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Summary

The human visual system lets us perceive the world around us in three dimensions Introduction
& motivationby integrating evidence from depth cues into a coherent visual model of the world.

The equivalent in computer vision and computer graphics are geometric models,
which provide a wealth of information about represented objects, such as depth and
surface normals. Videos do not contain this information, but only provide per-pixel
colour information. In this dissertation, I hence investigate a combination of videos
and geometric models: videos with per-pixel depth (also known as RGBZ videos).
I consider the full life cycle of these videos: from their acquisition, via filtering and
processing, to stereoscopic display.

I propose two approaches to capture videos with depth. The first is a spatiotemporal Stereo matching
stereo matching approach based on the dual-cross-bilateral grid – a novel real-time
technique derived by accelerating a reformulation of an existing stereo matching
approach. This is the basis for an extension which incorporates temporal evidence in
real time, resulting in increased temporal coherence of disparity maps – particularly
in the presence of image noise.

The second acquisition approach is a sensor fusion system which combines data Time-of-flight
sensor fusionfrom a noisy, low-resolution time-of-flight camera and a high-resolution colour

video camera into a coherent, noise-free video with depth. The system consists
of a three-step pipeline that aligns the video streams, efficiently removes and fills
invalid and noisy geometry, and finally uses a spatiotemporal filter to increase the
spatial resolution of the depth data and strongly reduce depth measurement noise.

I show that these videos with depth empower a range of video processing effects Video effects
that are not achievable using colour video alone. These effects critically rely on the
geometric information, like a proposed video relighting technique which requires
high-quality surface normals to produce plausible results. In addition, I demonstrate
enhanced non-photorealistic rendering techniques and the ability to synthesise
stereoscopic videos, which allows these effects to be applied stereoscopically.

These stereoscopic renderings inspired me to study stereoscopic viewing discomfort. Stereoscopic
viewing comfortThe result of this is a surprisingly simple computational model that predicts the

visual comfort of stereoscopic images. I validated this model using a perceptual
study, which showed that it correlates strongly with human comfort ratings. This
makes it ideal for automatic comfort assessment, without the need for costly and
lengthy perceptual studies.
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Introduction 1
The recent renaissance of stereoscopic cinema has sparked a renewed enthusiasm Stereoscopic cinema
for stereoscopy – the art and science of fooling the human visual system into
perceiving a three-dimensional image by presenting different stimuli to our two
eyes. Like previous waves of stereoscopic cinema in the 1920s and 1950s, the most
recent wave is driven by technological advances, specifically digital projection. This
breakthrough eliminates the registration and synchronisation problems experienced
with previous projection technology, and instead provides a crisp, perfectly-aligned
and synchronised stereoscopic viewing experience.

However, it is not only the new technology, but also a change of mindset among The role of depth
stereoscopic filmmakers that drives the revival of stereoscopic cinema. Previously,
filmmakers exploited the ‘third dimension’ by pointing props into the audience
and using other gimmicks. In contrast, today’s filmmakers, like James Cameron of
Avatar fame, increasingly take a more sensible and subtle approach to stereoscopic
depth in motion pictures. They view stereoscopic depth as just one technical tool
of many to help them convey a film’s story, for example like the choice of lighting
or camera lens (Neuman, 2008; Seymour and Neuman, 2011). Instead of gimmicks,
modern filmmakers aim for a more realistic, and comfortable viewing experience.

Interpreting such stereoscopic imagery, and integrating the evidence from other Videos with depth
depth cues to form a consolidated model of the visual world, comes naturally to us.
Over centuries, artists have learned how to embrace this for creative expression in
their paintings. In spite of all this, depth has not played a large role in image and
video processing in general, and non-photorealistic rendering (NPR) in particular.
As the principal aim of NPR is to create abstracted and stylised depictions of reality,
not incorporating depth information appears to be a major oversight. Extending
videos to encompass depth and augmenting video processing techniques to use
such videos are thus the primary aims of this work.

A central theme in this dissertation is the importance of coherence – both of the Coherence
temporal and stereoscopic kind: temporal coherence prevents sudden changes in
videos over time, which would lead to flickering; and stereoscopic coherence avoids
conflicting stimuli to be shown to both eyes as this can cause viewing discomfort.
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1. Introduction

1.1. Approach

The primary aim of this dissertation is to show that videos with depth (or RGBZAim
videos) provide the basis for more advanced video processing effects, for example in
non-photorealistic rendering, which cannot be achieved without depth information.

My approach to this task consists of the following four steps:Four steps

1. Obtain depth video
The first step towards videos with depth is to acquire depth information in
addition to a normal colour video. As there is a range of potentially suitable
techniques for capturing depth information, I analyse their pros and cons
before selecting stereo correspondence and time-of-flight cameras as the
appropriate solutions.

2. Filter depth video
Raw depth videos typically suffer from a mixture of problems such as low
spatial resolution, depth quantisation artefacts, noise and flickering. Therefore,
the second step concentrates on filtering the depth video to remove these
artefacts and to make it temporally coherent – with the help of the existing
colour video which does not suffer from many of these issues.

3. Extend video effects
Once the videos with depth are of sufficient quality, they can be used to create
novel video processing effects that take advantage of the depth information,
such as video relighting or stereoscopic rendering from a single video with
depth. Existing non-photorealistic rendering techniques are also enhanced
using the depth information.

4. Evaluate viewing comfort
The fourth and final step aims to evaluate the viewing comfort of stereoscopic
NPR techniques. To avoid – or at least reduce – reliance on human judgments,
a computational model will have to be developed which can predict viewing
comfort from stereoscopic imagery alone. This step focuses on the study of
stereoscopic images to prevent disruptions from time-varying imagery.

1.2. Hypotheses

By following the approach of the previous section, I aim to demonstrate that:

H1. It is possible to reconstruct dynamic scene geometry coherently at interactive
frame rates.

H2. RGBZ videos facilitate a variety of advanced video processing and non-photo-
realistic rendering effects.

H3. Stereoscopic viewing comfort can be predicted from stereoscopic images alone.

The common thread running through these hypotheses is my aspiration to create
computational videography tools which provide similar creative opportunities to those
afforded by computational photography for still images, and to ensure that any
resulting stereoscopic renderings do not cause viewing discomfort.
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1.3. Contributions

1.3. Contributions

To verify the hypotheses postulated in the previous section, the publications my Introduction
dissertation is based on – and by extension this dissertation itself – make multiple
contributions to computer vision and graphics (Richardt et al., 2010a,b, 2011, 2012).
This section summarises these contributions on a per-chapter basis.

