transposition-invariant and fluctuation-
invariant chromagrams for handling local transpositions and pitch shifts. However, the
presented procedure crucially depends on the availability of a manually generated refer-
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ence transcription. Recall from Chapter 5.1 that for the 7277 audio recordings contained
in OGL, only 2500 are transcribed so far. For other folk song datasets, the situation is
even worse. In Chapter 6, we deal with the question on how the segmentation can be done
if no MIDI reference is available.



Chapter 6

Reference-Free Folk Song

Segmentation

In this chapter, we introduce a reference-free segmentation procedure that does not rely on
any reference, thus overcoming the limitations of the reference-based approach introduced
in the preceding chapter. Our idea is to apply a recent audio thumbnailing approach
described in [129] to identify the most “repetitive” segment in a given recording. This
so-called thumbnail then takes over the role of the reference. The thumbnailing procedure
is built upon suitable audio features and self-similarity matrices (SSM). To cope with the
aforementioned variations, we introduce various enhancement strategies to absorb a high-
degree of these deviations and deformations already on the feature and SSM level. The
evaluation shows that the segmentation results of the reference-free approach are compa-
rable to the ones obtained from the reference-based segmentation procedure introduced in
Chapter 5.

The remainder of this chapter is organized as follows. We first describe the self-similarity
matrices (Section 6.1). Then, we summarize the audio thumbnailing procedure and explain
how the segmentation is obtained (Section 6.2). In Section 6.3, as main contribution of
this chapter, we introduce various strategies for enhancing the self-similarity matrices. We
report on our segmentation experiments (Section 6.4) and conclude in Section 6.5.

6.1 Self-Similarity Matrices

Most repetition-based approaches to audio structure analysis proceed as follows. In the
first step, the music recording is transformed into a sequence X := (x1, x2, . . . , xN ) of
feature vectors xn ∈ F , 1 ≤ n ≤ N , where F denotes a suitable feature space. We employ
chroma features as introduced in Section 5.2. In the second step, based on a similarity
measure s : F ×F → R, one obtains an N ×N self-similarity matrix (SSM) by comparing
the elements of X in a pairwise fashion:

S(n,m) := s(xn, xm),

81
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for n,m ∈ [1 : N ]. Using normalized features vectors, we simply use the inner product as
similarity measure s yielding a value between 0 and 1 (cosine measure). In the following,
a tuple p = (n,m) ∈ [1 : N ]2 is called a cell of S, and the value S(n,m) is referred to as
the score of the cell p. Introduced to the music context in [53], such matrices have turned
out to be a powerful tool for revealing repeating patterns of X. The crucial observation
is that each diagonal path (or stripe) of high similarity running in parallel to the main
diagonal of S indicates the similarity of two audio segments (given by the projections of
the path onto the vertical and horizontal axis, respectively), see [143].

For example, Figure 6.1a shows an SSM for the first eight stanzas A1A2A3A4A5A6A7A8

of the field recording OGL19101. The highlighted path encodes the similarity between
A2 and A3. If the eight segments would be close to being exact repetitions, one would
expect a “full” path structure as indicated by Figure 6.1f. However, due to the spectral
and temporal deviations between the sung stanzas, the path structure is in general highly
distorted and fragmentary. In Section 6.3, we introduce various enhancement strategies
to improve on the path structure of the SSM.

6.2 Audio Thumbnailing and Segmentation Procedure

In view of our folk song segmentation task, the enhancement of the self-similarity is one
main step in order to achieve robustness to spectral deviations. To deal we temporal
deviations, we apply a segmentation approach as proposed in [129]. Since in our scenario
the recording basically consists of repetitions of a single tune, the segmentation problem
reduces to a thumbnailing problem. In general, the goal of audio thumbnailing is to find
the most representative and repetitive segment of a given music recordings, see, e. g., [4;
22; 115]. Typically, such a segment should have many (approximate) repetitions, and these
repetitions should cover large parts of the recording. Let

α = [s : t] ⊆ [1 : N ]

denote a segment specified by its starting point s, end point t, and length |α| := t− s+1.
In [129], a fitness measure is introduced that assigns to each audio segment α a fitness
value ϕ(α) ∈ R that simultaneously captures two aspects. Firstly, it indicates how well
the given segment explains other related segments and, secondly, it indicates how much of
the overall music recording is covered by all these related segments. The audio thumbnail
is then defined to be the segment α∗ having maximal fitness ϕ over all possible segments.

In the computation of the fitness measure, the main technical idea is to assign to each audio
segment α a so-called optimal path family over α that simultaneously reveals the relations
between α and all other similar segments. Figure 6.2 shows two segments along with their
optimal path families, which can be computed efficiently using dynamic programming.
One main point is that each path family projected to the vertical axis induces a family of
segments, where each element of this family defines a segment similar to α. The induced
family of segments then defines a segmentation of the audio recording.

As an example, Figure 6.2 shows path families and induced segment families (vertical
axis) for two different segments (horizontal axis) for our running example OGL19101. In
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Figure 6.1: Self similarity matrices for the first eight stanzas of the folk song OGL19101. (a)
SSM computed from CENS features. The highlighted path encodes the similarity of A3 and A2.
(b) SSM computed from F0-enhanced CENS features. (c) Path-enhanced SSM. (d) Thresholded
and normalized SSM S . (e) Transposition-invariant SSM Strans. (f) Fluctuation-invariant SSM
Sfluc.

Figure 6.2a the segment is α = [83 : 98], which corresponds to the sixth stanza A6. The
induced segment family consists of eight different segments, which correspond to the eight
stanzas A1, A2, . . . , A8. Figure 6.2b shows the path family and induced segment family for
α = [66 : 98], which corresponds to the two subsequent stanzas A5A6. Here, the induced
segment family consists of four segments corresponding to A1A2, A3A4, A5A6, and A7A8.
The fitness value of a given segment is derived from the corresponding path family and
the values of the underlying SSM. It is designed to slightly favor shorter segments to
longer segments, see [129] for further details. In our example, it turns out that the fitness-
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Figure 6.2: Path families and induced segment families for two different segments α for
OGL19101. (a) α = [83 : 98] (thumbnail, maximal fitness, corresponding to stanza A6). (b)
α = [66:98] (corresponding to stanzas A5A6).

maximizing segment is indeed α∗ = [83 : 98]. The induced segment family of the fitness
maximizing segment is taken as final result of our segmentation problem.

6.3 Enhancement Strategies

Similar as for the reference-based segmentation procedure, we use a combination of various
enhancement strategies to deal with local and global pitch deviations as well as with poor
recording conditions, see also Section 5.5.

6.3.1 F0-Enhanced Self-Similarity Matrices

Firstly, we again compute F0-enhanced chromagrams by picking only spectral coefficients
corresponding to the fundamental frequency (F0) as described in Section 5.5. This results
in F0-enhanced SSMs, as shown in Figure 6.1b. In comparison to the SSM computed from
CENS features (Figure 6.1a), the F0-enhanced SSM exhibits increased robustness against
noise and recording artifacts as well as local pitch fluctuations.

6.3.2 Temporal Smoothing

Furthermore, to enhance distorted and fragmented paths of the SSMs, various matrix
enhancement strategies have been proposed [6; 134; 144; 164]), where the main idea is
to apply some kind of smoothing filter along the direction of the main diagonal having a
gradient of (1, 1). This results in an emphasis of diagonal information in S and a denoising
of other structures, This form of filtering, however, typically assumes that the tempo across
the music recording is more or less constant and repeating segments have roughly the same
length. In the presence of significant tempo differences, however, simply smoothing along
the main diagonal may smear out important structural information. To avoid this, we
use a strategy that filters the SSM along various gradients as proposed in [134] covering
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tempo variations of roughly ±30 percent.

Obviously, choosing an appropriate value for the smoothing length parameter constitutes
a trade-off between enhancement capability and level of detail. A suitable parameter
depends on the kind of audio material.1 See Figure 6.1c for an illustration and [134] for
details.

6.3.3 Thresholding and Normalization

We further process the SSM by suppressing all values that fall below a given threshold.
Using normalized chroma features and the cosine measure as similarity measure, all values
of the SSM are between 0 and 1. Using a suitable threshold parameter t > 0 and a
penalty parameter p ≤ 0, we first set the score values of all cells with a score below t
to the value p and then linearly scale the range [t : 1] to [0 : 1], see Figure 6.1d. The
thresholding introduces some kind of denoising, whereas the parameter p imposes some
additional penalty on all cells of low score. Intuitively, we want to achieve that the relevant
path structure lies in the positive part of the resulting SSM, whereas all other cells are
given a negative score. Note that different methods can be used for thresholding such as
using a predefined threshold or using a relative threshold to enforce a certain percentage
of cells to have positive score [162].2 Again we denote the resulting matrix simply by S .

6.3.4 Transposition and Fluctuation Invariance

As mentioned above, the non-professional singers of the folk songs often deviate signifi-
cantly from the expected pitches and have serious problems with the intonation. Even
worse, their voices often fluctuate by several semitones downwards or upwards across the
various stanzas of the same recording. For example, in the case of the OGL19101 record-
ing, the singer’s voice constantly increases in pitch while performing the stanzas of this
song. As a result, many expected paths of the resulting SSM are weak or even completely
missing as illustrated by Figure 6.1d.

One can simulate transpositions (shifts of one or several semitones) on the feature level
simply by cyclically shifting a chroma vector along its twelve dimensions [63]. Based on
this observation, we adopt the concept of transposition-invariant self-similarity matrices
as introduced in [124]. Here, one first computes the similarity between the original feature
sequence and each of the twelve cyclically shifted versions of the chromagram resulting in
twelve similarity matrices. Then, the transposition-invariant SSM, denoted by Strans, is
calculated by taking the point-wise maximum over these twelve matrices. As indicated by
Figure 6.1e, many of the missing paths are recovered this way.

The cyclic chroma shifts account for transpositions that correspond to the semitone level of
the equal-tempered scale. However, when dealing with the folk song field recordings, one

1In our folk song experiments, we use a smoothing length corresponding to 6 seconds. This also takes
into account that the length of an individual stanza is above this value.

2 In our experiments, we choose the threshold in a relative fashion by keeping 40% of the cells having the
highest score and set p = −2. These values were found experimentally. Slight changes of the parameters’
values did not have a significant impact on the final segmentation results.
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Strategy F0 P R F

S − 0.668 0.643 0.652
S + 0.734 0.704 0.717
Strans + 0.821 0.821 0.821

Sfluc + 0.862 0.855 0.860

Sfluc, |α| ≥ 10 + 0.871 0.879 0.872

Sfluc, |α| ≥ 10 (modified dataset) + 0.954 0.940 0.949

Reference-based method (see Table 5.2) + 0.912 0.940 0.926

Table 6.1: Precision, recall, and F-measure values for the reference-based segmentation method
(see Table 5.2) and the reference-free approach using δ = 2.

may have to deal with pitch fluctuations that are fractions of semitones. One strategy may
be to introduce an additional tuning estimation step to adjust the frequency bands used
in the chroma decomposition [59; 127] and then to compute the SSM from the resulting
features. This strategy only works, when one has to deal with a global de-tuning that is
constant throughout the recording. For the field recordings, however, one often has to
deal with local pitch fluctuations. Actually, for many recordings such as OGL19101, the
singer continuously drops or raises with her voice over the various stanzas. This leads
to local path distortions and interruptions (see Figure 6.1e). To compensate for such
local de-tunings, we further sample the space of semitones using different multirate filter
banks corresponding to a shift of 0, 1/4, 1/3, 1/2, 2/3, and 3/4 semitones, respectively,
see [127]. Using the resulting six different chromagrams together with the twelve cyclically
shifted versions of each of them, we compute 72 similarity matrices as above and then
take the point-wise maximum over these matrices to obtain a single fluctuation-invariant
SSM, denoted by Sfluc. This strategy leads to further improvements as as illustrated by
Figure 6.1f, which now shows the expected “full” path structure.

6.4 Experiments

Table 6.1 shows the results obtained for our reference-free segmentation procedure (see
Chapter 5) as well as the results of the reference-based method for comparison. For a
detailed description of the experimental setup, we refer to Section 5.6. Using the orig-
inal self-similarity matrix S derived from the original CENS features to determine the
fitness maximizing segment α∗, our reference-free method yields an F-measure value of
F = 0.652. Using our F0-enhanced CENS features to increase the robustness against
background noise and small local pitch deviations, the F-measure increases to F = 0.717.
As mentioned before, dealing with field recordings performed by non-professional singers
under poor recording conditions, the matrix enhancement strategies as introduced in Sec-
tion 6.3 are extremely important for obtaining robust segmentations. In particular, be-
cause of the continuous intonation and pitch shifts of the singers, the concepts of trans-
position and fluctuation invariance significantly improve the segmentation results. For
example, using the transposition-invariant SSM Strans, the F-measure value increases to
F = 0.821. Furthermore, when using the fluctuation-invariant SSM Sfluc that even ac-
counts for shifts corresponding to fractions of a semitone, the F-measure value further
increases to F = 0.860.
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Assuming some prior knowledge on the minimal length of a stanza, the results can be
further improved. For example, to avoid over-segmentation [116], one may consider only
segments α satisfying |α| ≥ 10 seconds, which results in F = 0.872, see Table 6.1. This re-
sult is still worse than the results obtained from the reference-based approach (F = 0.926).
Actually, a manual inspection showed that this degradation was mainly caused by four
particular recordings, where the segmentation derived from α∗ was “phase-shifted” com-
pared to the ground truth. Employing a boundary-based evaluation measure resulted in
an F-measure of F = 0 for these four recordings. Furthermore, we found out that these
phase shifts were caused by the fact that in all of these four recordings the singer com-
pletely failed in the first stanza (omitting and confusing entire verse lines). In these cases,
the stanza transcript used in the reference-based approach corresponds to the remaining
“correct” stanzas. As a result, the reference-based approach can better deal with this issue
and is able to recover at least the boundaries of the remaining stanzas.

In a final experiment we simulate a similar behavior by replacing the four recordings using
a slightly shortened version, where we omit the first stanzas, respectively. Repeating the
previous experiment on this modified dataset produced an F-measure of F = 0.949, which
is already exceeding the quality obtained by the baseline method. However, there are still
some boundaries that are incorrectly detected by our approach. A further investigation
revealed that most errors correspond to boundaries that are slightly misplaced and do
not fall into the ±2 seconds tolerance. In many of these cases, there is a short amount
of silence between two stanzas, which also introduces some uncertainty to the manually
annotated ground-truth boundaries.

6.5 Conclusion

In this chapter, we presented an reference-free approach for automatically segmenting folk
song field recordings in a robust way even in the presence of significant temporal and
spectral distortions across repeating stanzas. One crucial step in the overall segmentation
pipeline was to employ various enhancement strategies that allow for dealing with such
distortions already on the feature and SSM levels. Our experiments showed that one
obtains good segmentation results having a similar quality as the ones obtained from the
reference-based method. Future work in this direction deals with the issue on how the
segmentation can be made more robust to structural differences in the stanzas.

The described segmentation task is only a first step towards making the audio material
more accessible to performance analysis and folk song research. In the next chapter, we
introduce tools that allow a folk song researcher to conveniently screen a large number
of field recordings in order to detect and locate interesting and surprising features worth
being examined in more detail by domain experts.
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Chapter 7

Towards Automated Analysis of

Performance Variations

In this chapter, we present various techniques for analyzing the variations within the
recorded folk song material. As discussed in the previous chapters, the singers often deviate
significantly from the expected pitches. Furthermore, there are also significant temporal
and melodic variations between the stanzas belonging to the same folk song recording. It
is important to realize that such variabilities and inconsistencies may be, to a significant
extent, properties of the repertoire and not necessarily errors of the singers. As the folk
songs are part of the oral culture and have been passed down over centuries without any
fixed notation, variations introduced by the individual singers are very characteristic for
this kind of audio material (see Section 5.1 for a more detailed explanation of folk song
characteristics). To measure such deviations and variations within the acoustic audio
material, we use a multimodal approach by exploiting the existence of a symbolically
given transcription of an idealized stanza.

As one main contribution of this chapter, we propose a novel method for capturing tem-
poral and melodic characteristics of the various stanzas of a recorded song in a compact
matrix representation, which we refer to as chroma template (CT). The computation of
such a chroma template involves several steps. First, we convert the symbolic transcrip-
tion as well as each stanza of a recorded song into chroma representations. On the basis
of these representations, we determine and compensate for the tuning differences between
the recorded stanzas using the transcription as reference. To account for temporal varia-
tions between the stanzas, we use time warping techniques. Finally, we derive a chroma
template by averaging the transposed and warped chroma representations of all recorded
stanzas and the reference. The key property of a chroma template is that it reveals consis-
tent and inconsistent melodic performance aspects across the various stanzas. Here, one
advantage of our concept is its simplicity, where the information is given in form of an
explicit and semantically interpretable matrix representation. We show how our frame-
work can be used to automatically measure variabilities in various musical dimensions
including tempo, pitch, and melody. In particular, it allows for directly comparing the
realization of different stanzas of a folk song performance. Extracting such information
constitutes an important step for making the performance aspects enclosed in the audio
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material accessible to performance analysis and to folk song research.

The remainder of this chapter is structured as follows. First, in Section 7.1, we introduce
and discuss in detail our concept of chroma templates and present various strategies that
capture and compensate for variations in intonation and tuning. In Section 7.2, we describe
various experiments on performance analysis while discussing our concept by means of a
number of representative examples. In Section 7.3, we introduce a user interface that
makes the actual folk song recordings more accessible to researchers. As on main idea, the
interface allows for intuitively navigating within a folk song recording and comparing the
constituent stanzas. Further notes and prospects on future work are given in Section 7.4.
Related work is discussed in the respective sections.

7.1 Chroma Templates

In the following, we assume that, for a given folk song, we have an audio recording con-
sisting of various stanzas as well as a transcription of a representative stanza in form of
a MIDI file, which will act as a reference. Recall from Section 5.1 that this is exactly
the situation we have with the songs of the OGL collection. Furthermore, we assume
that a segmentation of the audio recording in its constituent stanzas is available. This
segmentation can be derived automatically using the approaches presented in Chapter 5
and Chapter 6. In order to compare the MIDI reference with the individual stanzas of the
audio recording, we use chroma features as introduced in Section 5.2. Figure 7.1 shows
chroma representations for the song NLB72246. Figure 7.1b shows the chromagram of
the MIDI reference corresponding to the score shown in Figure 7.1a. Figure 7.1c shows
the chromagram of a single stanza of the audio recording. In the following, we refer to
the chromagram of an audio recording as audio chromagram. In our implementation, all
chromagrams are computed at a feature resolution of 10 Hz (10 features per second). For
details, we refer to Section 5.2.

As mentioned above, most singers have significant problems with the intonation. To
account for poor recording conditions, intonation problems, and pitch fluctuations we
apply the enhancement strategies as described in Section 5.5. First, we enhance the
audio chromagram by exploiting the fact that we are dealing with monophonic music. To
this end, we estimate the fundamental frequency (F0) for each audio frame and assign
energy only to the MIDI pitch with the center frequency that is closest to the estimated
fundamental frequency. This results in chromagrams having exactly one non-zero entry
in each time frame. The resulting binary chromagram is referred to F0-enhanced audio
chromagram. By using an F0-based pitch quantization, most of the noise resulting from
poor recording conditions is suppressed. Also local pitch deviations caused by the singers’
intonation problems as well as vibrato are compensated to a substantial degree. This effect
is also visable in Figure 7.1d showing the F0-enhanced version of the audio chromagram
as shown in Figure 7.1c.

To account for global differences in key between the MIDI reference and the recorded
stanzas, we revert to the observation by Goto [62] that the twelve cyclic shifts of a 12-
dimensional chroma vector naturally correspond to the twelve possible transpositions.
Therefore, it suffices to determine the cyclic shift index ι ∈ [0 : 11] (where shifts are con-
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Figure 7.1: Multimodal representation of a stanza of the folk song NLB72246. (a) Idealized
transcription given in form of a score. (b) Reference chromagram of transcription. (c) Audio
chromagram of a field recording of a single stanza. (d) F0-enhanced audio chromagram. (e)
Transposed F0-enhanced audio chromagram cyclically shifted by eight semitones upwards (ι = 8).

sidered upwards in the direction of increasing pitch) that minimizes the distance between
a stanza’s audio and reference chromagram and then to cyclically shift the audio chroma-
gram according to this index. Figure 7.1e shows the cyclically shifted by eight semitones
(ι = 8) audio chromagram to match the key of the reference. Note the similarities between
the two chroma representations after correcting the transposition. The distance measure
between the reference chromagram and the audio chromagram is based on dynamic time
warping as described in Section 5.3.

So far, we have accounted for transpositions that correspond to integer semitones of the
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Figure 7.2: Tuned audio chromagrams of a recorded stanza of the folk song NLB72246. (a)
Audio chromagram with respect to tuning parameter τ = 6. (b) Audio chromagram with respect
to tuning parameter τ = 6.5.

equal-tempered pitch scale. However, the above mentioned voice fluctuations are fluent in
frequency and do not stick to a strict pitch grid. To cope with pitch deviations that are
fractions of a semitone, we consider different shifts σ ∈ [0, 1] in the assignment of MIDI
pitches and center frequencies as given by Eq. (5.1). More precisely, for a MIDI pitch p,
the σ-shifted center frequency fσ(p) is given by

fσp = 2
p−69−σ

12 · 440 Hz . (7.1)

Now, in the F0-based pitch quantization as described above, one can use σ-shifted center
frequencies for different values σ to account for tuning nuances. In our context, we use
four different values σ ∈

{

0, 14 ,
1
2 ,

3
4

}

in combination with the 12 cyclic chroma shifts to
obtain 48 different audio chromagrams. Actually, a similar strategy is suggested in [59;
162] where generalized chroma representations with 24 or 36 bins (instead of the usual 12
bins) are derived from a short-time Fourier transform. We then determine the cyclic shift
index ι and the shift σ that minimize the distance between the reference chromagram and
the resulting audio chromagram. These two minimizing numbers can be expressed by a
single rational number

τ := ι+ σ ∈ [0, 12), (7.2)

which we refer to as tuning parameter. The audio chromagram obtained by applying a
tuning parameter is also referred to as tuned audio chromagram. Figure 7.2 illustrates
the importance of introducing the additional rational shift parameter σ. Here, slight
fluctuations around a frequency that lies between the center frequencies of two neighboring
pitches leads to oscillations between the two corresponding chroma bands in the resulting
audio chromagram, see Figure 7.2a. By applying an additional half-semitone shift (σ =
0.5) in the pitch quantization step, these oscillations are removed, see Figure 7.2b.

We now show how one can account for temporal and melodic differences by introducing the
concept of chroma templates, which reveal consistent and inconsistent performance aspects
across the various stanzas. Our concept of chroma templates is similar to the concept of
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Figure 7.3: Chroma template computation for the folk song NLB72246. (a) Reference chro-
magram. (b) Three audio chromagrams. (c) Tuned audio chromagrams. (d) Warped audio
chromagrams. (e) Average chromagram obtained by averaging the three audio chromagrams of
(d) and the reference of (a). (f) Chroma template.

motion templates proposed in [136], which were applied in the context of content-based
retrieval of motion capture data. For a fixed folk song, let Y ∈ {0, 1}d×L denote the
boolean reference chromagram of dimension d = 12 and of length (number of columns)
L ∈ N. Furthermore, we assume that for a given field recording of the song we know
the segmentation boundaries of its constituent stanzas. In the following, let N be the
number of stanzas and let Xn ∈ {0, 1}d×Kn , n ∈ [1 : N ], be the F0-enhanced and suitably
tuned boolean audio chromagrams, where Kn ∈ N denotes the length of Xn. To account



94 CHAPTER 7. AUTOMATED ANALYSIS OF PERFORMANCE VARIATIONS

for temporal differences, we temporally warp the audio chromagrams to correspond to
the reference chromagram Y . Let X = Xn be one of the audio chromagrams of length
K = Kn. To align X and Y , we employ classical dynamic time warping (DTW) using
the Euclidean distance as local cost measure c : R12 × R

12 → R to compare two chroma
vectors. (Note that when dealing with binary chroma vectors that have at most one non-
zero entry, the Euclidean distance equals the Hamming distance.) Recall that a warping
path is a sequence p = (p1, . . . , pM ) with pm = (km, ℓm) ∈ [1 : K]× [1 : L] for m ∈ [1 :M ]
satisfying the boundary condition

p1 = (1, 1) and pM = (K,L)

as well as the step size condition

pm+1 − pm ∈ {(1, 0), (0, 1), (1, 1)}

for m ∈ [1 : M − 1]. The total cost of p is defined as
∑M

m=1 c(X(km), Y (ℓm)). Now, let
p∗ denote a warping path having minimal total cost among all possible warping paths.
Then, the DTW distance DTW(X,Y ) between X and Y is defined to be the total cost of
p∗. It is well-known that p∗ and DTW(X,Y ) can be computed in O(KL) using dynamic
programming, see [123; 149] for details. Next, we locally stretch and contract the audio
chromagram X according to the warping information supplied by p∗. Here, we have to
consider two cases. In the first case, p∗ contains a subsequence of the form

(k, ℓ), (k, ℓ+ 1), . . . , (k, ℓ+ n− 1)

for some n ∈ N, i. e., the column X(k) is aligned to the n columns Y (ℓ), . . . , Y (ℓ+ n− 1)
of the reference. In this case, we duplicate the column X(k) by taking n copies of it. In
the second case, p∗ contains a subsequence of the form

(k, ℓ), (k + 1, ℓ), . . . , (k + n− 1, ℓ)

for some n ∈ N, i. e., the n columns X(k), . . . , X(k + n − 1) are aligned to the single
column Y (ℓ). In this case, we replace the n columns by a single column by taking the
component-wise AND-conjunction X(k) ∧ . . . ∧X(k + n− 1). For example, one obtains
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The resulting warped chromagram is denoted by X̄. Note that X̄ is still a boolean chro-
magram and the length of X̄ equals the length L of the reference Y , see Figure 7.3d for
an example.

After the temporal warping we obtain an optimally tuned and warped audio chromagram
for each stanza. Now, we simply average the reference chromagram Y with the warped
audio chromagrams X̄1, . . . , X̄N to yield an average chromagram

Z :=
1

N + 1

(

Y +
∑

n∈[1:N ]

X̄n

)

. (7.3)
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Note that the average chromagram Z has real-valued entries between zero and one and
has the same length L as the reference chromagram. Figure 7.3e shows such an average
chromagram obtained from three audio chromagrams and the reference chromagram.

The important observation is that black/white regions of Z indicate periods in time (hor-
izontal axis) where certain chroma bands (vertical axis) consistently assume the same
values zero/one in all chromagrams, respectively. By contrast, colored regions indicate in-
consistencies mainly resulting from variations in the audio chromagrams (and partly from
inappropriate alignments). In other words, the black and white regions encode character-
istic aspects that are shared by all chromagrams, whereas the colored regions represent
the variations coming from different performances. To make inconsistent aspects more
explicit, we further quantize the matrix Z by replacing each entry of Z that is below a
threshold δ by zero, each entry that is above 1 − δ by one, and all remaining entries by
a wildcard character ∗ indicating that the corresponding value is left unspecified, see Fig-
ure 7.3f. The resulting quantized matrix is referred to as chroma template for the audio
chromagrams X1, . . . , XN with respect to the reference chromagram Y . In the following
section, we discuss the properties of such chroma templates in detail by means of several
representative examples.

7.2 Folk Song Performance Analysis

The analysis of different interpretations, also referred to as performance analysis, has
become an active research field [37; 111; 152; 184; 185]. Here, one objective is to extract
expressive performance aspects such as tempo, dynamics, and articulation from audio
recordings. To this end, one needs accurate annotations of the audio material by means
of suitable musical parameters including onset times, note duration, sound intensity, or
fundamental frequency. To ensure such a high accuracy, annotation is often done manually,
which is infeasible in view of analyzing large audio collections. For the folk song scenario,
we now sketch how various performance aspects can be derived in a fully automated
fashion. In particular, we discuss how one can capture performance aspects and variations
regarding tuning, tempo, as well as melody across the various stanzas of a field recording.

For the sake of concreteness, we explain these concepts by means of our running example
NLB72246 shown in Figure 7.1a. As discussed in Section 7.1, we first compensate for dif-
ference in key and tuning by estimating a tuning parameter τ for each individual stanza
of the field recording. This parameter indicates to which extend the stanza’s audio chro-
magram needs to be shifted upwards to optimally agree with the reference chromagram.
Figure 7.4b shows the tuning parameter τ for each of the 25 stanzas of the field recording.
As can be seen, the tuning parameter almost constantly decreases from stanza to stanza,
thus indicating a constant rise of the singer’s voice. The singer starts the performance by
singing the first stanza roughly τ = 7.75 semitones lower than indicated by the reference
transcription. Continuously going up with the voice, the singer finishes the song with the
last stanza only τ = 4.5 semitones below the transcription, thus differing by more than
three semitones from the beginning. Note that in our processing pipeline, we compute
tuning parameters on the stanza level. In other words, significant shifts in tuning within
a stanza cannot yet be captured by our methods. This may be one unwanted reason
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Figure 7.4: Various performance aspects for a field recording of NLB72246 comprising 25 stanzas.
(a) Reference chromagram. (b) Tuning parameter τ for each stanza. (c) - (f) Tempo curves for
the stanzas 1, 7, 19, and 25. (g) Average chromagram. (h) Chroma template.

when obtaining many inconsistencies in our chroma templates. For the future, we think
of methods on how to handle such detuning artifacts within stanzas.

After compensating for tuning differences, we apply DTW-based warping techniques in or-
der to compensate for temporal differences between the recorded stanzas, see Section 7.1.
Actually, an optimal warping path p∗ encodes the relative tempo difference between the
two sequences to be aligned. In our case, one sequence corresponds to one of the per-
formed stanzas of the field recording and the other sequence corresponds to the idealized
transcription, which was converted into a MIDI representation using a constant tempo of
120 BPM. Now, by aligning the performed stanza with the reference stanza (on the level of
chromagram representations), one can derive the relative tempo deviations between these
two versions [133]. These tempo deviations can be described through a tempo curve that,
for each position of the reference, indicates the relative tempo difference between the per-
formance and the reference. In Figure 7.4c-f, the tempo curves for four recorded stanzas
of NLB72246 are shown. The horizontal axis encodes the time axis of the MIDI reference
(rendered at 120 BPM), whereas the vertical encodes the relative tempo difference in form
of a factor. For example, a value of 1 indicates that the performance has the same tempo
as the reference (in our case 120 BPM). Furthermore, the value 1/2 indicates half the
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Figure 7.5: Various performance aspects for a field recording of NLB73626 comprising 5
stanzas. (a) Reference chromagram. (b) Tuning parameter τ for each stanza. (c) - (f)
Tempo curves for the first 4 stanzas. (g) Average chromagram. (h) Chroma template.

tempo (in our case 60 BPM) and the value 2 indicates twice the tempo relative to the
reference (in our case 240 BPM). As can be seen from Figure 7.4c, the singer performs
the first stanza at an average tempo of roughly 85 BPM (factor 0.7). However, the tempo
is not constant throughout the stanza. Actually, the singer starts with a fast tempo, then
slows down significantly, and accelerates again towards the end of the stanza. Similar
tendencies can be observed in the performances of the other stanzas. As an interesting
observation, the average tempo of the stanzas continuously increases throughout the per-
formance. Starting with an average tempo of roughly 85 BPM in the first stanza, the
tempo averages to 99 BPM in stanza 7, 120 BPM in stanza 19, and reaches 124 BPM in
stanza 25. Also, in contrast to stanzas at the beginning of the performance, the tempo is
nearly constant for the stanzas towards the end of the recording. This may be an indi-
cator that the singer becomes more confident in her singing capabilities as well as in her
capabilities of remembering the song.