The main contributions of Chapter 3 (published as Richardt et al., 2010b) are: Stereo matching

– the reformulation of Yoon and Kweon’s adaptive support weights technique as
a bilateral filter (Section 3.1.2);

– the dual-cross-bilateral (DCB) grid, a real-time stereo correspondence technique
which was the fastest at time of publication (Section 3.2.2);

– a dichromatic extension to the DCB grid which recovers precision (Section 3.2.3);

– a spatiotemporal extension to the DCB grid that incorporates temporal evidence
in real time (Section 3.4); and

– five synthetic stereo videos with ground truth disparity maps that enable quanti-
tative evaluation of video-based stereo matching techniques (Section 3.4.2).

Chapter 4’s contributions (published as Richardt et al., 2012) are: Time-of-flight

– a prototype of a computational RGBZ video camera which augments a regular
video camera with a synchronised time-of-flight camera (Section 4.1);

– an efficient geometry invalidation and multi-resolution fill-in procedure for
handling stereo half-occlusions and depth camera artefacts (Section 4.2); and

– a spatiotemporal filtering approach tailored to depth cameras to increase the
resolution of depth data and strongly reduce noise (Section 4.3).

The specific contributions of Chapter 5 (published as Richardt et al., 2012) are: Video effects

– a simple relighting technique for RGBZ videos (Section 5.2);

– depth-enhanced non-photorealistic rendering techniques that extend video
abstraction and stroke-based rendering to use RGBZ videos (Section 5.3); and

– a rendering technique for RGBZ videos that creates stereoscopic RGBZ videos,
with demonstration of stereoscopic non-photorealistic rendering (Section 5.4).

The contributions of Chapter 6 (published as Richardt et al., 2010a, 2011) are: Stereo comfort

– the first computational model for predicting the visual comfort of stereoscopic
images which is suited for automatic comfort assessment, without costly and
lengthy perceptual studies (Section 6.3);

– a taxonomy of stereo coherence issues which affect the stereoscopic viewing
comfort of human observers (Section 6.5); and

– computational tools to detect and localise such issues (Section 6.6).
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1. Introduction

1.4. Structure

This dissertation is structured as follows:

Chapter 1 provides an introduction to this dissertation by describing the goal of myIntroduction
work, outlining the approach taken to prove my hypotheses and summarising
my contributions to research.

Chapter 2 reviews technical background material that is the basis for the work inBackground
this dissertation. The chapter furthermore provides a historic perspective of
some of the topics, and introduces common notation.

Chapter 3 reformulates and accelerates a stereo correspondence technique so thatStereo matching
a spatiotemporal extension can incorporate temporal evidence in real time to
produce temporally coherent disparity maps.

Chapter 4 augments a video camera with a time-of-flight sensor, and develops aTime-of-flight
data filtering approach that removes typical artefacts in the depth data and
applies an efficient spatiotemporal denoising and upsampling scheme.

Chapter 5 demonstrates a selection of video processing effects that critically relyVideo effects
on depth information, and are thus unobtainable from a colour video alone,
which illustrates the benefits of videos with high-quality depth information.

Chapter 6 studies the effects of non-photorealistic rendering techniques on theStereo comfort
viewing comfort of stereoscopic imagery by creating and evaluating a compu-
tational model which predicts stereoscopic viewing comfort.

Chapter 7 concludes the dissertation by summarising the contributions of my work,Conclusion
revisiting the hypotheses of this chapter, and proposing possible avenues for
future research.

In this dissertation, I show stereoscopic images as red-cyan anaglyph images (seeAnaglyph glasses
Section 2.2.3). These images are indicated by following small red-cyan glasses: .
This dissertation should contain a set of paper glasses suitable for viewing these
images. For the best result, please view the anaglyph images on a digital display.
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Technical background 2
“A coupla months in the laboratory can save a coupla hours in the library.

— Westheimer’s discovery”
The work in this dissertation touches on a range of topics from different disciplines.
This chapter provides the technical background for the four subsequent chapters
by introducing notation and reviewing key techniques.

I discuss the following topics:

2.1. Non-photorealistic rendering
This section aims to give a broad overview of non-photorealistic rendering
techniques for abstraction and stylisation of images, video and geometry,
with a focus on stereoscopic techniques.

2.2. Human depth perception
This section describes how the human visual system combines several
depth cues into a visual model of the world around us, and how stereopsis
and stereoscopy were first discovered in the Victorian era.

2.3. Capturing dynamic geometry
This section discusses different approaches for recovering the shape of
dynamic geometry and establishes the optimal approach for RGBZ videos.

2.4. Stereo correspondence
This section introduces the field of stereo computer vision, and describes
the standard components of correspondence techniques and how they are
evaluated and ranked objectively.

2.5. Bilateral filtering
This section gives a brief introduction to the bilateral filter – the most
common edge-preserving filter – and some of its applications.
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2. Technical background

2.1. Non-photorealistic rendering

Non-photorealistic rendering (NPR) is an area of computer graphics that studies aIntroduction
wide variety of artistic styles for expression and abstraction (Agrawal, 2009). It ori-
ginally emerged in the early 1990s when the computer graphics community started
to challenge the predominant paradigm of photorealism which had underpinned
computer graphics throughout most of its history.

This modern departure from the pursuit of (photo-)realism parallels the emergenceHistorical
parallels of impressionism in late 19th century France. Back then, the steady advancement

and proliferation of photography threatened the existence of painters, because
photography produced lifelike images more efficiently and reliably than painters
were able to. However, the impressionists soon focused on the one thing they could
inevitably do better: to offer a subjective alternative to the photograph. This was
a stark break with previous art movements and – in a sense – the first conscious
effort towards non-photorealistic rendering.

In computer graphics, the endeavour to generate photorealistic imagery resulted inObjective
pioneering techniques such as ray tracing and radiosity which create photorealistic
images from computer models. By contrast, non-photorealistic rendering aims to
create abstracted and stylised depictions of computer models or the real world. For
this purpose, non-photorealistic rendering combines techniques from computer
vision, image processing and computer graphics.