Finally, after tuning and temporally warping the audio chromagrams, we compute an av-
erage chromagram and a chroma template. In the quantization step, we use a threshold
δ. In our experiments, we set δ = 0.1, thus disregarding inconsistencies that occur in less
than 10% of the stanzas. This introduces some robustness towards outliers. The average
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Figure 7.6: Reference chromagram (top), average chromagram (middle) and chroma template
(bottom) for the folk song recording NLB74437 comprising 8 stanzas.

chromagram and a chroma template for NLB72246 are shown of Figure 7.4g and Fig-
ure 7.4h, respectively. Here, in contrast to Figure 7.3, all 25 stanzas of the field recording
were considered in the averaging process. As explained above, the wildcard character ∗
(gray color) of a chroma template indicates inconsistent performance aspects across the
various stanzas of the field recording. Since we already compensated for tuning and tempo
differences before averaging, the inconsistencies indicated by the chroma templates tend
to reflect local melodic inconsistencies and inaccuracies. We illustrate this by our running
example, where the inconsistencies particularly occur in the third phrase of the stanza
(starting with the fifth second of the MIDI reference). One possible explanation for these
inconsistencies may be as follows. In the first two phrases of the stanza, the melody is
relatively simple in the sense that neighboring notes differ only either by a unison interval
or by a second interval. Also the repeating note A4 plays the role of a stabilizing anchor
within the melody. In contrast, the third phrase of the stanza is more involved. Here,
the melody contains several larger intervals as well as a meter change. Therefore, because
of the higher complexity, the singer may have problems in accurately and consistently
performing the third phrase of the stanza.

As a second example, we consider the folk song NLB73626, see Figure 7.5. The correspond-
ing field recording comprises 5 stanzas, which are sung in a relatively clean and consistent
way. Firstly, the singer keeps the pitch more or less on the same level throughout the
performance. This is also indicated by Figure 7.5b, where one has a tuning parameter
of τ = 4 for all, except for the first stanza where one has τ = 3.75. Secondly, as shown
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Figure 7.7: Reference chromagram (top), average chromagram (middle) and chroma template
(bottom) for the folk song recording NLB73287 comprising 11 stanzas.

by Figure 7.5c-f, the average tempo is consistent over all stanzas. Also, the shapes of all
the tempo curves are highly correlated. This temporal consistency may be an indicator
that the local tempo deviations are a sign of artistic intention rather than a random and
unwanted imprecision. Thirdly, the chroma template shown in Figure 7.5h exhibits many
white regions, thus indicating that many notes of the melody have been performed in a
consistent way. The gray areas, in turn, which correspond to the inconsistencies, appear
mostly in transition periods between consecutive notes. Furthermore, they tend to have
an ascending or descending course while smoothly combining the pitches of consecutive
notes. Here, one reason is that the singer tends to slide between two consecutive pitches,
which has the effect of some kind of portamento. All of these performance aspects indi-
cate that the singer seems to be quite familiar with the song and confident in her singing
capabilities.

We close our discussion on performance analysis by having a look at the chroma templates
of another three representative examples. Figure 7.6 shows the chroma template of the folk
song NLB74437. The template shows that the performance is very consistent, with almost
all notes remaining unmasked. Actually, this is rather surprising since NLB74437 is one of
the few recordings, where several singers perform together. Even though, in comparison
to other recordings, the performers do not seem to be particularly good singers and even
differ in tuning and melody, singing together seems to mutually stabilize the singers thus
resulting in a rather consistent overall performance. Also the chroma template shown in
Figure 7.7 is relatively consistent. Similarly to the example shown in Figure 7.5, there
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Figure 7.8: Reference chromagram (top), average chromagram (middle) and chroma template
(bottom) for the folk song recording NLB72395 comprising 12 stanzas.

are inconsistencies that are caused by portamento effects. As a last example, we consider
the chroma template of the folk song NLB72395, where nearly all notes have been marked
as inconsistent, see Figure 7.8. This is a kind of negative result, which indicates the
limitations of our concept. A manual inspection showed that some of the stanzas of the
field recording exhibit significant structural differences, which are neither reflected by the
transcription nor in accordance with most of the other stanzas. For example, in at least two
recorded stanzas one entire phrase is omitted by the singer. In such cases, using a global
approach for aligning the stanzas inevitably leads to poor and semantically meaningless
alignments that cause many inconsistencies. The handling of such structural differences
constitutes an interesting research problem.

7.3 A User Interface for Folk Song Navigation

Chroma templates capture performance aspects and variations in the various stanzas of a
folk song. In particular, the chroma templates give a visual impression of the variations
occurring. We now present a user interface that allows for analyzing such variations
by means of listening to and, in particular, comparing the different stanzas of an audio
recording in a convenient way.

Once having segmented the audio recording into stanzas and computed alignment paths



7.4. CONCLUSION 101

between the MIDI reference and all audio stanzas, one can then derive the temporal
correspondences between the MIDI and the audio representation with the objective to
associate note events given by the MIDI file with their physical occurrences in the audio
recording, see [123] for details. The result can be regarded as an automated annotation
of the entire audio recording with available MIDI events. Such annotations facilitate
multimodal browsing and retrieval of MIDI and audio data, thus opening new ways of
experiencing and researching music. For example, most successful algorithms for melody-
based retrieval work in the domain of symbolic or MIDI music. On the other hand, retrieval
results may be most naturally presented by playing back the original recording of the
melody, while a musical score or a piano-roll representation may be the most appropriate
form for visually displaying the query results. For a description of such functionalities, we
refer to [26].

Furthermore, aligning each stanza of the audio recording to the MIDI reference yields a
multi-alignment between all stanzas. Exploiting this alignment, one can implement inter-
faces that allow a user to seamlessly switch between the various stanzas of the recording
thus facilitating a direct access and comparison of the audio material [123]. The Audio
Switcher [57] constitutes such a user interface, which allows the user to open in parallel a
synthesized version of the MIDI reference as well as all stanzas of the folk song recording,
see Figure 7.9. Each of the stanzas is represented by a slider bar indicating the current
playback position with respect to the stanza’s particular time scale. The stanza that is cur-
rently used for audio playback, in the following referred to as active stanza, is indicated by
a red marker located to the left of the slider bar. The slider knob of the active stanza moves
at constant speed while the slider knobs of the other stanzas move accordingly to the rela-
tive tempo variations with respect to the active stanza. The active stanza may be changed
at any time simply by clicking on the respective playback symbol located to the left of each
slider bar. The playback of the new active stanza then starts at the time position that
musically corresponds to the last playback position of the former active stanza. This has
the effect of seamlessly crossfading from one stanza to another while preserving the current
playback position in a musical sense. One can also jump to any position within any of the
stanzas by directly selecting a position of the respective slider. Such functionalities assists
the user in detecting and analyzing the differences between several recorded stanzas of a
single folk song. The Audio Switcher is realized as plug-in of the SyncPlayer system [106;
57], which is an an advanced software audio player with a plug-in interface for MIR appli-
cations and provides tools for navigating within audio recordings and browsing in music
collections. For further details and functionalities, we refer to the literature.

7.4 Conclusion

In this chapter, we presented a multimodal approach for extracting performance param-
eters from folk song recordings by comparing the audio material with symbolically given
reference transcriptions. As the main contribution, we introduced the concept of chroma
templates that reveal the consistent and inconsistent melodic aspects across the various
stanzas of a given recording. In computing these templates, we used tuning and time
warping strategies to deal with local variations in melody, tuning, and tempo.
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Figure 7.9: Instance of the Audio Switcher plug-in of the SyncPlayer showing the synthesized
version of the MIDI reference and the five different stanzas of the audio recording of OGL27517.

The variabilities across the various stanzas of a given recording revealed and observed in
this chapter may have various causes, which need to be further explored in future research.
Often these causes are related to questions in the area of music cognition. A first hypothesis
is that stable notes are structurally more important than variable notes. The stable notes
may be the ones that form part of the singer’s mental model of the song, whereas the
variable ones are added to the model at performance time. Variations may also be caused
by problems in remembering the song. It has been observed that often melodies stabilize
after the singer performed a few iterations. Such effects may offer insight in the working
of the musical memory. Furthermore, melodic variabilities caused by ornamentations can
also be interpreted as a creative aspect of performance. Such variations may be motivated
by musical reasons, but also by the lyrics of a song. Sometimes song lines have an irregular
length, necessitating the insertion or deletion of notes. Variations may also be introduced
by the singer to emphasize key words in the text or, more general, to express the meaning
of the song. Finally one may study details on tempo, timing, pitch, and loudness in
relation to performance, as a way of characterizing performance styles of individuals or
regions.



Part III

Audio Retrieval





Chapter 8

A Review of Content-Based Music

Retrieval

The way music is stored, accessed, distributed, and consumed underwent a radical
change in the last decades. Nowadays, large collections containing millions of digital
music documents are accessible from anywhere around the world. Such a tremendous
amount of readily available music requires retrieval strategies that allow users to ex-
plore large music collections in a convenient and enjoyable way. Most audio search en-
gines rely on metadata and textual annotations of the actual audio content [19]. Edi-
torial metadata typically include descriptions of the artist, title, or other release infor-
mation. The drawback of a retrieval solely based on editorial metadata is that the user
needs to have a relatively clear idea of what he or she is looking for. Typical query
terms may be a title such as “Act naturally” when searching the song by The Beatles
or a composer’s name such as “Beethoven” (see Figure 8.1a).1 In other words, tradi-
tional editorial metadata only allow to search for already known content. To overcome
these limitations, editorial metadata has been more and more complemented by gen-
eral and expressive annotations (so called tags) of the actual musical content [10; 97;
173]. Typically, tags give descriptions of the musical style or genre of a recording, but may
also include information about the mood, the musical key, or the tempo [110; 172]. In par-
ticular, tags form the basis for music recommendation and navigation systems that make
the audio content accessible even when users are not looking for a specific song or artist but
for music that exhibits certain musical properties [173]. The generation of such annotations
of audio content, however, is typically a labor intensive and time-consuming process [19;
172]. Furthermore, often musical expert knowledge is required for creating reliable, consis-
tent, and musically meaningful annotations. To avoid this tedious process, recent attempts
aim at substituting expert-generated tags by user-generated tags [172]. However, such tags
tend to be less accurate, subjective, and rather noisy. In other words, they exhibit a high
degree of variability between users. Crowd (or social) tagging, one popular strategy in this
context, employs voting and filtering strategies based on large social networks of users for
“cleaning” the tags [110]. Relying on the “wisdom of the crowd” rather than the “power of
the few” [99], tags assigned by many users are considered more reliable than tags assigned

1www.google.com (accessed Dec. 18, 2011)
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(a) (b) (c)

Figure 8.1: Illustration of retrieval concepts. (a) Traditional retrieval using textual metadata
(e. g., artist, title) and a web search engine. (b) Retrieval based on rich and expressive metadata
given by tags. (c) Content-based retrieval using audio, MIDI, or score information.

by only a few users. Figure 8.1b shows the Last.fm2 tag cloud for “Beethoven”. Here, the
font size reflects the frequency of the individual tags. One major drawback of this approach
is that it relies on a large crowd of users for creating reliable annotations [110]. While
mainstream pop/rock music is typically covered by such annotations, less popular genres
are often scarcely tagged. This phenomenon is also known as the “long-tail” problem [20;
172]. To overcome these problems, content-based retrieval strategies have great poten-
tial as they do not rely on any manually created metadata but are exclusively based
on the audio content and cover the entire audio material in an objective and repro-
ducible way [19]. One possible approach is to employ automated procedures for tagging
music, such as automatic genre recognition, mood recognition, or tempo estimation [9;
173]. The major drawback of these learning-based strategies is the requirement of large
corpora of tagged music examples as training material and the limitation to queries in tex-
tual form. Furthermore, the quality of the tags generated by state-of-the-art procedures
does not reach the quality of human generated tags [173].

In this chapter, we present and discuss various retrieval strategies based on audio content
that follow the query-by-example paradigm: given an audio recording or a fragment of
it (used as query or example), the task is to automatically retrieve documents from a
given music collection containing parts or aspects that are similar to it. As a result,
retrieval systems following this paradigm do not require any textual descriptions. However,
the notion of similarity used to compare different audio recordings (or fragments) is of
crucial importance and largely depends on the respective application as well as the user
requirements. Such strategies can be loosely classified according to their specificity, which
refers to the degree of similarity between the query and the database documents.

The remainder of this chapter is organized as follows. In Section 8.1, we first give an
overview on the various audio retrieval tasks following the query-by-example paradigm.
In particular, we extend the concept of specificity by introducing a second aspect: the
granularity of a retrieval task referring to the temporal scope. Then, we discuss repre-
sentative state-of-the-art approaches to audio identification (Section 8.2), audio matching
(Section 8.3), and version identification (Section 8.4). In Section 8.5, we discuss open
problems in the field of content-based retrieval and give an outlook on future directions.

2www.last.fm (accessed Dec. 18, 2011)

www.last.fm
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Figure 8.2: Specificity/granularity pane showing the various facets of content-based music re-
trieval.

8.1 Audio-Based Query-By-Example

Many different audio content-based retrieval systems have been proposed, following dif-
ferent strategies and aiming at different application scenarios. Generally, such retrieval
systems can be characterized by various aspects such as the notion of similarity, the un-
derlying matching principles, or the query format. Following and extending the concept
introduced in [19], we consider the following two aspects: specificity and granularity, see
Figure 8.2. The specificity of a retrieval system refers to the degree of similarity between
the query and the database documents to be retrieved. High-specific retrieval systems
return exact copies of the query (in other words, they identify the query or occurrences
of the query within database documents), whereas low-specific retrieval systems return
vague matches that are similar with respect to some musical properties. As in [19], dif-
ferent content-based music retrieval scenarios can be arranged along a specificity axis as
shown in Figure 8.2 (horizontally). We extend this classification scheme by introducing
a second aspect, the granularity (or temporal scope) of a retrieval scenario. In fragment-
level retrieval scenarios, the query consists of a short fragment of an audio recording, and
the goal is to retrieve all musically related fragments that are contained in the documents
of a given music collection. Typically, such fragments may cover only a few seconds of
audio content or may correspond to a motif, a theme, or a musical part of a record-
ing. In contrast, in document-level retrieval, the query reflects characteristics of an entire
document and is compared with entire documents of the database. Here, the notion of
similarity typically is rather coarse and the features capture global statistics of an entire
recording. In this context, one has to distinguish between some kind of internal and some
kind of external granularity of the retrieval tasks. In our classification scheme, we use
the term fragment-level when a fragment-based similarity measure is used to compare
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fragments of audio recordings (internal), even though entire documents are returned as
matches (external). Using such a classification allows for extending the specificity axis to
a specificity/granularity pane as shown in Figure 8.2. In particular, we have identified four
different groups of retrieval scenarios corresponding to the four clouds in Figure 8.2. Each
of the clouds, in turn, encloses a number of different retrieval scenarios. Obviously, the
clouds are not strictly separated but blend into each other. Even though this taxonomy
is rather vague and sometimes questionable, it gives an intuitive overview of the various
retrieval paradigms while illustrating their subtle but crucial differences.