The principal motivations of abstraction and stylisation differ significantly, which isAbstraction
& stylisation nicely illustrated by the two paintings in Figure 2.1. Abstraction is concerned with

removing superfluous detail and communicating the essence of a scene or object.
So while Cézanne omitted unimportant detail, he succeeded in capturing the rough
shape of objects and the variation in lighting. On the other hand, stylisation is all
about creating aesthetic imagery and exploring novel artistic techniques. A great
example is van Gogh’s magnum opus, in which he creates a sense of energy purely
from the placement of brush strokes in dynamic ‘waves’.

abstraction stylisation
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Figure 2.1: Examples of abstraction and stylisation from post-impressionism.
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2.1. Non-photorealistic rendering

The origin of the term ‘non-photorealistic rendering’ is not entirely clear, but it Origin of the term
most likely goes back to a paper by Winkenbach and Salesin (1994) on pen-and-ink
illustration. In any case, it is not immediately obvious why this field has been
named after what it is not, and Gooch et al. (2010) perhaps best echo my sentiment:

“There has been considerable discussion on the proper naming of the
field. The term NPR (especially in its abbreviated state) seems overly
general, including all rendering which does not have a photorealistic
purpose. Some other names have been put forward, such as “Stylized
Rendering” or “Expressive Rendering”, but we feel that those terms
are not inclusive enough to cover all of the material that currently fits
under the purview of NPR.

For better or for worse, the field in which we work is now known
widely as non-photorealistic rendering, and while self-examination can
indeed be a worthy pursuit, the amount of energy devoted towards the
semantics of a new name for an already established field could perhaps
be better spent pushing the discipline in directions that will lead to
exciting new discoveries.

— Gooch, Long, Ji, Estey, and Gooch (2010)”As an evolving field, non-photorealistic rendering is a moving target, and every State of the art
once in a while, a group of researchers surveys the state of the art to provide an
overview of techniques and to inform future work. Gooch and Gooch’s book (2001)
provides a broad overview of many techniques, but more often than not refers to
the original papers for further details. A more detailed introductory text is the
book by Strothotte and Schlechtweg (2002) which covers many non-photorealistic
rendering techniques with well-structured explanations, meaningful figures and
pseudo code. Furthermore, no less than three SIGGRAPH courses have shed light
on the field over the years (Green et al., 1999; Sousa et al., 2003; McGuire et al.,
2010). Most recently, Collomosse and Kyprianidis (2011) provided a tutorial with
the focus on artistic stylisation of images and video.

In addition to the categorisation into abstraction or stylisation, non-photorealistic Classification by
underlying datarendering techniques also vary in the data they operate on:

– Geometric models are the most comprehensive data available as they provide
access to many useful surface properties such as normal vectors and curvature.

– Images are more limited in that they only provide a per-pixel colour and no
additional information about what is being depicted in the image.

– Videos are essentially moving images, with a new frame every few milliseconds.
The main challenge is to prevent flickering and to ensure temporal coherence.

The remainder of this section summarises a small selection of key papers in non- Structure of
this sectionphotorealistic rendering in the areas of abstraction (Section 2.1.1) and stylisation

(Section 2.1.2), and lastly with a focus on techniques operating in stereoscopic 3D
(Section 2.1.3), which is relevant to the stereoscopic rendering and viewing comfort
work in this dissertation (Section 5.4 and Chapter 6).
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2. Technical background

2.1.1. Abstraction

The primary intention of abstraction is to visually distill the essence of a scene’sIntroduction
appearance by removing perceptually irrelevant or unimportant details while at the
same time emphasising salient image features such as strong edges and contours.
Figure 2.2 shows an outstanding illustration of this process of visual abstraction.
This section discusses three classes of visual abstraction, ranging from concrete to
abstract: image-based abstraction, cartoon-like abstraction, and line drawings.

concrete abstract
visual abstraction

Figure 2.2: Successive reduction in visual detail from the photograph of a man to a generic smiley.
Adapted from Winnemöller (2011). Illustration ©1993 Scott McCloud.

Image-based abstraction

Fischer et al. (2005) pioneered an abstracted look for augmented reality with theImproved immersion
in augmented reality aim of achieving a similar look for the real and the virtual by abstracting the video

and overlaying toon-shaded virtual objects. To achieve real-time frame rates, they
bilaterally filter (Section 2.5) a downsampled version of the video, and upsample it.
On top, they draw thick, dilated Canny edges (1986). While the abstracted video
looks blurry and rough (Figure 2.3), the style set the stage for subsequent work.

Winnemöller et al. (2006) introduced several technical and artistic improvements forReal-time video
abstraction video abstraction. They first iteratively apply a separated bilateral filter to preserve

strong contrasts and smooth low contrast regions. They follow this with a soft
luminance quantisation method that creates a stylised, cartoon-like look. Finally,
difference-of-Gaussian (DoG) edges are overlaid to further increase contrast in
high contrast regions. The key to temporal coherence and real-time performance is
per-frame processing and making each step sufficiently temporally coherent.

Orzan et al. (2007) take a different approach: they identify image edges at differentScale space analysis
resolutions and link them up into a scale space hierarchy. They then use gradient
domain techniques to reconstruct an abstracted image from the truncated edge
hierarchy. The results preserve prominent edges and fill the image with smooth
gradients, but their implementation is very slow (10 min for one 800×600 image).

The technique by Winnemöller et al. (2006) has inspired several follow-up papersFlow-based filtering
which use a variety of flow-based filtering approaches for increased visual effect.
Kyprianidis and Döllner (2008) use orientation-aligned separated bilateral filtering
and flow-based DoG edges to simultaneously improve computational efficiency
and visual quality of the abstracted videos. Kang and Lee (2008) use a different
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2.1. Non-photorealistic rendering
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Figure 2.3: Examples of image-based abstraction techniques. © The respective copyright owners.

flow formulation and also apply shock filtering (Osher and Rudin, 1990) to prevent
object boundaries from shrinking and to strengthen strong contrast edges. Kang
et al. (2009) use a framework similar to Kyprianidis and Döllner, but with yet
another flow formulation.

Most of the described techniques rely on the bilateral filter for visual abstraction. Alternative filters
Other filters have been explored, such as the Kuwahara filter, which was extended
by Kyprianidis et al. (2009) to adapt to the shape and orientation of local features.
The result looks painterly and has the benefit of being temporally coherent. More
recently, Kyprianidis and Kang (2011) have explored line integral convolution to
smooth directional features, with directional shock filtering for a sharpening effect.
This technique is also temporally coherent when applied on a per-frame basis.