An example of a high-specific fragment-level retrieval task is audio identification (some-
times also referred to as audio fingerprinting [16]). Given a small audio fragment
as query, the task of audio identification consists in identifying the particular audio
recording that is the source of the fragment [1]. Nowadays, audio identification is
widely used in commercial systems such as Shazam.3 Typically, the query fragment
is exposed to signal distortions on the transmission channel [16; 107]. Recent iden-
tification algorithms exhibit a high degree of robustness against noise, MP3 compres-
sion artifacts, uniform temporal distortions, or interferences of multiple signals [56;
82]. The high specificity of this retrieval task goes along with a notion of similarity that
is very close to the identity. To make this point clearer, we distinguish between a piece
of music (in an abstract sense) and a specific performance of this piece. In particular for
Western classical music, there typically exist a large number of different recordings of the
same piece of music performed by different musicians. Given a query fragment, e. g., taken
from a Bernstein recording of Beethoven’s Symphony No. 5, audio fingerprinting systems
are not capable of retrieving, e. g., a Karajan recording of the same piece. Likewise, given
a query fragment from a live performance of “Act naturally” by The Beatles, the original
studio recording of this song may not be found. The reason for this is that existing finger-
printing algorithms are not designed to deal with strong non-linear temporal distortions
or with other musically motivated variations that affect, for example, the tempo or the
instrumentation.

At a lower specificity level, the goal of fragment-based audio matching is to retrieve all
audio fragments that musically correspond to a query fragment from all audio documents
contained in a given database [105; 135]. In this scenario, one explicitly allows semantically
motivated variations as they typically occur in different performances and arrangements of
a piece of music. These variations include significant non-linear global and local differences
in tempo, articulation, and phrasing as well as differences in executing note groups such as
grace notes, trills, or arpeggios. Furthermore, one has to deal with considerable dynamical
and spectral variations, which result from differences in instrumentation and loudness.

One instance of document-level retrieval at a similar specificity level as audio matching
is the task of version identification. Here, the goal is to identify different versions of the
same piece of music within a database [161]. In this scenario, one not only deals with
changes in instrumentation, tempo, and tonality, but also with more extreme variations
concerning the musical structure, key, or melody, as typically occurring in remixes and
cover songs. This requires document-level similarity measures to globally compare entire
documents.

3www.shazam.com (accessed Dec. 18, 2011)

www.shazam.com
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Finally, there are a number of even less specific document-level retrieval tasks which can
be grouped under the term category-based retrieval. This term encompasses retrieval of
documents whose relationship can be described by cultural or musicological categories.
Typical categories are genre [174], rhythm styles [65; 157], or mood and emotions [98;
171; 182] and can be used in fragment as well as document-level retrieval tasks. Music
recommendation or general music similarity assessments [14; 183] can be seen as further
document-level retrieval tasks of low specificity.

In the following, we elaborate the aspects of specificity and granularity by means of rep-
resentative state-of-the-art content-based retrieval approaches. In particular, we highlight
characteristics and differences in requirements when designing and implementing systems
for audio identification, audio matching, and version identification. Furthermore, we ad-
dress efficiency and scalability issues. We start with discussing high-specific audio finger-
printing (Section 8.2), continue with mid-specific audio matching (Section 8.3), and then
discuss version identification (Section 8.4).

8.2 Audio Identification

Of all content-based music retrieval tasks, audio identification has received most inter-
est and is now widely used in commercial applications. In the identification process, the
audio material is compared by means of so-called audio fingerprints, which are compact
content-based signatures of audio recordings [16]. In real-world applications, these fin-
gerprints need to fulfill certain requirements. First of all, the fingerprints should capture
highly specific characteristics so that a short audio fragment suffices to reliably identify
the corresponding recording and distinguish it from millions of other songs. However, in
real-world scenarios, audio signals are exposed to distortions on the transmission chan-
nel. In particular, the signal is likely to be affected by noise, artifacts from lossy audio
compression, pitch shifting, time scaling, equalization, or dynamics compression. For a
reliable identification, fingerprints have to show a significant degree of robustness against
such distortions. Furthermore, scalability is an important issue for all content-based re-
trieval applications. A reliable audio identification system needs to capture the entire
digital music catalog, which is further growing every day. In addition, to minimize storage
requirements and transmission delays, fingerprints should be compact and efficiently com-
putable [16]. Most importantly, this also requires efficient retrieval strategies to facilitate
very fast database look-ups. These requirements are crucial for the design of large-scale
audio identification systems. To satisfy all these requirements, however, one typically has
to face a trade-off between contradicting principles.

There are various ways to design and compute fingerprints. One group of fingerprints
consist of short sequences of frame-based feature vectors such as Mel-Frequency Cepstral
Coefficients (MFCC) [17], Bark-scale spectrograms [82; 83], or a set of low-level descrip-
tors [1]. For such representations, vector quantization [1] or thresholding [82] techniques, or
temporal statistics [150] are needed for obtaining the required robustness. Another group
of fingerprints consist of a sparse set of characteristic points such as spectral peaks [52;
181] or characteristic wavelet coefficients [96]. As an example, we now describe the peak-
based fingerprints suggested by Wang [181], which are now commercially used in the
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Figure 8.3: Illustration of the Shazam audio identification system using a recording of “Act
naturally” by The Beatles as example. (a) Database document with extracted peak fingerprints.
(b) Query fragment (10 seconds) with extracted peak fingerprints. (c) Constellation map of
database document. (d) Constellation map of query document. (e) Superposition of the database
fingerprints and time-shifted query fingerprints.

Shazam music identification service4.

The Shazam system provides a smartphone application that allows users to record a short
audio fragment of an unknown song using the built-in microphone. The application then
derives the audio fingerprints which are sent to a server that performs the database look-
up. The retrieval result is returned to the application and presented to the user together
with additional information about the identified song. In this approach, one first computes
a spectrogram from an audio recording using a short-time Fourier transform. Then, one
applies a peak-picking strategy that extracts local maxima in the magnitude spectrogram:
time-frequency points that are locally predominant. Figure 8.3 illustrates the basic re-
trieval concept of the Shazam system using a recording of “Act naturally” by The Beatles.
Figure 8.3a and Figure 8.3b show the spectrogram for an example database document
(30 seconds of the recording) and a query fragment (10 seconds), respectively. The ex-
tracted peaks are superimposed to the spectrograms. The peak-picking step reduces the
complex spectrogram to a “constellation map”, a low-dimensional sparse representation
of the original signal by means of a small set of time-frequency points, see Figure 8.3c
and Figure 8.3d. According to [181], the peaks are highly characteristic, reproducible,

4www.shazam.com (accessed Dec. 18, 2011)

www.shazam.com
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Figure 8.4: Illustration of the peak pairing strategy of the Shazam algorithm. (a) Anchor peak
and assigned target zone. (b) Pairing of anchor peak and target peaks to form hash values.

and robust against many, even significant distortions of the signal. Note that a peak is
only defined by its time and frequency values, whereas magnitude values are no longer
considered.

The general database look-up strategy works as follows. Given the constellation maps for
a query fragment and all database documents, one locally compares the query fragment to
all database fragments of the same size. More precisely, one counts matching peaks, i. e.,
peaks that occur in both constellation maps. A high count indicates that the corresponding
database fragment is likely to be a correct hit. This procedure is illustrated in Figure 8.3e,
showing the superposition of the database fingerprints and time-shifted query fingerprints.
Both constellation maps show a high consistency (many red and blue points coincide) at a
fragment of the database document starting at time position 10 seconds, which indicates
a hit. However, note that not all query and database peaks coincide. This is because
the query was exposed to signal distortions on the transmission channel (in this example
additive white noise). Even under severe distortions of the query, there still is a high
number of coinciding peaks thus showing the robustness of these fingerprints.

Obviously, such an exhaustive search strategy is not feasible for a large database as the
run-time linearly depends on the number and sizes of the documents. For the constellation
maps, as proposed in [107], one tries to efficiently reduce the retrieval time using indexing
techniques—very fast operations with a sub-linear run-time. However, directly using the
peaks as hash values is not possible as the temporal component is not translation-invariant
and the frequency component alone does not have the required specificity. In [181], a
strategy is proposed, where one considers pairs of peaks. Here, one first fixes a peak
to serve as “anchor peak” and then assigns a “target zone” as indicated in Figure 8.4a.
Then, pairs are formed of the anchor and each peak in the target zone, and a hash
value is obtained for each pair of peaks as a combination of both frequency values and
the time difference between the peaks as indicated in Figure 8.4b. Using every peak
as anchor peak, the number of items to be indexed increases by a factor that depends
on the number of peaks in the target zone. This combinatorial hashing strategy has
three advantages. Firstly, the resulting fingerprints show a higher specificity than single
peaks, leading to an acceleration of the retrieval as fewer exact hits are found. Secondly,
the fingerprints are translation-invariant as no absolute timing information is captured.
Thirdly, the combinatorial multiplication of the number of fingerprints introduced by
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considering pairs of peaks as well as the local nature of the peak pairs increases the
robustness to signal degradations.

The Shazam audio identification system facilitates a high identification rate, while
scaling to large databases. One weakness of this algorithm is that it can not han-
dle time scale modifications of the audio as frequently occurring in the context of
broadcasting monitoring. The reason for this is that time scale modifications (also
leading to frequency shifts) of the query fragment completely change the hash val-
ues. Extensions of the original algorithms dealing with this issue are presented in [52;
176].

8.3 Audio Matching

The problem of audio identification can be regarded as largely solved even for large scale
music collections. Less specific retrieval tasks, however, are still mostly unsolved. In
this section, we highlight the difference between high-specific audio identification and
mid-specific audio matching while presenting strategies to cope with musically motivated
variations. In particular, we introduce chroma-based audio features [4; 59; 123] and sketch
distance measures that can deal with local tempo distortions. Finally, we indicate how the
matching procedure may be extended using indexing methods to scale to large datasets [18;
105].

For the audio matching task, suitable descriptors are required to capture characteristics of
the underlying piece of music, while being invariant to properties of a particular recording.
Chroma-based audio features [4; 123], sometimes also referred to as pitch class profiles [59],
are a well-established tool for analyzing Western tonal music and have turned out to be
a suitable mid-level representation in the retrieval context [18; 105; 135; 123]. Assuming
the equal-tempered scale, the chroma attributes correspond to the set {C,C♯,D, . . . ,B}
that consists of the twelve pitch spelling attributes as used in Western music notation.
Capturing energy distributions in the twelve pitch classes, chroma-based audio features
closely correlate to the harmonic progression of the underlying piece of music. This is the
reason why basically every matching procedure relies on some type of chroma feature, see
Section 5.2.

There are many ways for computing chroma features. For example, the decomposition of
an audio signal into a chroma representation (or chromagram) may be performed either
by using short-time Fourier transforms in combination with binning strategies [59] or by
employing suitable multirate filter banks [123; 127]. Figure 8.5 illustrates the computa-
tion of chroma features for a recording of the first five measures of Beethoven’s Symphony
No. 5 in a Bernstein interpretation. The main idea is that the fine-grained (and highly
specific) signal representation as given by a spectrogram (Figure 8.5c) is coarsened in a
musically meaningful way. Here, one adapts the frequency axis to represent the semitones
of the equal tempered scale (Figure 8.5d). The resulting representation captures musi-
cally relevant pitch information of the underlying music piece, while being significantly
more robust against spectral distortions than the original spectrogram. To obtain chroma
features, pitches differing by octaves are summed up to yield a single value for each pitch
class, see Figure 8.5e. The resulting chroma features show increased robustness against
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Figure 8.5: Illustration of various feature representations for the beginning of Beethoven’s Opus
67 (Symphony No. 5) in a Bernstein interpretation. (a) Score of the excerpt. (b) Waveform. (c)
Spectrogram with linear frequency axis. (d) Spectrogram with frequency axis corresponding to
musical pitches. (e) Chroma features. (f) Normalized chroma features. (g) Smoothed version of
chroma features.

changes in timbre, as typically resulting from different instrumentations.

The degree of robustness of the chroma features against musically motivated variations can
be further increased by using suitable post-processing steps. See [127] for some chroma
variants.5 For example, normalizing the chroma vectors (Figure 8.5f) makes the fea-
tures invariant to changes in loudness or dynamics. Furthermore, applying a temporal
smoothing and downsampling step (see Figure 8.5g) may significantly increase robust-
ness against local temporal variations that typically occur as a result of local tempo
changes or differences in phrasing and articulation, see also [127] There are many more
variants of chroma features comprising various processing steps. For example, applying
logarithmic compression or whitening procedures enhances small yet perceptually relevant
spectral components and the robustness to timbre [120; 126]. A peak picking of spec-
trum’s local maxima can enhance harmonics while suppressing noise-like components [59;
46]. Furthermore, generalized chroma representations with 24 or 36 bins (instead of the
usual 12 bins) allow for dealing with differences in tuning [59]. Such variations in the
feature extraction pipeline have a large influence and the resulting chroma features can
behave quite differently in the subsequent analysis task.

Figure 8.6 shows spectrograms and chroma features for two different interpretations (by

5MATLAB implementations for some chroma variants are supplied by the Chroma Toolbox:
www.mpi-inf.mpg.de/resources/MIR/chromatoolbox (accessed Dec. 18, 2011)

www.mpi-inf.mpg.de/resources/MIR/chromatoolbox
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Figure 8.6: Different representations and peak fingerprints extracted for recordings of the first 21
measures of Beethoven’s Symphony No. 5. (a) Spectrogram-based peaks for a Bernstein record-
ing. (b) Chromagram-based peaks for a Bernstein recording. (c) Spectrogram-based peaks for a
Karajan recording. (d) Chromagram-based peaks for a Karajan recording.

Bernstein and Karajan) of Beethoven’s Symphony No. 5. Obviously, the chroma features
exhibit a much higher similarity than the spectrograms, revealing the increased robustness
against musical variations. The fine-grained spectrograms, however, reveal characteristics
of the individual interpretations. To further illustrate this, Figure 8.6 also shows finger-
print peaks for all representations. As expected, the spectrogram peaks are very incon-
sistent for the different interpretations. The chromagram peaks, however, show at least
some consistencies, indicating that fingerprinting techniques could also be applicable for
audio matching [12]. This strategy is further analyzed in Chapter 9.

Instead of using sparse peak representations, one typically employs a subsequence search,
which is directly performed on the chroma features. Here, a query chromagram is compared
with all subsequences of database chromagrams. As a result one obtains a matching curve
as shown in Figure 8.7, where a small value indicates that the subsequence of the database
starting at this position is similar to the query sequence. Then the best match is the
minimum of the matching curve. In this context, one typically applies distance measures
that can deal with tempo differences between the versions, such as edit distances [5],
dynamic time warping (DTW) [123; 135], or the Smith-Waterman algorithm [162]. An
alternative approach is to linearly scale the query to simulate different tempi and then to
minimize over the distances obtained for all scaled variants [105]. Figure 8.7 shows three
different matching curves which are obtained using strict subsequence matching, DTW,
and a multiple query strategy.

To speed up such exhaustive matching procedures, one requires methods that allow for
efficiently detecting near neighbors rather than exact matches. A first approach in this
direction uses inverted file indexing [105] and depends on a suitable codebook consisting
of a finite set of characteristic chroma vectors. Such a codebook can be obtained in an
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Figure 8.7: Illustration of the the audio matching procedure for the beginning of Beethoven’s
Opus 67 (Symphony No. 5) using a query fragment corresponding to the first 22 seconds (measures
1-21) of a Bernstein interpretation and a database consisting of an entire recording of a Karajan
interpretation. Three different strategies are shown leading to three different matching curves. (a)
Strict subsequence matching. (b) DTW-based matching. (c) Multiple query scaling strategy.

unsupervised way using vector quantization or in a supervised way exploiting musical
knowledge about chords. The codebook then allows for classifying the chroma vectors
of the database and to index the vectors according to the assigned codebook vector.
This results in an inverted list for each codebook vector. Then, an exact search can
be performed efficiently by intersecting suitable inverted lists. However, the performance
of the exact search using quantized chroma vectors greatly depends on the codebook.
This requires fault-tolerance mechanisms which partly eliminate the speed-up obtained
by this method. Consequently, this approach is only applicable for databases of medium
size [105]. An approach presented in [18] uses an index-based near neighbor strategy based
on locality sensitive hashing (LSH). Instead of considering long feature sequences, the audio
material is split up into small overlapping shingles that consist of short chroma feature
subsequences. The shingles are then indexed using locality sensitive hashing which allows
for scaling this approach to larger datasets. However, to cope with temporal variations,
each shingle covers only a small portion of the audio material and queries need to consist
of a large number of shingles. The high number of table look-ups induced by this strategy
may become problematic for very large datasets where the index is stored on a secondary
storage device. In Chapter 10, we present an investigation with the goal to reduce the
number of table look-ups by representing each query (consisting of 15-25 seconds of the
audio) with only a single shingle. To handle temporal variations, a combination of local
feature smoothing and global query scaling is proposed.

In summary, mid-specific audio matching using a combination of highly robust chroma
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features and sequence-based similarity measures that account for different tempi results
in a good retrieval quality. However, the low specificity of this task makes indexing much
harder than in the case of audio identification. This task becomes even more challenging
when dealing with relatively short fragments on the query and database side.

8.4 Version Identification

In the previous tasks, a musical fragment is used as query and similar fragments or docu-
ments are retrieved according to a given degree of specificity. The degree of specificity was
very high for audio identification and more relaxed for audio matching. If we allow for
even less specificity, we are facing the problem of version identification [161]. In this sce-
nario, a user wants to retrieve not only exact or near-duplicates of a given query, but also
any existing re-interpretation of it, no matter how radical such a re-interpretation might
be. In general, a version may differ from the original recording in many ways, possibly
including significant changes in timbre, instrumentation, tempo, main tonality, harmony,
melody, and lyrics. For example, in addition to the aforementioned Karajan’s rendition
of Beethoven’s Symphony No. 5, one could be also interested in a live performance of it,
played by a punk-metal band who changes the tempo in a non-uniform way, transposes
the piece to another key, and skips many notes as well as most parts of the original struc-
ture. These types of documents where, despite numerous and important variations, one
can still unequivocally glimpse the original composition are the ones that motivate version
identification.

Version identification is usually interpreted as a document-level retrieval task, where a
single similarity measure is considered to globally compare entire documents [5; 46; 170].
However, successful methods perform this global comparison on a local basis. Here, the
final similarity measure is inferred from locally comparing only parts of the documents—a
strategy that allows for dealing with non-trivial structural changes. This way, comparisons
are performed either on some representative part of the piece [60], on short, randomly
chosen subsequences of it [117], or on the best possible longest matching subsequence [162;
164].

A common approach to version identification starts from the previously introduced chroma
features; also more general representations of the tonal content such as chords or tonal tem-
plates have been used [161]. Furthermore, melody-based approaches have been suggested,
although recent findings suggest that this representation may be suboptimal [55]. Once a
tonal representation is extracted from the audio, changes in the main tonality need to be
tackled, either in the extraction phase itself, or when performing pairwise comparisons of
such representations.

Tempo and timing deviations have a strong effect in the chroma feature sequences, hence
making their direct pairwise comparison problematic. An intuitive way to deal with global
tempo variations is to use beat-synchronous chroma representations [12; 46]. However, the
required beat tracking step is often error-prone for certain types of music and therefore may
negatively affect the final retrieval result. Again, as for the audio matching task, dynamic
programming algorithms are a standard choice for dealing with tempo variations [123],
this time applied in a local fashion to identify longest matching subsequences or local
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Figure 8.8: Similarity matrix for “Act naturally” by The Beatles, which is actually a cover version
of a song by Buck Owens. (a) Chroma features of the version by The Beatles. (b) Score matrix.
(c) Chroma features of the version by Buck Owens.

alignments [162; 164].

An example of such an alignment procedure is depicted in Figure 8.8 for our “Act nat-
urally” example by The Beatles. The chroma features of this version are shown in Fig-
ure 8.8c. Actually, this song is originally not written by The Beatles but a cover version
of a Buck Owens song of the same name. The chroma features of the original version are
shown in Figure 8.8a. Alignment algorithms rely on some sort of scores (and penalties) for
matching (mismatching) individual chroma sequence elements. Such scores can be real-
valued or binary. Figure 8.8b shows a binary score matrix encoding pair-wise similarities
between chroma vectors of the two sequences. The binarization of score values provides
some additional robustness against small spectral and tonal differences. Correspondences
between versions are revealed by the score matrix in the form of diagonal paths of high
score. For example, in Figure 8.8, one observes a diagonal path indicating that the first
60 seconds of the two versions exhibit a high similarity.

For detecting such path structures, dynamic programming strategies make use of an ac-
cumulated score matrix. In their local alignment version, where one is searching for sub-



118 CHAPTER 8. CONTENT-BASED MUSIC RETRIEVAL

 

 

0 50 100 150
0

20

40

60

80

100

120

0

50

100

150

200

250

Time (seconds)

T
im

e
(s
ec
o
n
d
s)

Figure 8.9: Accumulated score matrix with optimal alignment path for the “Act naturally”
example (as shown in Figure 8.8).

sequence correspondences, this matrix reflects the lengths and quality of such matching
subsequences. Each element (consisting of a pair of indices) of the accumulated score ma-
trix corresponds to the end of a subsequence and its value encodes the score accumulated
over all elements of the subsequence. Figure 8.9 shows an example of the accumulated score
matrix obtained for the score matrix in Figure 8.8. The highest-valued element of the ac-
cumulated score matrix corresponds to the end of the most similar matching subsequence.
Typically, this value is chosen as the final score for the document-level comparison of the
two pieces. Furthermore, the specific alignment path can be easily obtained by backtrack-
ing from this highest element [123]. The alignment path is indicated by the red line in Fig-
ure 8.9. Additional penalties account for the importance of insertions/deletions in the sub-
sequences. In fact, the way of deriving these scores and penalties is usually an important
part of the version identification algorithms and different variants have been proposed [5;
162; 164]. The aforementioned final score is directly used for ranking candidate doc-
uments to a given query. It has recently been shown that such rankings can be im-
proved by combining different scores obtained by different methods [151], and by exploit-
ing the fact that alternative renditions of the same piece naturally cluster together [109;
165].

The task of version identification allows for these and many other new avenues for re-
search [161]. However, one of the most challenging problems that remains to be solved is
to achieve high accuracy and scalability at the same time, allowing low-specific retrieval
in large music collections [12]. Unfortunately, the accuracies achieved with today’s non-
scalable approaches have not yet been reached by the scalable ones, the latter remaining
far behind the former.
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Figure 8.10: Joystick-like user interface for continuously adjusting the specificity and granularity
levels used in the retrieval process.

8.5 Further Notes

The retrieval strategies presented in this chapter allow for discovering and accessing music
even in cases where the user does not explicitly know what he or she is actually looking for.
For designing a retrieval system that increases the user experience, however, one also has
to better account for user requirements in content-based retrieval systems. For example,
one may think of a comprehensive framework that allows a user to adjust the specificity
level at any stage of the search process. Here, the system should be able to seamlessly
change the retrieval paradigm from high-specific audio identification, over mid-specific
audio matching and version identification to low-specific genre identification. Similarly,
the user should be able to flexibly adapt the granularity level to be considered in the
search. Furthermore, the retrieval framework should comprise control mechanisms for
adjusting the musical properties of the employed similarity measure to facilitate searches
according to rhythm, melody, or harmony or any combination of these aspects.

Figure 8.10 illustrates a possible user interface for such an integrated content-based re-
trieval framework, where a joystick allows a user to continuously and instantly adjust
the retrieval specificity and granularity. For example, a user may listen to a recording
of Beethoven’s Symphony No. 5, which is first identified to be a Bernstein recording us-
ing an audio identification strategy (moving the joystick to the leftmost position). Then,
being interested in different versions of this piece, the user moves the joystick upwards
(document-level) and to the right (mid-specific), which triggers a version identification.
Subsequently, shifting towards a more detailed analysis of the piece, the user selects the
famous fate motif as query and moves the joystick downwards to perform some mid-specific
fragment-based audio matching. Then, the system returns the positions of all occurrences
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of the motif in all available interpretations. Finally, moving the joystick to the rightmost
position, the user may discover recordings of pieces that exhibit some general similarity
like style or mood. In combination with immediate visualization, navigation, and feedback
mechanisms, the user is able to successively refine and adjust the query formulation as
well as the retrieval strategy, thus leading to novel strategies for exploring, browsing, and
interacting with large collections of audio content.



Chapter 9

Musically-Motivated Audio

Fingerprints

As introduced in the last chapter, the high-specific task of audio identification constitutes
an important research topic and is of commercial relevance [1; 15; 181]. In particular, audio
identification systems are highly efficient and can deal with music collections comprising
millions of songs. However, audio identification systems are not capable of retrieving
different performances of the same piece of music. The reason for this is that existing
audio fingerprinting algorithms are not designed for dealing with musical variations such
as strong non-linear temporal distortions, variations that concern the articulation, instru-
mentation, or ornamentation. Dealing with such variations, the scalability of mid-specific
audio matching and version identification is still problematic.

In this chapter, we investigate to which extent well-established audio fingerprints originally
proposed in [181] and introduced in Section 8.2 can be modified to allow for retrieving
musically related recordings while retaining the efficiency of index-based approaches. To
this end, we replace the traditional fingerprints based on spectral peaks by fingerprints
based on peaks of more musically oriented feature representations including log-frequency
and chroma representations. Our motivation for adopting this approach is that such
peak structures, according to [181], are temporally localized, reproducible, and robust
against many, even significant distortions of the signal. Furthermore, the spectral peaks
allow for applying efficient hash-based indexing techniques. The main contribution of this
chapter is to systematically analyze the resulting peak structures in view of robustness
and discriminative power. Finding a good trade-off between these two principles is a
non-trivial task. On the one hand, using fine-grained feature representations (such as a
spectrogram) results in fingerprints that are too specific, thus not facilitating cross-version
retrieval. On the other hand, using coarse feature representations (such as a chromagram)
results in peak fingerprints that are too unspecific and noisy, thus not having the required
discriminative power.

In our investigation, we proceed in four steps, see Figure 9.1 for an overview. For a piece
of music (indicated by the excerpt of the score in Figure 9.1a) we assume to have multiple
performances given in the form of audio recordings, see Figure 9.1b. in the first step,
for each of the performances, we derive a feature representation (Figure 9.1c). In our

121
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Figure 9.1: Overview of the framework used in our investigation. (a) Score of a piece. (b)
Waveforms of two different recorded performances. (c) Feature representations for the perfor-
mances. (d) Peak fingerprints extracted from the feature representations. (e) Temporally warped
fingerprints based on a common time line. (f) Overlayed peak representations indicating peak
consistencies.

experiments we actually investigate five different time-frequency representations derived
from the originally used spectrogram. In the second step, we derive peak fingerprints from
the different feature representations similar to [181], see Figure 9.1d. Next, we investigate
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which and how many of the peaks consistently appear across different performances. To
compensate for temporal differences between performances, we use in the third step music
synchronization techniques [49] to warp the peak fingerprints onto a common time line
(Figure 9.1e). Finally, in the fourth step, the fingerprints are analyzed with respect to
peak consistency across the different performances (Figure 9.1f). Our experimental results
in the context of a music retrieval scenario indicate that, using suitably modified peak
fingerprints, one can transfer traditional audio fingerprinting techniques to other tasks
such as audio matching and cover song identification as introduced in Section 8.3 and
Section 8.4, respectively.

The remainder of the chapter is organized as follows. In Section 9.1 we introduce various
peak fingerprints based on different feature representations. In Section 9.2, as our main
contribution, we systematically investigate the trade-off between robustness and discrim-
inative power of the various audio fingerprints. Finally, discussions and an outlook on a
modified audio fingerprinting system can be found in Section 9.3.

9.1 Modified Peak Fingerprints

Our approach is based on the concept of spectral peaks originally introduced by Wang [181]

and explained in Section 8.2. In this approach, characteristic time-frequency peaks ex-
tracted from a spectrogram are used as fingerprints, thus reducing a complex spectrogram
to a sparse peak representation of high robustness against signal distortions. Such peak
representations allows for applying efficient hash-based indexing techniques. We transfer
this approach to a more flexible retrieval scenario by considering various feature represen-
tations that are obtained by partitioning the frequency axis of the original spectrogram,
while the temporal axis of all representations is fixed to yield a feature rate of 20 Hz (20
feature per second), see Figure 9.2 for an illustration of the different feature representa-
tions.

The first feature representation is a magnitude spectrogram as employed in the original
approach. Following [181], the audio signal is sampled at fs = 8000 Hz and discrete Fourier
transforms are calculated over windows of 1024 samples. In the following, the resulting
feature representation is referred to as SPEC, see Figure 9.2b. The second feature represen-
tation is a log-frequency spectrogram [15]. Using a suitable binning strategy, we group the
Fourier coefficients of the original spectrogram into 33 non-overlapping frequency bands
covering the frequency range from 300 Hz to 2000 Hz. Exhibiting a logarithmic spacing,
the bands roughly represent the Bark scale. In the following, this feature representation
is referred to as LOGF, see Figure 9.2c. As third feature representation, we consider a
constant-Q transform where the frequency bins are logarithmically spaced and the ratios
of the center frequencies to bandwidths of all bins are equal (Q factor). In our investi-
gation, we employ the efficient implementation provided by the Constant-Q Transform
Toolbox for Music Processing1, see [155]. Here, we set the number of frequency bins per
octave to 12 (each bin corresponds to one semitone of the equal-tempered scale) and con-
sider the frequency range from 80 Hz to 4000 Hz. In the following, this feature is referred
to as CONSTQ, see Figure 9.2d. To obtain the fourth feature representation, we decom-

1http://www.elec.qmul.ac.uk/people/anssik/cqt/
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Figure 9.2: Score and various feature representations for the first 7.35 seconds of a Hatto (2006)
performance of the first 5 bars of Chopin’s Mazurka Op. 30 No. 2. One peak and the corresponding
neighborhood is shown for each of the feature representations.

pose the audio signal into 88 frequency bands with center frequencies corresponding to
the pitches of the equal-tempered scale and compute the short-time energy in windows of
length 100 ms. For deriving this decomposition, we use a multirate filter bank as described
in [123] and denote the resulting feature as PITCH, see Figure 9.2e. The fifth feature rep-
resentation is a chroma representation which is obtained from PITCH by adding up the
corresponding values that belong to the same chroma. In the following, this feature is re-
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ferred to as CHROMA, see Figure 9.2e. Implementations for PITCH and CHROMA are provided
by the Chroma Toolbox 2, see [127].