Cartoon-like abstraction

This class of techniques shares the visual style of cartoons which is characterised by Introduction
large areas of uniform colour, often with stylised highlights or shading. Originally,
cartoons were painted on transparent ‘cels’ (for celluloid) and several cels were
literally overlaid to create a composite scene. A number of techniques have been
proposed to create cartoon-like abstraction results from 3D models, images and
videos, and the key techniques are briefly described here and shown in Figure 2.4.

The process of rendering cartoon-like imagery from geometric models is generally Cel shading
3D modelsreferred to as ‘cel shading’ or also ‘toon shading’. Decaudin (1996) described the

first such rendering system, in which the diffuse shading is thresholded to create
the large areas of uniform colour typical for cartoons. In addition, silhouette and
contour outlines are overlaid to create the distinctive look. Gooch et al. (1998) remap
the diffuse shading onto a colour ramp from cold to warm colours for automatic
scientific illustration. Barla et al.’s X-Toon system (2006) introduced more flexible
2D toon textures, which are indexed by diffuse shading (n·l) and tone detail.
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Figure 2.4: Examples of cartoon-like abstraction techniques. © The respective copyright owners.

DeCarlo and Santella (2002) pioneered an approach based on colour segmentation.From images
to sketches From a pyramid of segmentations, they select the appropriate level of detail using

eye-tracking data. The resulting regions are smoothed and enhanced with abstracted
black contours. Wen et al. (2006) extend this idea to use interactive segmentation
and a colour shift procedure based on artists’ colour choices.

Agarwala (2002) introduced the first semi-automatic system to convert videos toVideo cartoons
cartoons. A user rotoscopes, or outlines, objects on keyframes, to which Bézier
splines are fitted using active contours. These contours are then tracked to the
next frame and refined. However, as contours will eventually deviate from their
intended position, manual intervention will be necessary to adjust them. Instead,
Wang et al. (2004a) segment the video volume overnight and use rotoscoped outlines
in keyframes to group sub-volumes into semantic regions. These regions then define
smooth trajectories for interpolating outlines between keyframes. A third system, by
Collomosse et al. (2005), segments video frames individually and links up segments
across frames. The linked regions are then smoothed using interpolating spline
surfaces to create ‘stroke surfaces’ representing the boundaries between objects.
This intermediate representation can be used for creating temporally coherent
animations, using painterly, sketchy and cartoon rendering styles.

Line drawings

Line drawings are amongst the most common and concise illustration styles – onlyIntroduction
a few strokes can convey tone, texture and shape (Cole et al., 2009; Figure 2.5).

Winkenbach and Salesin (1994) did some of the earliest work in non-photorealisticPen & ink drawings
rendering on computer-generated pen-and-ink illustration. They introduced ‘stroke
textures’ as a means to express both tone and texture using line drawings. Without
the use of stroke textures, Hertzmann and Zorin (2000) illustrate smooth surfaces
by robustly computing visible silhouettes and placing hatch marks directly using a
direction field defined on the object surface.
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Figure 2.5: Examples of line drawing rendering techniques. © The respective copyright owners.

Contours (or silhouettes) are perhaps the most basic object representation. However, Suggestive contours
additional cues can be gained from DeCarlo et al.’s suggestive contours (2003)
which are lines that are contours in nearby viewpoints. Suggestive contours can
be automatically extracted from 3D models – in object- or image-space – and they
come quite close to human line drawings (Cole et al., 2008).

Kalnins et al. (2003) describe a technique for rendering coherent stylised silhouettes Stylised silhouettes
which are not just straight lines. Their main contribution is a coherent paramet-
risation of silhouettes that allows strokes to be propagated to the next frame in
different ways while maintaining temporal coherence. Bénard et al. (2010) introduce
self-similar line artmaps which maintain similar appearance at all zoom levels.
This avoids two undesirable artefacts of Kalnins et al.’s approach: sliding stroke
textures and stroke texture stretching. Bénard et al. further describe how to generate
self-similar line artmaps from a single exemplar.

Lee et al. (2007) propose a simple real-time technique that extracts line drawings Line drawings via
abstracted shadingfrom a diffusely shaded image. Their technique detects both valleys and ridges

in the shaded image to draw both dark lines and highlight lines (which provide
additional lighting cues). These lines are then combined with cel shading to capture
large-scale tone variations. This technique will be used in Section 5.3.2.

Vergne et al. (2011) generalises previous image-space line drawing techniques and Implicit brushes
introduces a new line-based rendering technique called ‘implicit brushes’. It is
based on convolving a brush footprint with a feature skeleton that is fitted to
surface profiles in image space. This approach is temporally coherent and does not
require any temporal feature tracking.

Winnemöller (2011) combines the extended Difference-of-Gaussians (DoG) edges Extended DoG edges
of Winnemöller et al. (2006) with the flow-based DoG edges of Kyprianidis and
Döllner (2008). The result is a new operator with large stylistic potential covering
effects such as hatching, high-detail artistic thresholding and negative edges.
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2. Technical background

2.1.2. Stylisation

Just a few pages ago, I defined stylisation as the creation of aesthetic imagery andMotivation
the explorion of novel artistic techniques. A wide range of techniques have explored
this space, but most have concentrated on recreating and automating traditional
media such as oil paintings and watercolours.

This section surveys painterly stylisation techniques proportionally to the attentionStructure
paid to these techniques in the literature. Hence, this section is largely concerned
with stroke-based rendering and will only briefly cover watercolour rendering and
more exotic stylisation approaches. I show selected examples in Figures 2.6 and 2.7.

Stroke-based rendering

Haeberli’s pioneering “Paint By Numbers” system (1990) made it possible for usersPioneering work
to place brush strokes on a digital canvas simply by clicking. The stroke colour and
orientation was then taken from a reference image and orientation field. In contrast,
Meier (1996) renders 3D models by attaching particles to objects and projecting
them into screen space. These particles are then rendered as brush strokes from
back to front, using object geometry and lighting to determine stroke orientation
and colour. The result of this process is a temporally coherent video stylisation.

Litwinowicz (1997) established the core techniques for stroke-based rendering ofPainterly videos
videos. His system initially places brush strokes in a regular grid and aligns them
tangentially to image gradients. In low-gradient regions, stroke orientations can
optionally be interpolated from nearby strong gradients using thin-plate splines.
For a more hand-painted look, the strokes are perturbed in length, colour and
orientation, and drawn in random order. Between frames, the strokes are tracked
using optical flow, requiring strokes to be inserted or deleted to maintain a uniform
coverage, which can cause strokes to ‘pop’ (appear suddenly). This technique
was also used (with considerable manual input) to create an 8.5 minute painterly
video sequence for the 1998 motion picture What Dreams May Come – winning the
Academy Award for Best Visual Effects (Green et al., 1999).

Hertzmann (1998) proposed a multi-resolution approach from coarse to fine brushImprovements
strokes, which has been widely adopted. He also introduced curved brush strokes
based on cubic B-spline brushes that follow gradient lines. This technique is also
the initialisation for the video-based technique by Hertzmann and Perlin (2000),
which moves and warps strokes over time using optical flow. In subsequent frames,
regions of significant change are overpainted, to better approximate the source
frame at the cost of sacrificing temporal coherence. Hertzmann also provides a
good survey of stroke-based rendering techniques (2003), including connections to
other artistic styles such as stippling, mosaics and pen-and-ink drawings.

Hays and Essa (2004) contributed two improvements to increase temporal coherenceTemporal coherence
of painterly animations: (1) newly inserted strokes are smoothly faded in and
removed ones faded out; and (2) stroke properties such as position and orientation
are temporally limited to prevent abrupt changes leading to ‘popping’ strokes.
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Figure 2.6: Examples of stroke-based rendering techniques. © The respective copyright owners.

Inspired by the way artists strive to capture salient elements of a scene, Collomosse Inspired by artists
and Hall (2006) proposed a novel painting algorithm that searches for a globally
‘optimal’ painting in the sense that it preserves salient image detail and attenuates
non-salient image regions. Brush strokes are optimised using genetic programming
on a compute cluster, and they eventually converge to the optimal painting. Also
inspired by real artists, Kasao and Miyata (2006) classify image segments into edge
areas, homogeneous areas and contrasting areas, and then stylise them differently.

Lu et al. (2010) introduce a real-time system that unifies the conversion of images, Real-time stylisation
videos and 3D animations into painterly stylisations. Like Hays and Essa (2004),
they place strokes across the virtual canvas and move them according to optical
flow. They further propose a stochastic approach to maintain uniform coverage
of brush strokes by making on a per-pixel level. I discuss their technique in more
detail in Section 5.3.3 where I also adapt it to stylise videos with depth.

Instead of providing a fully automatic system, Kalnins et al.’s ‘WYSIWYG NPR’ Tools for artists
system (2002) lets artists draw directly onto 3D geometry – also in multiple views.
Their system then combines the drawn strokes into one model which can then be
rendered from any new viewpoint while adapting the number and placement of
strokes to maintain a similar look. Schmid et al. (2011) extend this approach in
their ‘OverCoat’ system to let artists use the full 3D space as a canvas. At the heart
of their system is proxy geometry which defines an implicit canvas in 3D space.
Artists can then draw brush strokes on level sets of the proxy geometry, or using
their proposed hair and feather tools.
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Figure 2.7: Examples of watercolour and other rendering techniques. © The respective copyright owners.

Watercolour and other rendering styles

Watercolour stylisation is much less common in the literature – perhaps due to theWatercolour
rendering increased complexity compared to other techniques. Curtis et al. (1997) simulate

watercolour effects using a shallow-water fluid simulation in combination with a
pigment compositing model. While this is computationally expensive, it produces
realistic results. They also propose semi-automatic ‘watercolourisation’. Instead of
simulating watercolour effects, Bousseau et al. (2006) recreate them using a number
of filters for specific effects such as dry brush, wobbling and edge darkening. Luft
and Deussen (2006) present an approach that visually and geometrically abstracts
plant models, and renders them using a blurred depth test for increased temporal
coherence. Lastly, Bousseau et al. (2007) extended their previous work to video
using temporally coherent techniques for shape-abstracting videos and creating
the watercolour pigment textures.

A few non-photorealistic rendering techniques defy classification, but are still worthMiscellaneous
stylisations mentioning. For example, Sloan et al. (2001) introduced ‘lit spheres’ which capture

artistic shading models in the form of spherical exemplars. They can easily be
applied to objects by using surface normals to index into the lit sphere textures.
Brooks (2007) has proposed an approach that mixes two or more artistic media in
the same image. Regions in the source image are processed differently depending
on their frequency content and finally recombined in the gradient domain. To create
temporally coherent stylisations of 3D geometry, Bénard et al. (2009) introduced
‘dynamic solid textures’ which build on an infinite zoom mechanism that displays
the right level of detail regardless of zoom level. Section 6.1 uses their technique to
create stereo-coherent watercolour renderings. Lastly, I proposed a video stylisation
framework (Richardt and Dodgson, 2009) based on Grundland et al.’s image
stylisation framework (2008), which splits the video volume into 3D Voronoi cells.
This sparse video representation affords a wide variety of artistic rendering styles
which reconstruct stylised video frames from surrounding colour samples.
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2.1. Non-photorealistic rendering

2.1.3. Stereoscopic non-photorealistic rendering

Stereoscopic images consist of two slightly different ‘half-images’: one for the left Introduction
eye and one for the right eye. The binocular disparity between the two half-images
provides an important depth cue to the human visual system (see Section 2.2).
Naturally, stereoscopic non-photorealistic rendering aims to produce two renditions
with appropriate disparity to convey a sense of depth. This is also an important
aim of my work and the final results are shown in Section 5.4.

The main difficulty of stereoscopic approaches is the coherence of the two views. If Stereoscopic
coherencefeatures in one view cannot be matched with corresponding features in the other

view, the viewer will experience discomfort and depth perception may ultimately
break down. In fact, Chapter 6 shows that the coherence between half-images is
strongly correlated with stereoscopic viewing comfort. By measuring the coherence,
one can therefore predict viewing comfort from an input stereo image.

Bartesaghi et al. (2005) describe a hatching method that uses geometric information Normal-based
hatchingacquired using stereo matching (Section 2.4) or photometric stereo (Section 2.3.1).