In the second step, we employ a similar strategy as proposed in [181] to extract char-
acteristic peaks from the various feature representations. Given a feature representation
F ∈ R

T×K where F(t, k) denotes the feature value at frame t ∈ [1 : T ] := {1, 2, . . . , T} for
some T ∈ N and frequency bin k ∈ [1 : K] for some K ∈ N, we select a point (t0, k0) as a
peak if F(t0, k0) ≥ F(t, k) for all (t, k) ∈

[

t−∆time : t+∆time
]

×
[

k −∆freq : k +∆freq
]

in
a local neighborhood defined by ∆time and ∆freq. The size of this neighborhood allows for
adjusting the peak density. In our implementation, we use an additional absolute thresh-
old on the values F(t0, k0) to prevent the selection of more or less random peaks in regions
of very low dynamics. The selected peaks are represented in the form of a binary matrix
P ∈ {0, 1}T×K by setting P(t0, k0) = 1 for (t0, k0) being a peak and zero elsewhere. This
peak selection strategy reduces a complex time-frequency representation F to a sparse set
P of time-frequency points. Note that the values of F(t, k) are no longer considered in
the fingerprints.

In our experiments, we fix ∆time = 20 corresponding to one second for all five feature rep-
resentations. The range of the frequency neighborhood ∆freq, however, was experimentally
determined for each feature representation. For SPEC we set ∆freq = 25 (corresponding to
200 Hz), for LOGF we set ∆freq = 2, for CONSTQ we set ∆freq = 3, for PITCH we set ∆freq = 3,
and for CHROMA we set ∆freq = 1, see Figure 9.2 for an illustration of the neighborhood for
each of the feature representations.

9.2 Experiments

We now investigate the musical expressiveness of the various peak fingerprints. In Sec-
tion 9.2.1, we start with introducing the datasets used in our experiments. Then, in
Section 9.2.2, we sketch how the peaks of different performances are warped to a common
time line. In Section 9.2.3, we discuss an experiment that indicates the degree of peak con-
sistency across different performances depending on the underlying feature representation.
Finally, in Section 9.2.4, we describe a document-based retrieval experiment.

9.2.1 Dataset

For our subsequent experiments, we use three different groups of audio recordings cor-
responding to pieces of classical music by three different composers, see Table 9.1. The
first group Chop consists of 298 piano recordings of five Mazurkas by Frédéric Chopin
collected in the Mazurka Project.3 The second group Beet consists of ten recorded per-
formances of Beethoven’s Symphony No. 5. This collection contains orchestral as well as
piano performances. The third group Viva contains seven orchestral performances of the
Summer from Vivaldi’s Four Seasons. Table 9.1 lists the number of performances as well
as the total duration of each movement/piece. The union of all groups is referred to as

2http://www.mpi-inf.mpg.de/resources/MIR/chromatoolbox/
3http://mazurka.org.uk/
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Groups Composer Piece Description #(Perf.) Dur. (min)

C
h
o
p

Chopin Op. 17, No. 4 Mazurka 62 269
Chopin Op. 24, No. 2 Mazurka 64 147
Chopin Op. 30, No. 2 Mazurka 34 48
Chopin Op. 63, No. 3 Mazurka 88 189
Chopin Op. 68, No. 3 Mazurka 50 84

B
e
e
t

Beethoven Op. 67, 1. Mov. Fifth 10 75
Beethoven Op. 67, 2. Mov. Fifth 10 98
Beethoven Op. 67, 3. Mov. Fifth 10 52
Beethoven Op. 67, 4. Mov. Fifth 10 105

V
iv
a Vivaldi RV 315, 1. Mov. Summer 7 38

Vivaldi RV 315, 2. Mov. Summer 7 17
Vivaldi RV 315, 3. Mov. Summer 7 20

All 359 1145

Table 9.1: The groups of audio recordings used in our experiments. The last two columns denote
the number of different performances and the overall duration in minutes.

All and contains 359 recordings with an overall length of 19 hours. In view of extracting
peak fingerprints, these three groups are of increasing complexity. While for the piano
recordings of Chop, one expects relatively clear peak structures, peak picking becomes
much more problematic for general orchestral music (group Beet) and music dominated
by strings (group Viva).

9.2.2 Synchronization of Fingerprints

In our retrieval scenario, there typically are tempo differences between the different inter-
pretations of a piece. In our initial experiments, we do not want to deal with this issue
and compensate for tempo differences in the performances by temporally warping the peak
representations onto a common time line. To this end, we, in a preprocessing step, use
a music synchronization technique [49] to temporally align the different performances of
a given piece of music. More precisely, suppose we are given N different performances
of the same piece yielding the peak representations Pn, n ∈ [1 : N ]. Then, we take the
first performance as reference and compute alignments between the reference and the re-
maining N − 1 performances. The alignments are then used to temporally warp the peak
representations Pn for n ∈ [2 : N ] onto the time axis of the peak representation P1. The
resulting warped peak fingerprints are denoted by P̃n and we set P̃1 = P1, see Figure 9.1e
for an illustration.

9.2.3 Experiment: Peak Consistency

In a first experiment, we investigate to which extent the various peak fingerprints coincide
across different performances of a piece. Here, the degree of peak consistency serves as
an indicator for the robustness of the respective feature representation towards musical
variations. We express the consistency of the fingerprints of two performances in terms of
pairwise precision P, recall R, and F-measure F. More precisely, given two performances
n,m ∈ [1 : N ] of a piece, we obtain the aligned peak fingerprints P̃n and P̃m as explained
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Groups SPEC LOGF CONSTQ PITCH CHROMA

Chop 0.081 0.205 0.157 0.185 0.375
Beet 0.051 0.139 0.126 0.137 0.288
Viva 0.059 0.143 0.124 0.132 0.262

All 0.080 0.203 0.156 0.184 0.373

Table 9.2: Mean of pairwise F-measure values expressing peak consistencies for the different
groups.

in Section 9.2.2. Then, a peak (t0, k0) of P̃m is called consistent relative to P̃n if there is
a peak (t, k0) of P̃n with t ∈ [t0 − τ : t0 + τ ]. Here, the parameter τ ≥ 0 specifies a small
temporal tolerance window. Otherwise, the peak is called non-consistent. The number
of consistent fingerprints is denoted by #(P̃n ∩ P̃m), the overall number of peaks in P̃n
and P̃m is denoted #(P̃n) and #(P̃m), respectively. Then, pairwise precision Pn,m, recall
Rn,m, and F-measure Fn,m are defined as

Pn,m =
#(P̃n ∩ P̃m)

#(P̃m)
, Rn,m =

#(P̃n ∩ P̃m)

#(P̃n)
, Fn,m =

2 · Pn,m · Rn,m
Pn,m +Rn,m

. (9.1)

Note, that Pn,m = Rm,n, Rn,m = Pm,n, and therefore Fn,m = Fm,n. F-measure values
are computed for all N performances of a group yielding an (N ×N)-matrix of pairwise
F values. Mean values for the groups are obtained by averaging over the respective F-
measures. Here, as Fn,n = 1 and Fn,m = Fm,n, we only consider the values of the upper
triangular part of the matrix excluding the main diagonal.

Table 9.2 shows the mean of pairwise F-measure values for the different groups of our
dataset. In this experiment, we use the tolerance parameter τ = 1 (corresponding to
±50 ms), which turned out to be a suitable threshold for compensating inaccuracies in-
troduced by the synchronization procedure, see [49]. First note that the originally used
spectrogram peaks do not work well across different performances. For example, in the
case of Chop, one obtains F = 0.081 for SPEC indicating that only few of the peak fin-
gerprints consistently occur across different performances. The peaks extracted from the
other four feature representations show a higher degree of consistency across performances
e.g., in the case of Chop, F = 0.205 for LOGF, F = 0.157 for CONSTQ, F = 0.185 for PITCH,
and F = 0.375 for CHROMA. This improvement is achieved by the coarser and musically
more meaningful partition of the frequency axis. Furthermore, our results show a de-
pendency on the characteristics of the audio material. In particular, the peaks are more
consistent for Chop (e.g. F = 0.375 for CHROMA) than for Beet (F = 0.288) and Viva
(F = 0.262). The reason for this effect is twofold. Firstly, the piano pieces as contained in
Chop exhibit pronounced note onsets leading to consistent peaks. For complex orchestral
and string music as in Beet and Viva, however, the peaks are less dominant leading to
a lower consistency. Secondly, the consistency results are also influenced by the accuracy
of the peak synchronization as introduced in Section 9.2.2. Typically, the synchronization
technique [49] yields very precise alignments for piano music as contained in Chop. For
orchestral and string pieces as in Beet and Viva, however, there are more synchronization
inaccuracies leading to lower F-measure values.

This effect is further addressed by Figure 9.3 showing mean F-measure values as a function
of the tolerance parameter τ for the different groups. In general, the tolerance parameter



128 CHAPTER 9. MUSICALLY-MOTIVATED AUDIO FINGERPRINTS

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

 

CHROMA

LOGF

PITCH

CONSTQ

SPEC

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

 

CHROMA

LOGF

PITCH

CONSTQ

SPEC

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

 

CHROMA

LOGF

PITCH

CONSTQ

SPEC

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

 

CHROMA

LOGF

PITCH

CONSTQ

SPEC

τ τ

F
-m

ea
su
re

F
F
-m

ea
su
re

F

(a) Chop (b) Beet

(c) Viva (d) All

Figure 9.3: Dependency of the mean of pairwise F-measure values on the tolerance parameter τ
for (a) group Chop, (b) group Beet, (c) group Viva, and (d) the union of all groups All.

has a large influence on the evaluation results. In particular, one observes a large increase
in F-measure values when introducing a tolerance of τ = 1 (in comparison with τ = 0)
regardless of feature type and group. Note that for Chop (Figure 9.3a), further increasing
τ has a smaller effect than for Beet (Figure 9.3b) and Viva (Figure 9.3c). In the following
experiment, we set τ = 1.

9.2.4 Experiment: Document-Based Retrieval

In the second experiment, we investigate the identification rate of the modified peak fin-
gerprints in a document-based retrieval scenario. Given a short query extracted from one
performance, the goal is to correctly retrieve all performances of the same piece from a
larger dataset. Exploiting the warped peak fingerprints P̃ (see Section 9.2.2), we define a
query Q and a database collection D. The database consists of |D| performances (docu-
ments) of different groups. For a query Q and a document D ∈ D, we compute the peak
consistency F-measure as in Eq. (9.1) between Q and all subsegments of D having the
same length as Q. High F-values indicate high degrees of peak consistency between Q and
subsegments of D. Considering document-level retrieval, the similarity between Q and D
is defined as the maximum F-measure over all subsegments of D.

In the evaluation, given the set DQ ⊂ D of documents that are relevant to the query
Q (i. e., interpretations of the piece underlying the query), we follow [164] and express
the retrieval accuracy using the mean of average precision (MAP) measure denoted as
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Figure 9.4: Results for the retrieval experiment showing the dependency of MAP values 〈ψ〉 on
the query length |Q| using queries from (a) Chop (〈ψ〉

null
= 0.190), (b) Beet (〈ψ〉

null
= 0.040),

(c) Viva (〈ψ〉
null

= 0.032), and (d) average over all queries.

〈ψ〉.4 To this end, we sort the documents D ∈ D in descending order with respect to the
similarity between D and Q and obtain the precision ψQ at rank r ∈ [1 : |D|] as

ψQ(r) =
1

r

r
∑

i=1

ΓQ(i) , (9.2)

where ΓQ(r) ∈ {0, 1} indicates whether a document at rank r is contained in DQ. Then,
the average precision ψQ is defined as

ψQ =
1

|DQ|

|D|
∑

r=1

ψQ(r)ΓQ(r) . (9.3)

Finally, given C different queries we compute ψQ for each Q and average over all C values

to obtain the mean of average precision measure 〈ψ〉. In our experiments, for a fixed
query length |Q|, we randomly select C = 100 queries from each group. Additionally,
we estimate the accuracy level 〈ψ〉null expected under the null hypothesis of a randomly
created sorted list, see [164] for details.

Figure 9.4 shows the resulting MAP 〈ψ〉 values as a function of the query length |Q| for
the five features. The queries are taken from the different groups, the database D contains

4 The same measure is used in the MIREX Cover Song Identification, see
www.music-ir.org/mirex/wiki/2010:Audio Cover Song Identification

www.music-ir.org/mirex/wiki/2010:Audio_Cover_Song_Identification
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all performances of All. As the results show, the retrieval accuracy using modified peak
fingerprints is much higher than using the original spectrogram peaks. In particular, using
the musically motivated features PITCH, CONSTQ, and CHROMA results in the highest MAP
〈ψ〉 for All, see Figure 9.4d. For Viva (Figure 9.4c), the retrieval accuracy for PITCH

and CONSTQ is significantly higher than for CHROMA. Here, a manual inspection revealed
that the peaks of CHROMA, although more consistent across performances than peaks of
PITCH and CONSTQ (see Section 9.2.3), exhibit less discriminative power. In the case of
the less pronounced peaks of Viva, this frequently results in undesired high consistency
for unrelated fingerprints when using CHROMA. Contrary, the higher discriminative power
of peaks from PITCH and CONSTQ (although of lower overall consistency) results in higher
retrieval accuracies.

Furthermore, the results show a great dependency of the retrieval accuracy on the query
length |Q|. Surprisingly, in the case of Chop (Figure 9.4a), even |Q| = 2 sec leads to
already relatively high MAP values. Increasing the query length, the MAP values increase
for all feature representations and groups of audio recordings. For all groups, using a query
length of 20 sec in combination with peak fingerprints extracted from PITCH or CONSTQ

results in MAP values 〈ψ〉 > 0.9. In particular for the more complex data contained
in Beet (Figure 9.4b) and Viva (Figure 9.4c) using longer queries further improves the
identification rate across performances.

9.3 Further Notes

For cross-version retrieval scenarios, one needs retrieval systems that can handle variations
with regard to musical properties such as tempo, articulation, timbre or instrumentation.
Dealing with a much lower specificity level as in the fingerprinting scenario, the devel-
opment of efficient cross-version retrieval systems that scale to huge data collections still
faces challenging problems to be researched.

In this chapter, we studied the robustness and discriminative power of modified audio
fingerprints by considering peak consistencies across different versions of the same piece of
music. As our experiments reveal, peak fingerprints based on musically motivated time-
pitch or time-chroma representations allow for an identification of different performances
of the same piece of music. In contrast to 3-5 sec long queries considered for traditional
audio fingerprinting, 15-25 sec are necessary for obtaining a robust and accurate cross-
performance identification procedure. Our results indicate that, using more musical feature
representations, it is possible to employ similar techniques as used by Shazam for other
music retrieval tasks such as audio matching or cover song retrieval.

In our investigation, temporal differences between performances were not considered but
compensated in a preprocessing step using an offline music synchronization technique.
In particular, for designing an efficient and scalable system, indexing techniques based
on robust and discriminative hashes that can cope with temporal differences between
performances need to be researched.

In [12], a peak-based strategy based on “chroma landmarks” is proposed and applied to
cover song detection on the Million Song Dataset [11]. The authors address the problem of
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temporal differences between the cover versions by computing beat-synchronized chroma
features. In the resulting feature sequence, each chroma vector corresponds to exactly
one beat interval of the music recording. As a result, the extracted fingerprint peaks are
(in theory) invariant against temporal distortions. As discussed in Part I of this thesis,
however, automatic beat tracking is a challenging task even for pop and rock music. For
classical music, as considered in our scenario, automatic beat tracking becomes even more
difficult and often results in a large number of beat tracking errors.
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Chapter 10

Characteristic Audio Shingles

In this chapter, we address the fundamental issue on how cross-version retrieval can be
accelerated by employing index structures that are based on suitably designed elementary
building blocks. Our approach is built upon ideas of two recently proposed retrieval
systems [18; 105] introduced in Section 8.3. In [105], a matching procedure is described
that allows for a fragment-based retrieval of all audio excerpts musically related to a given
query audio fragment. To this end, the query and all database documents are converted to
sequences of chroma-based audio features. To cope with temporal variations, global scaling
techniques are employed to derive multiple queries that simulate different tempi. Finally,
feature quantization techniques in combination with inverted file indexing is applied to
speed up the retrieval process. The authors report on speed-up factors of 10-20 for medium
sized data collections. However, using a codebook of fixed size, this approach does not
scale well to collections of millions of songs. In [18], a different approach is described.
Instead of considering long feature sequences, the audio material is split up into small
overlapping shingles that consist of short chroma feature subsequences. These shingles
are indexed using locality sensitive hashing. While being very efficient (the authors report
on a speed-up factor of 100) and scalable to even large data collections, the proposed
shingling approach has one major drawback. To cope with temporal variations in the
versions, each shingle covers only a small portion of the audio material (three seconds in
the proposed system). As a result, an individual shingle is too short to characterize well
a given piece of music. Therefore, to obtain a meaningful retrieval result, one needs to
combine the information retrieved for a large number of query shingles. As a consequence,
many hash-table lookups are required in the retrieval process. This becomes particularly
problematic, when the index structure is stored on a secondary storage device.

Based on ideas of these two approaches, we systematically investigate how one can sig-
nificantly reduce the number of hash-table lookups. Our main idea is to use a shingling
approach, where an individual shingle covers a relatively large portion of the audio mate-
rial (between 10 and 30 seconds). Compared to short shingles, such large shingles have a
higher musical relevance so that a much lower number of shingles suffices to characterize a
given piece of music. However, increasing the size of a shingle comes at the cost of increas-
ing the dimensionality and possibly loosing robustness to temporal variations. Building on
well-known existing techniques, the main contribution is to systematically investigate the

133
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delicate trade-off between the query length, feature parameters, shingle dimension, and
index settings. In particular, we experimentally determine a setting that allows for re-
trieving most versions of a piece of music when using only a single 120-dimensional shingle
covering roughly 20 seconds of the audio material. For dealing with temporal variations,
we investigate two conceptually different matching strategies. Furthermore, we show that
such large shingles can still be indexed using locality sensitive hashing with only a small
degradation in retrieval quality.

The remainder of this chapter is organized as follows. First, we introduce the overall
retrieval approach (Section 10.1) and the two matching strategies (Section 10.2). Then,
in Section 10.3, we report on our systematic experiments. Conclusions are given in Sec-
tion 10.4.

10.1 Cross-Version Retrieval Strategy

In our cross-version retrieval scenario, given a short fragment of a music recording as query,
the goal is to retrieve all music recordings (documents) that contain a passage similar to
the query from a large dataset. The retrieval result for a query is given as a ranked list
of document identifiers. To this end, we proceed in three steps. Given a query Q and a
document D to be compared, the first step consists in converting Q and D into sequences
of feature vectors X = (x1, . . . , xM ) and Y = (y1, . . . , yN ), respectively. In our system,
as in [105; 18], we use 12-dimensional chroma-based audio features, which are a powerful
mid-level representation for capturing harmonic content in music recordings, while being
robust to other musical aspects. See Section 8.3 for a more detailed introduction to
chroma features in the audio matching context. More precisely, as in Section 5.2, we use a
chroma variant referred to as CENS1 features [123], which involve a temporal smoothing
by averaging chroma vectors over a window of length w and downsampling by a factor of
d. In our experiments, we use a feature rate of 10 Hz for the basic chroma vectors. Then,
for example, setting d = 10 and w = 41 results in one feature vector per second (a feature
resolution of 1 Hz), where each vector is obtained by averaging over 41 consecutive frames,
corresponding to roughly 4 sec of the audio. The resulting features CENS(w, d) show an
increased robustness to local tempo changes and allow for flexibly adjusting the temporal
resolution, see Figure 8.5.

In the second step, the sequenceX is compared with subsequences YM
t := (yt, . . . , yt+M−1)

of length M for t ∈ [1 : N −M + 1]. Here, we adopt the idea of audio shingles [18] and
reorganize the sequences of feature vectors into shingle vectors. In our system, we represent
each query Q as a single shingle of dimension M × 12. Then, we use the cosine measure
to obtain a similarity value between X and all subsequences of Y of length M defined as

s(X,Y M
t ) =

〈X|YM
t 〉

||X|| · ||YM
t ||

, (10.1)

where ||·|| denotes the Euclidean norm. In the third step, we then express the document-

1Chroma Energy Normalized Statistics features, provided by the Chroma Toolbox
www.mpi-inf.mpg.de/resources/MIR/chromatoolbox

www.mpi-inf.mpg.de/resources/MIR/chromatoolbox
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wise similarity of Q and D as

S(Q,D) = max
t∈[1:N−M+1]

(

s(X,Y M
t )

)

. (10.2)

Given Q and a dataset D containing |D| documents, we compute S between Q and all D ∈
D and rank the result by descending S(Q,D). In practice, however, such an exhaustive
search strategy is not needed to find the relevant documents. Instead, one tries to efficiently
cut down the set of candidate subsequences using index-based strategies such as locality
sensitive hashing (LSH) and computes S in Eq. (10.2) using only the retrieved shingles
(setting s(X,Y M

t ) = 0 for non-retrieved shingles YM
t ).

Given the set DQ ⊂ D of documents that are relevant to the query Q, we follow [164] and
express the retrieval accuracy in terms of the mean of average precision (MAP) measure as
introduced in Section 9.2.4. Using several queries, we compute ψQ (see Eq. (9.3)) for each

Q and average over all values to obtain the MAP value 〈ψ〉. Furthermore, we determine
〈ψ〉null expected under the null hypothesis of a randomly created sorted list as in [164].

10.2 Tempo-Invariant Matching Strategies

Typically there are tempo differences in the versions considered in our retrieval scenario.
As a result, a musical passage represented by a query can be realized in another version
with significant temporal differences. In that case, our choice of representing each query
as a single shingle would require a comparison of shingles representing feature sequences
of differing length. One approach to this problem is to use similarity measures based
on dynamic time warping (DTW) or Smith-Waterman [162]. However, regarding com-
putationally efficiency and an application in the indexing context, such procedures are
problematic. Instead, we employ the query scaling strategy as proposed in [105]. Here,
tempo differences are handled by creating R scaled variants of the query Q(1), . . . , Q(R),
each simulating a global change in the tempo of the query. The similarity value between
D and Q is then defined as

S(Q,D) = max
r∈[1:R]

(

S(Q(r), D)
)

. (10.3)

Furthermore, as a baseline strategy, we handle tempo difference between Q and D using
an offline DTW-based procedure [49] that ensures that corresponding feature sequences
coincide in all versions. This idealized procedure serves as reference in our experiments as
it provides an optimal estimate of S(Q,D) even in the case of strong non-linear temporal
distortions.

10.3 Experiments

In this section, we describe our systematic experiments to investigate the influence certain
parameters have on the trade-off between efficiency and shingle characteristic. First, in
Section 10.3.1, we introduce our dataset. Then, in Section 10.3.2, we report on a first exper-
iment investigating how long a query Q needs to be to accurately characterize all versions
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Composer Piece Description # Dur. (min)

C
h
o
p

Chopin Op. 17, No. 4 Mazurka 62 269
Chopin Op. 24, No. 2 Mazurka 64 147
Chopin Op. 30, No. 2 Mazurka 34 48
Chopin Op. 63, No. 3 Mazurka 88 189
Chopin Op. 68, No. 3 Mazurka 50 84

B
e
e
t

Beethoven Op. 67, 1. Mov. Fifth 10 75
Beethoven Op. 67, 2. Mov. Fifth 10 98
Beethoven Op. 67, 3. Mov. Fifth 10 52
Beethoven Op. 67, 4. Mov. Fifth 10 105

V
iv
a Vivaldi RV 315, 1. Mov. Summer 7 38

Vivaldi RV 315, 2. Mov. Summer 7 17
Vivaldi RV 315, 3. Mov. Summer 7 20

DQueries 359 1145
D 2484 9725

Table 10.1: The music collection used in our experiments. The last two columns denote the
number of different performances and the duration in minutes.

of the underlying piece and what a suitable feature resolution is. In Section 10.3.3, we an-
alyze how well tempo differences between the versions can be handled by the query scaling
approach (avoiding computationally problematic warping procedures). In Section 10.3.4,
we work out whether the shingle dimension can be further reduced using principal compo-
nent analysis (PCA). Finally, in Section 10.3.5, we analyze how cross-version retrieval can
be accelerated by indexing the resulting shingles using locality sensitive hashing (LSH)
and how much accuracy is lost in this step.

10.3.1 Dataset

In our experiments, we use a dataset D of 2484 audio recordings with an overall runtime of
162 hours, see Table 10.1. A subset (denoted DQueries) of 359 recordings is used for obtain-
ing queries. This part of the dataset corresponds to the dataset introduced in Section 9.2.1.
These recordings correspond to classical music pieces by three different composers. For
each piece, there are 7 to 88 different recorded versions available. More precisely, the
first part Chop consists of 298 piano recordings of five Mazurkas by Frédéric Chopin.2

The second part Beet consists of ten recorded performances of Beethoven’s Symphony
No. 5 in orchestral as well as piano interpretations. The third part Viva contains seven
orchestral performances of the Summer from Vivaldi’s Four Seasons. Additionally, we add
2125 recordings of various genre to enlarge the dataset. In our experiments, we randomly
select 100 queries from each of the three parts of DQueries and average the results over the
resulting 300 queries.

10.3.2 Evaluation of Query Length and Feature Resolution

In a first experiment, we investigate how much of a recording needs to be captured by
the query Q to robustly characterize all versions of the underlying piece. Furthermore, we

2This data is provided by the Mazurka Project http://mazurka.org.uk/
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Figure 10.1: MAP values as a function of query length |Q| using CENS(w, d) in different feature
resolutions. Null hypothesis 〈ψ〉

null
= 0.015.

analyze to what extent the temporal resolution of the features can be reduced without neg-
atively affecting the retrieval quality. Here, we exploit the downsampling and smoothing
parameters d and w of the CENS(w, d) features. The goal is to reduce the overall dimen-
sionality of the query while retaining as much of the retrieval accuracy as possible. For
the moment, we use the DTW-based procedure to account for tempo differences between
the versions.

Figure 10.1 shows MAP values obtained using CENS(w, d) features with seven different
query lengths |Q| and five different feature resolutions. Obviously, the longer |Q| the
higher the retrieval quality. For example, for |Q| = 28 sec, one obtains MAP values of
〈ψ〉 ≈ 0.99, regardless of the feature resolution. Short queries, however, can not accurately
capture the characteristics of a piece, leading to significantly lower MAP values. Reducing
the feature resolution, one observes lower MAP values, too, in particular in combination
with short queries. For example, using |Q| = 4 sec, one obtains 〈ψ〉 ≈ 0.94 for CENS(5, 1)
(10 Hz resolution) and 〈ψ〉 ≈ 0.83 for CENS(81, 20) (0.5 Hz resolution). Increasing the
query length, however, this effect vanishes. In particular for |Q| ≥ 20 sec one obtains
similar MAP values, independent of the feature resolution. Using d = 10 (1 Hz) as in
CENS(41, 10) with |Q| = 20 sec constitutes a good trade-off between query dimensionality
and query characteristic. This setting results in shingles with a dimensionality of 240.

10.3.3 Evaluation of Matching Strategies

In this experiment, we investigate how much of retrieval accuracy is lost when using the
query scaling approach for handling tempo differences instead of the idealized DTW-based
technique. Figure 10.2a shows the retrieval quality using CENS(41, 10) for different query
scaling settings. Here, we use R variants of the query with scaling factors specified by the
set T . R = 1 means that only the original query is used. Furthermore, we use R = 3
with T = {0.8, 1, 1.25}, meaning that the query is also stretched by a factor of 0.8 and
1.25 (thus simulating tempo changes of roughly ±25%). Similarily, we use R = 5 with
T = {0.66, 0.8, 1, 1.25, 1.5} and R = 9 with T = {0.66, 0.73, 0.8, 0.9, 1, 1.1, 1.25, 1.35, 1.5}.
The red line indicates the DTW-based result as shown in Figure 10.1. From these results,
we draw two conclusions. Firstly, the scaling strategy (R > 1) significantly increases
the retrieval quality in comparison to only using the original query (R = 1). The actual
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Figure 10.2: MAP values obtained for four query scaling strategies and the DTW-based strategy
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Figure 10.3: MAP values as a function of feature dimension obtained by PCA-based dimension
reduction of CENS(w, d).

choice of parameters does not seem to be crucial. In the case of our dataset, already a small
number of additional queries (R = 3) seems to be sufficient. Secondly, the scaling strategy
leads to very similar results as the computationally expensive DTW-based strategy, in
particular when using a large smoothing window (e. g., w = 41 in CENS(41, 10)). In
the case of the smaller smoothing window w = 5 in CENS(5, 1) (see Figure 10.2b), the
difference is more significant. In summary, a local feature smoothing in combination with
a global scaling strategy yields a robust yet computational simple alternative to warping
procedures.

10.3.4 Evaluation of Dimensionality Reduction

In a third experiment, we investigate in how far statistical data reduction based on Prin-
cipal Component Analysis (PCA) can be applied to CENS features to further reduce the
dimensionality of the query.

PCA estimates the principal components, i. e., the directions with maximum variance in
the feature space and facilitates a projection of the original data points onto a new coordi-
nate system spanned by a subset of these principal components. Ordering the components
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Figure 10.4: Illustration of the MAP values and runtimes obtained using CENS(41, 10)-6 with
different parameter settings in the LSH-based retrieval experiment. (a) Retrieval quality MAP.
(b) Overall runtime per query including index lookup time and document ranking time. Horizontal
black lines indicate values obtained by the exhaustive search.

in the order of decreasing variance guarantees an optimal representation of the data in a
feature space with reduced dimensionality. We estimate the principal components using
all non-query documents of our dataset and project all feature sequences onto the most
dominating components. Figure 10.3 shows MAP values obtained for PCA-reduced vari-
ants of CENS features with 1-12 remaining dimensions. For a query length |Q| = 20 sec
(Figure 10.3a), MAP values are nearly unaffected when reducing the number of dimen-
sions from 12 to 4, in particular for higher feature resolutions. However, in combination
with shorter queries of |Q| = 10 (Figure 10.3b), the retrieval quality is more affected by a
dimensionality reduction.

In the following, we use the first 6 components of CENS(41, 10) features, denoted as
CENS(41, 10)-6.3 Using |Q| = 20, this results in 120-dimensional shingles, which con-
stitutes a reasonable trade-off between shingles dimensionality and shingle characteristic.

10.3.5 Indexed-Based Retrieval by Locality Sensitive Hashing

We now investigate whether it is possible to index shingles of this size using locality
sensitive hashing (LSH) for accelerating the retrieval. LSH is a hash-based approach for
finding approximate nearest neighbors based on the principal that similar shingles are
indexed with the same hash value. In our experiment, we use an implementation of the
Exact Euclidean LSH (E2LSH) algorithm [28]. We index all shingles of the entire dataset
D using L parallel indices and K hash functions. For a query shingle Q we retrieve all
shingles from the index with the same hash value as the query. Given this (typically small)
set of candidate shingles, we derive the ranked list of documents and compute MAP values
as described in Section 10.1.