Their approach computes surface normals and principal curvatures, either directly
from photometric stereo or from the stereo disparity map and its derivative. The
surface normal is then used to express tone (lighting) and the smoothed direction
field is used to locally rotate Tonal Art Maps (Praun et al., 2001).

Most work in stereoscopic non-photorealistic rendering has been carried out at the Work from Vienna
Vienna University of Technology by Marković, Stavrakis and Gelautz in 2004–2008.
They considered many rendering styles, including stereoscopic painterly rendering,
abstraction and line drawings, and subsequently summarised their observations
and advice for creating stereoscopic artwork (Stavrakis and Gelautz, 2005b). Their
work also culminated in two PhD dissertations (Marković, 2007; Stavrakis, 2008).
The input to all their techniques are self-recorded stereo images from which they
then compute disparity maps using stereo matching (Section 2.4) – mostly using
their own technique (Bleyer and Gelautz, 2005).

Their first technique is a painterly rendering system (Stavrakis and Gelautz, 2004). Painterly rendering
They initialise the left view using Hertzmann’s technique (1998) and then warp the
strokes to the right view using the disparity map. However, some areas may have
become disoccluded and need to be filled in again by drawing additional strokes
underneath. The result can be viewed with adjustable horizontal displacement
which changes the visible parallax. Gelautz et al. (2004) extend this approach
by stylising depth layers independently and processing videos frame by frame,
without temporal coherence. Stavrakis and Gelautz (2005a) additionally provide an
interface to vary the level of detail by hiding layers with smaller brush sizes.

Stavrakis et al. (2005) next propose a simple stereoscopic abstraction method with Image abstraction
the aim to effectively communicate shape and the distances between objects. As
previously, the left view is abstracted first by applying colour-based segmentation
on each depth layer. The segments are then warped from the left to the right view
and occluded areas are filled in. The last step overlays black outlines where strong
edges in the image and disparity map coincide.
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Figure 2.8: Examples of stereoscopic non-photorealistic rendering. © The respective copyright owners.

In contrast to their previously described techniques, which produce stereoscopicDrawings
& sketches images, the following work produces only monoscopic results. Drawings are the

subject of Marković and Gelautz (2005). A greyscale version of the left half-image
determines the placement of strokes and their density using Poisson disc sampling
with varying disc radii related to the greyscale value. Individual strokes are oriented
along disparity isophotes and important edge features are outlined using the same
edge combination approach as in their abstraction work. Marković and Gelautz
(2006) additionally depict motion lines and contours extracted from a stereo video.
Marković et al. (2005) also create sketches solely from intensity edges and depth
discontinuities. They match depth edges to nearby intensity edges in the left image
and approximate the resulting lines using Bézier splines – allowing for smoothing
and stylisation by varying the width of lines.

Snavely et al. (2006) stylise video with per-pixel depth information, which they callStylising 2.5D video
2.5D video and I call RGBZ video. This work is also relevant as 2.5D video is an also
intermediate result when using stereo video input. After segmenting the video into
foreground and background, they fill holes using simple interpolation and smooth
each depth map independently using a bilateral filter. Next, they estimate shape
correspondence between frames, which enables temporally coherent stylisation.
For a hatching style, they fix hatch marks to the surface of objects and track them
over time using the shape correspondence. They also create a painterly rendition
using Hertzmann’s curved brush strokes (1998) with Hays and Essa’s temporal
coherence improvements (2004). Their results are monoscopic, but extending their
technique to stereo videos would result in consistent stereo half-images, as they
are based on the same reconstructed geometry.

Snavely et al.’s work is a major inspiration for Chapter 4, in which I introduce aInspiration
prototype RGBZ video camera that efficiently captures high-quality RGBZ videos,
and Chapter 5, in which I demonstrate a range of novel video processing effects
that are made possible using these high-quality RGBZ videos.
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2.2. Human depth perception

The human visual system lets us perceive the world around us in three dimensions. Introduction
To achieve this, it combines different types of visual information into a coherent
visual model of the world (Howard and Rogers, 2008). The information that feeds
into this process includes depth cues about the relative or absolute depth of objects,
but also our interpretation using prior knowledge of the world and the objects in it.

An understanding of depth perception is important for many tasks in computer Relevance
graphics and vision. Computer graphics can benefit by effectively, and correctly,
using depth cues to communicate visual information (Pfautz, 2000). In computer
vision, it is the field of stereo computer vision (Section 2.4) that is inspired the
most by the human perception of depth. In my dissertation, I heavily draw on
depth perception for coherent stereo matching (Chapter 3), stereoscopic rendering
of videos (Section 5.4) and predicting stereoscopic viewing comfort (Chapter 6).

2.2.1. Depth cues

The sources of evidence that are combined to provide depth perception are known Discovery
as depth cues. Many of them, like linear perspective, and light and shade, were
first discovered by Renaissance painters. Other depth cues were discovered more
recently, and new depth cues are still being found. However, the neural process by
which these cues are combined to create a sense of depth is still not well understood
(Cutting and Vishton, 1995; Ponce and Born, 2008).

There is some disagreement about the definitive list of depth cues and their names List of depth cues
in the literature. The following list of 11 depth cues is largely based on the account
by Lipton (1982), with the addition of focal blur, which was proposed more recently.
Depth cues include:

– Occlusion or interposition
Objects that occlude other objects are perceived as being closer. This powerful
cue provides information about the relative depth order of objects. Occlusion is
widely considered to be the strongest depth cue (Cutting and Vishton, 1995).

– Linear perspective
Parallel lines, such as railroad tracks heading away from the viewer, appear to
converge with distance and eventually join up at infinity in a vanishing point
on the horizon. The more the lines converge, the further away they appear.

– Size cues
As objects get further and further away, their projection onto the retina subtends
a smaller and smaller angle, and they are thus perceived as being further away.
Prior knowledge about an object also allows us to determine its absolute depth.

– Aerial perspective
As light travels through the atmosphere, it is subject to atmospheric effects, such
as scattering, which result in distant objects appearing more hazy and blurry.
For example, this haze makes mountains appear far away.
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– Light and shade
The visual system assumes that light comes from above, and uses the position
of highlights and shadows to infer object properties such as depth and surface
relief. If an image is viewed upside down, it is perceived completely differently.

– Texture gradient
The level of detail of a texture, for example on a road, reduces with distance
from the viewer. This loss of visual detail helps us judge depth (Gibson, 1950).

– Motion parallax
When an observer is moving, objects at different depths will move at different
relative velocities. For example, when driving in a car, nearby foliage will move
rapidly while distant hills will appear stationary (Rogers and Graham, 1979).

– Focal blur or depth of field
Blurred objects tend to be at a different depth than objects which are in focus.
The blur creates an impression of depth, for example in tilt-shift photography,
which is also effective even when applied artificially to an image (Mather, 1996).

– Accommodation
The lens of the eye changes shape to focus at different distances. This is achieved
by contracting and relaxing the intraocular muscles, which the visual system
interprets as an absolute depth cue.

– (Con-)Vergence
When both eyes look at the same point, the eyes rotate to converge on the point.
Exercising the extraocular muscles in this way provides an absolute depth cue.

– Binocular disparity
Different images are projected onto the retinas of the two eyes, and the disparity
between the two views is inversely related to the depth of an object.

These depth cues are most often grouped into monocular and binocular depth cues,Classifications
depending on how many eyes are required for them to function: the first nine depth
cues on the list above are monocular and the last two (vergence and binocular
disparity) are binocular. Alternatively, depth cues can be split into physiological,
or oculomotor, depth cues (which are experienced) and psychological depth cues
(which are used for inference). The physiological depth cues are motion parallax,
accommodation, vergence and binocular disparity.

Combining many depth cues reduces the ambiguity of any individual depth cueCombination
and results in a powerful sense of three-dimensionality. Some depth cues also
dominate others in certain situations (Cutting and Vishton, 1995). Pfautz (2000)
provides the example that “a person threading a needle primarily uses stereo cues
to determine the location of the end of the thread and the eye of the needle, and
usually brings the objects close to the eyes to increase the accuracy of stereo and
oculomotor cues”.

As the dominant binocular depth cue, binocular disparity is of particular interestStereopsis
in understanding and creating stereoscopic imagery. It is processed by a visual
mechanism called ‘stereopsis’ which is the focus of the next section.
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2.2.2. Stereopsis

“ [. . . ] the mind perceives an object of three dimensions by means of the
two dissimilar pictures projected by it on the two retinæ [. . . ]

— Wheatstone (1838)”First described by Wheatstone in 1838, stereopsis is the process in visual perception History
that fuses the two images projected onto the retinas of the two eyes into a combined
sensation of depth. The term ‘stereopsis’ derives from the Greek στερέος (stereos)
meaning ‘solid’ or ‘three-dimensional’, and ὄψις (opsis) meaning ‘view’ or ‘sight’.

As a consequence of the horizontal displacement of the two eyes, they see the same Binocular disparity
scene from two slightly different viewpoints. By looking at a particular point in
space, such as the point F in Figure 2.9, we line up the fovea (the high-resolution
centre of the retina) of both eyes with that point. The projection of other points, such
as N in Figure 2.9, onto the retina then might result in different retinal distances
to the fovea in the left and right eyes. This difference of (n− f )−(n′− f ′) is called
‘binocular disparity’ and is the basis for stereopsis (Ponce and Born, 2008).

fixated point
F F

near point
N N

distant point
D D

centre of projection

Human stereopsis Planar stereopsis

f nd f ′
n′

d′ f nd f ′ n′d′

Figure 2.9: Geometry of human stereopsis (left, adapted from Ponce and Born, 2008), and planar stereopsis
(right) as used in stereo computer vision and graphics.

The lines connecting nearby points and their retinal projections cross in front of the Positive & negative
binocular disparityplane of fixation1. This results in ‘crossed’ disparities which – by convention – are

assigned negative values. Conversely, distant points produce ‘uncrossed’ disparities
which have positive values. This explanation is slightly simplified, but sufficient
for the purposes of my dissertation. A summary of the geometry and physiology
of stereopsis is provided by Ponce and Born (2008), with detailed treatment in
textbooks (Tyler, 2004; Howard and Rogers, 2008).

1 Technically, the ‘plane of fixation’ is the horopter (Ponce and Born, 2008).

33



2. Technical background

Richards (1970) shows evidence that there are at least three classes of independentStereoblindness
disparity detectors – for crossed, zero and uncrossed disparities. His experimental
data shows that the probability of each detector to be missing is about 30 per cent.
Furthermore, 20 per cent of the experimental population lacked two out of three
detectors, and about 2.9 per cent completely lack stereopsis in one hemisphere.

A common test for stereopsis was first proposed by Julesz (1964). It is based on aTesting stereopsis
random dot stereogram (a random image of black and white pixels) that is identical
for both eyes except for some region that is horizontally displaced (see Figure 2.10).
This design eliminates influences from depth cues other than binocular disparity.

negative disparity (in front) zero disparity (flat) positive disparity (behind)

Figure 2.10: Random dot stereograms after Julesz (1964). The upper part of each example shows the
stereograms for cross-eyed free viewing, while the bottom shows them as red-cyan anaglyphs.

For any given distance, the range of binocular disparities resulting in single, fusedZone of comfort
vision is limited2. Even if binocular fusion is possible, it may not be comfortable
(Howarth, 2011). The range of permitted disparities is thus limited to the so-called
comfort zone (Lipton, 1982; Shibata et al., 2011). In addition, Lipton recommends
placing important parts of a scene near the plane of fixation.

2.2.3. Stereoscopy

While stereopsis is the process of interpreting binocular stimuli, stereoscopy is theIntroduction
process of presenting binocular stimuli to the two eyes. The term ‘stereoscopy’
has similar roots to stereopsis, with σκοπέω (skopeō) meaning ‘to look’ or ‘to see’.
Achieving stereoscopic depth perception requires three levels of binocular vision:
simultaneous perception, binocular fusion and finally stereopsis. Therefore, the
goal of all stereoscopic viewing techniques is to evoke the depth cues of vergence
and binocular disparity by showing different images to both eyes. In the rest of this
section, I briefly describe a selection of techniques, from past to present.

Stereoscopic images placed side by side can be viewed without the assistance of aFree viewing
viewing device by experienced viewers. There are two free viewing approaches: for
parallel viewing, the left stereo image is on the left and the eyes converge behind
the image plane; and for cross-eyed viewing, the left stereo image is on the right

2 The zone of single binocular vision is known as Panum’s fusional area (Panum, 1858).
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and the eyes converge in front of the image plane. In both cases, the image is still
focused on, resulting in an unpleasant vergence–accommodation conflict.