Figure 10.4 shows MAP values (Figure 10.4a) and runtime per query in milliseconds4

3Further experiments revealed that CENS(41, 10)-6 is very similar to the musically motivated 6-
dimensional tonal centroid proposed in [84]. This is also related to computing a Fourier transform of
chroma features as proposed in [175].

4obtained on a Xeon X5560 CPU with 72GB of RAM
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Figure 10.5: Comparison of two LSH-based retrieval strategies. Warping strategy (solid line)
and query scaling strategy (R = 5, T = {0.66, 0.8, 1, 1.25, 1.5}) (dashed line) using CENS(41, 10)-6.
(a) MAP values. (b) Overall runtime per query.

(Figure 10.4b) as a function of K for different L.5 These are crucial parameters having a
tremendous influence on the trade-off between retrieval quality and runtime. For example,
setting K = 12 and L = 5 results in a MAP 〈ψ〉 ≈ 0.90, see black square in Figure 10.4a.
This is only slightly lower than the MAP value one obtains for the exhaustive search
(horizontal black line). However, the runtime for this setting is significantly (by a factor
of 25) faster than for the exhaustive search, see black square in Figure 10.4b. K and L
allow for controlling the trade-off between speed and quality of the results. Setting K = 25
and L = 10, the MAP drops to 〈ψ〉 ≈ 0.80 (black circle). However, this goes along with
a decrease of query runtime to 5 ms, a speed-up of 100 in comparison to the exhaustive
search.

The results shown in Figure 10.4 are again obtained using the ideal DTW-based procedure
for handling tempo differences. Figure 10.5 now shows the comparison of the warping (solid
line) with the query scaling approach (dashed line) for L = 5 and L = 30. Similar as for
the exhaustive search discussed in Section 10.3.3, using R = 5, one observes only a small
drop in retrieval quality (see Figure 10.4a). Using this strategy, the runtime per query
linearly increases with the number of scaled queries R (see Figure 10.4b).

10.4 Conclusion

Concluding the experiments, one can say that even when using large shingles (covering
roughly 20 seconds of audio material), LSH-based indexing techniques can be applied for
obtaining a significant speed-up of the retrieval process (up to factor of 100). At the same
time, most of the accuracy of an exhaustive search can be retained. To facilitate this, we
determined suitable parameter settings with regard to query length, feature resolution and
smoothing, as well as shingle dimension. The advantage of using shingles that represent
a large audio fragment is that most versions of a given piece can be characterized and
retrieved by using a single shingle. A combination of local feature smoothing and global
query scaling is used to avoid any kind of complex warping operation. In future work,

5The quantization parameter denoted r in [28] is found as proposed in [18].
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this can be exploited to significantly reduce the number of hash-table lookups needed for
performing cross-version retrieval. The number of lookups becomes a crucial bottleneck
when the index structure is stored on secondary storage devices, which is unavoidable when
dealing with collections of millions of songs. Furthermore, using different hash functions
may lead to improvements of retrieval quality and run-time [140]. In particular, spherical
hash functions as proposed in [168] may be well suited for the characteristics of chroma
shingles.





Chapter 11

Conclusion of the Thesis

In this thesis, we discussed various applications of signal processing methods to music. In
particular, we focused on three central tasks in the field of music information retrieval: beat
tracking and tempo estimation, music segmentation, and content-based retrieval. For all
three tasks, we exploited musical knowledge about the signals’ properties to derive feature
representations that show a significant degree of robustness against musical variations but
still exhibit a high musical expressiveness.

In Part I of the thesis, we dealt with the extraction of local tempo and beat information.
Opposed to previous approaches that assume constant tempo throughout a recording,
our analysis particularly focused on music with temporal variations. As one major con-
tribution, we introduced a novel concept for deriving musically meaningful local pulse
information from possibly noisy onset information. Exploiting the local quasi-periodicity
of music signals, the main benefit of our PLP mid-level representation is that it can locally
adjust to changes in tempo. Even for classical music with soft note onsets, we were able
to extract meaningful local tempo and beat information. However, for highly expressive
interpretations of romantic music, the assumption of local quasi-periodicity is often vio-
lated leading to poor results. In such cases, our PLP concept at least yields a confidence
measure to reveal problematic passages.

The understanding of physical and musical properties that make beat tracking difficult
is of essential importance for improving the performance of automated approaches. As
second contribution of Part I, we introduced a novel evaluation framework for beat tracking
algorithms where multiple performances of a piece of music are considered simultaneously.
This approach yields a better understanding not only of the algorithms’ behavior but
also of the underlying music material. As third contribution of Part I, we introduced
various tempogram representations that reveal local tempo and rhythm information while
being robust to extraction errors. Furthermore, exploiting musical knowledge about the
different pulse levels, we introduced a class of robust mid-level features that reveal local
tempo information while being invariant to pulse level confusions. Being the tempo-based
counterpart of the harmony-based chromagrams, the cyclic tempograms are suitable for
music analysis and retrieval tasks where harmonic or timbral properties are not relevant.

In Part II of this thesis, we introduced various signal processing methods with the goal to

143



144 CHAPTER 11. CONCLUSION OF THE THESIS

make folk song field recordings more easily accessible for research and analysis purposes.
As folk songs are part of oral culture, it seems plausible that by looking at the original
audio recordings one may derive new insights that can not be derived by simply looking
at the transcribed melodies. As one main contribution of Part II, we presented two proce-
dures for segmenting a given folk song recording into its individual stanzas by exploiting
knowledge about the strophic structure of folk songs. In particular, we introduced a
combination of various enhancement strategies to account for the intonation fluctuations,
temporal variations, and poor recording conditions. Our experiments indicate that robust
segmentation results can be obtained even in the presence of strong temporal and spectral
variations without relying on any reference transcription. Limitations of our segmentation
procedures remain in the case of structural differences across the stanzas of a song. In-
creasing the robustness of the segmentation procedure to handle such variations remains
a challenging future problem.

Furthermore, we presented a multimodal approach for extracting performance parameters
by comparing the audio material with a suitable reference transcription. As main con-
tribution, we introduced the concept of chroma templates that reveal the consistent and
inconsistent melodic aspects across the various stanzas of a given recording. In computing
these templates, we used tuning and time warping strategies to deal with local variations
in melody, tuning, and tempo.

The segmentation and analysis techniques introduced in Part II of the thesis constitute
only a first step towards making field recordings more accessible to performance analysis
and folk song research. Only by using automated methods, one can deal with vast amounts
of audio material, which would be infeasible otherwise. Our techniques can be considered
as a kind of preprocessing to automatically screen a large number of field recordings with
the goal to detect and locate interesting and surprising passages worth being examined in
more detail by domain experts. This may open up new challenging and interdisciplinary
research directions not only for folk song research but also for music information retrieval
and music cognition [178].

In Part III of this thesis, we discussed various content-based retrieval strategies based
on the query-by-example paradigm. Such strategies can be loosely classified according to
their specificity, which refers to the considered degree of similarity between the query and
the database documents. As one contribution of Part III, a second classification principle
based on granularity was introduced. The resulting specificity/granularity scheme gives
a compact overview of the various retrieval paradigms while illustrating their subtle but
crucial differences. The specificity has a significant impact on the efficiency of the retrieval
system. Search tasks of high specificity typically can be realized efficiently using indexing
techniques. In contrast, search tasks of low specificity need more flexible and cost-intensive
mechanisms for dealing with musical variations.

As further contribution of Part III, we presented two investigations with the goal to scale
low specificity cross-version retrieval to large datasets. Firstly, we studied the robust-
ness and discriminative power of modified audio fingerprints. As our experiments reveal,
modified peak fingerprints based on musically motivated time-pitch or time-chroma repre-
sentations can handle a high degree of spectral variations and allow for an identification of
different performances of the same piece of music. However, the issue on how the temporal
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variations between performances can be considered in this approach is still unclear and
should be subject to future research. Our second approach to efficient cross-version re-
trieval is based on audio shingling, where each query is represented by a single shingle that
covers a long segment of the audio recording. In this approach, a combination of strategies
is used to derive compact yet highly characteristic and robust audio shingles. Robustness
to spectral variations is obtained using suitable variants of chroma features, whereas tem-
poral variations are handled by using a combination of local feature smoothing and global
query scaling strategies. Using the resulting low-dimensional shingles, LSH-based indexing
techniques can be applied for significantly speeding up the retrieval process.

Aside from efficiency and scalability issues, another major challenge in content-based music
retrieval refers to cross-modal retrieval scenarios, where the query as well as the retrieved
documents can be of different modalities. For example, one might use a small fragment of
a musical score to query an audio database for recordings that are related to this fragment.
Or a short audio fragment might be used to query a database containing MIDI files. In the
future, comprehensive retrieval frameworks need to be developed that offer multi-faceted
search functionalities in heterogeneous and distributed music collections containing all
sorts of music-related documents.

All feature representations presented in this thesis show a significant degree of robust-
ness against musical variations while still exhibiting a high musical expressiveness. The
increased robustness is achieved by exploiting model assumptions about the analyzed mu-
sic signals. These model assumptions, however, go along with a reduced generalizability.
For example, in our PLP concept, we assume local quasi-periodicity, which allows us to
obtain meaningful results even in the presence of weak note onsets and continuous tempo
changes. In the case of local tempo distortions as found in the Chopin Mazurkas, however,
this assumption is violated and the limits of our approach are reached. For such kind
of signals, a different approach (e. g., based on an explicit determination of note onset
positions and an evaluation of inter-onset-intervals) may lead to better results [40]. Simi-
larly, in our folk song analysis, we assume a strophic form and obtain robust segmentation
results even in the presence of significant spectral and temporal variations. The limits
of this repetition-based approach, however, are reached when structural variations within
the stanzas occur, i. e., when the assumption of a strophic form is violated. In the case of
such variations, novelty-based approaches for detecting segment boundaries may be less
fragile [143].

As these examples show, one grand challenge for music signal processing is related to the
question on how the developed techniques and methods can be made more general and
applicable to cover a wide range of music signals. In the years of MIR research, solutions
have been presented that can cope with isolated facets of music signals in restricted and
well-defined scenarios. In future research, more efforts need to be put into developing
approaches that are capable of dealing with and adopting to arbitrary music signals to
better reflect the various facets of music.
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Appendix A

Tempogram Toolbox

The tempo and pulse-related audio features described in Part I of this thesis are re-
leased as MATLAB implementations in a Tempogram Toolbox, which is provided under a
GNU-GPL license at www.mpi-inf.mpg.de/resources/MIR/tempogramtoolbox. The func-
tionality provided by our tempogram toolbox is illustrated in Figure A.1, where an audio
recording of Claude Debussy’s Sonata for Violin and Piano in G minor (L 140) serves
as an example. The audio recording is available from Saarland Music Data (SMD)
http://www.mpi-inf.mpg.de/resources/SMD/. Analyzing this recording with respect to
tempo is challenging as it contains weak note onsets played by a violin as well as a number
of prominent tempo changes.

Given an audio recording (Figure A.1a), we first derive a novelty curve as described in
Section 2.3 (Figure A.1b). Given such a (possibly very noisy) onset representation the
toolbox allows for deriving a predominant local pulse (PLP) curve as introduced in Sec-
tion 2.6 (Figure A.1c). As second main part, our tempogram toolbox facilitates various
tempogram representations as introduced in Chapter 4 that reveal local tempo characteris-
tics even for expressive music exhibiting tempo-changes. To obtain such a representation,
the novelty curve is analyzed with respect to local periodic patterns. Here, the toolbox
provides Fourier-based methods (Figure A.1d,f) as well as autocorrelation-based meth-
ods (Figure A.1e,g), see Section 4.1. For both concepts, representations as time/tempo
(Figure A.1d,e) as well as time/time-lag tempogram (Figure A.1f,g) are available. Fur-
thermore, resampling and interpolation functions allow for switching between tempo and
time-lag axes as desired. The third main part of our toolbox provides functionality for
deriving cyclic tempograms from the tempogram representations as introduced in Sec-
tion 4.2. The cyclic tempo features constitute a robust mid-level representation revealing
local tempo characteristics of music signals while being invariant to changes in the pulse
level (Figure A.1h,i). Being the tempo-based counterpart of the chromagrams, cyclic
tempograms are suitable for music analysis and retrieval tasks. Finally, the tempogram
toolbox contains a variety of functions for the visualization and sonification of extracted
tempo and pulse information.
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Figure A.1: Illustration of the functionality of the tempogram toolbox using an excerpt (sec-
ond movement, bars 79 − 107) of an audio recording of Claude Debussy’s Sonata for Violin and
Piano in G minor (L 140). (a) Waveform of the excerpt. (b) Novelty curve extracted from the
audio recording indicating note onset candidates. (c) PLP curve revealing the predominant local
pulse. (d) Fourier-based tempogram. (e) Autocorrelation-based tempogram. (f) Fourier-based
tempogram with time-lag axis. (g) Autocorrelation-based tempogram with time-lag axis. (h)
Fourier-based cyclic tempogram. (i) Autocorrelation-based cyclic tempogram.
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[113] Pierre Leveau, Laurent Daudet, and Gaël Richard. Methodology and tools for the evalua-
tion of automatic onset detection algorithms in music. In Proceedings of the International
Conference on Music Information Retrieval (ISMIR), pages 72–77, Barcelona, Spain, 2004.

[114] Mark Levy and Mark Sandler. Structural segmentation of musical audio by constrained
clustering. IEEE Transactions on Audio, Speech and Language Processing, 16(2):318–326,
2008.

[115] Mark Levy, Mark Sandler, and Michael A. Casey. Extraction of high-level musical structure
from audio data and its application to thumbnail generation. In Proceedings of the IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 13–
16, Toulouse, France, 2006.

[116] Hanna Lukashevich. Towards quantitative measures of evaluating song segmentation. In
Proceedings of the International Conference on Music Information Retrieval (ISMIR), pages
375–380, Philadelphia, USA, 2008.

[117] Matija Marolt. A mid-level representation for melody-based retrieval in audio collections.
IEEE Transactions on Multimedia, 10(8):1617–1625, 2008.

[118] Paul Masri and Andrew Bateman. Improved modeling of attack transients in music analysis-
resynthesis. In Proceedings of the International Computer Music Conference (ICMC), pages
100–103, Hong Kong, 1996.

[119] Matthias Mauch, Chris Cannam, Matthew E.P. Davies, Simon Dixon, Christopher Harte,
Sefki Kolozali, Dan Tidhar, and Mark Sandler. OMRAS2 metadata project 2009. In Late
Breaking Demo of the International Conference on Music Information Retrieval (ISMIR),
Kobe, Japan, 2009.

[120] Matthias Mauch and Simon Dixon. Approximate note transcription for the improved iden-
tification of difficult chords. In Proceedings of the 11th International Society for Music
Information Retrieval Conference (ISMIR), pages 135–140, Utrecht, The Netherlands, 2010.

[121] Martin F. McKinney, Dirk Moelants, Matthew E.P. Davies, and Anssi P. Klapuri. Evalua-
tion of audio beat tracking and music tempo extraction algorithms. Journal of New Music
Research, 36(1):1–16, 2007.

[122] D. Moelants, O. Cornelis, and M. Leman. Exploring African tone scales. In Proceedings
of the International Conference on Music Information Retrieval (ISMIR), pages 489–494,
Kobe, Japan, 2009.

[123] Meinard Müller. Information Retrieval for Music and Motion. Springer Verlag, 2007.

[124] Meinard Müller and Michael Clausen. Transposition-invariant self-similarity matrices. In
Proceedings of the 8th International Conference on Music Information Retrieval (ISMIR),
pages 47–50, Vienna, Austria, 2007.

[125] Meinard Müller, Daniel P. W. Ellis, Anssi Klapuri, and Gaël Richard. Signal processing for
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