The first dedicated viewing device was the stereoscope. In 1833, Wheatstone invented Stereoscope
the mirror stereoscope which he describes in his seminal work (1838) – years before
photography was practical. It uses two mirrors to reflect each eye’s view 90 degrees
to either side where the stereo half-images are affixed. Brewster (1856) improved
on this design by using two lenses in his enclosed stereoscope, which enlarge the
inserted stereograph. Stereoscopes were hugely popular between the 1860s and the
1920s – particularly in Britain and the United States – as they provided a life-like
depiction of scenes, and hundreds of millions of stereographs were printed.

Anaglyph images use complementary colour filters, such as red and cyan or green, Anaglyph
to present a different image to each eye. This approach was first described by
Rollmann (1853) and it led to the first wave of stereoscopic cinema with several
short films released in 1922–1941. Its key benefit was and is that it can be used with
existing media, that is using the same film projectors, the same digital displays and
even on printed paper. However, by showing differently coloured images to each
eye, anaglyph images often cause strong visual discomfort after longer exposure.
In this dissertation, I show all stereoscopic images as red-cyan anaglyphs, because
they provide the best printed results without requiring free viewing. Most anaglyph
images are indicated by small red-cyan glasses: .

For the red-cyan anaglyph glasses to work correctly, that is to cleanly separate the Disclaimer
red and cyan channels, anaglyph images need to use the right shades of red and
cyan. This is more difficult to ensure for printers, which often reproduce colours
inaccurately, leading to a degraded stereo viewing experience. For this reason, I
recommend to view the anaglyph images in my dissertation on a digital display.

Full colour reproduction is restored with polarisers: the two views are orthogonally Polarisation
polarised and polarising glasses only let the correctly-polarised light through while
blocking the orthogonal direction. Two competing systems exist: linear and circular
polarisation. Linear polarisation with two film projectors – one for each view –
fuelled a second wave of stereoscopic cinema in the 1950s and is still used in IMAX
3D projection today. More recently, circular polarisation systems were introduced,
which allow viewers to tilt their head without breaking the stereo perception.
Together with digital projection, this technique is at the heart of the third wave of
stereoscopic cinema which started around 2005. It is also used in Section 6.4.

Stereoscopic images can also be shown alternately with synchronised active shutter Shutter glasses
glasses that quickly alternate making one eye’s glass dark and the other transparent.
At the time of writing, the most widespread equipment is Nvidia’s ‘3D Vision’ kit
comprising glasses and an infrared transmitter for synchronisation.

Numerous other stereoscopic approaches exist, which I will not describe in detail: Assorted techniques
head-mounted displays, for example, simply mount two displays in front of the
eyes; autostereoscopic approaches do not require any glasses (Dodgson, 2005);
holographic techniques can record multiple static views; volumetric displays are
physically three-dimensional; and the so-called ‘wigglegram’ quickly alternates the
stereo half-images, which induces motion parallax instead of binocular disparity.
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2.3. Capturing dynamic geometry at video rates

Recovering the 3D geometry of objects is a classic problem in computer vision.Introduction
Many solutions – commonly known as 3D scanners – have been proposed to capture
geometry from one or more images, often with the support of additional equipment
such as lights, projectors or sensors. The final result is a description of geometry in
terms of the distance, depth, disparity or surface normal of surface points.

In this dissertation, I follow specific definitions of the terms ‘distance’ and ‘depth’.Aside on depth
versus distance I use ‘distance’ to denote the Euclidean distance (also known as ‘range’) between

a 3D point and the camera’s centre of projection, whereas ‘depth’ refers only to
the distance along the viewing direction of the camera. So, for example, points at
constant distance form a sphere, whereas points at constant depth form a plane.

This section studies existing geometry capture methods to evaluate their suitabilityMotivation
for creating RGBZ videos – videos with depth. The capture approaches hence need
to be able to densely capture dynamic geometry at video frame rates of at least
10 Hz. This requirement excludes approaches that only produce sparse depth data
or are too slow, such as contact-based scanners, LIDAR3 and other laser scanners.
This leaves four approaches which are surveyed next: photometric stereo, stereo
matching, active stereo and time-of-flight sensors (Sections 2.3.1 to 2.3.4).

2.3.1. Photometric stereo

The idea of photometric stereo is to compute dense normal maps from severalDescription
images of an object under different lighting conditions. This technique – also known
as shape-from-shading – originates in work by Horn (1970) who considered the case
of shape recovery from a single image. This was extended by Woodham (1980) to
exploit images of multiple known lighting directions under the assumption that
objects are Lambertian reflectors. Zhang et al. (1999) provide a survey of the more
recent shape-from-shading literature.

Photometric stereo is often used in offline scenarios to acquire high-quality denseApplications
normal maps, for example for non-photorealistic rendering (Toler-Franklin et al.,
2007). By using multiple LEDs and quickly cycling through them, photometric
stereo can also be applied at video frame rates (Wang et al., 2010). However, object
motion between frames can lead to normal artefacts. To avoid artefacts, Malzbender
et al. (2006) use a high-speed video camera which allows them to record 8 lighting
directions at 60 Hz. These papers’ applications to NPR are discussed in Section 5.3.1.

2.3.2. Stereo matching

The computer vision version of human stereopsis (Section 2.2.2) is known as stereoDescription
matching or stereo correspondence. This approach computes the disparity between
corresponding points in stereo half-images, which can then be converted to depth.
Section 2.4 explains this approach in more detail and also describes the typical
components of stereo matching techniques. Multi-view stereo techniques use more
than two cameras, which increases the computational complexity accordingly.

3 ‘LIDAR’ is an acronym for ‘LIght Detection And Ranging’.
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2.3.3. Active stereo

Active stereo techniques combine a camera with a projector which casts known light Description
patterns into the scene. This approach is also known as structured-light scanning, as
the projected light is used to solve the correspondence problem of stereo matching.
Using suitable patterns, the mapping from each projector pixel onto the camera’s
imaging sensor can be worked out, and the original world point can be triangulated.
Lanman and Taubin (2009) organised a course on how to build your own scanner.

In November 2010, Microsoft released the Microsoft Kinect (see Figure 2.11), which Microsoft Kinect
is the first mass-market product to combine an infrared-based active stereo system
with a colour video camera in a single case for a competitive price. The depth sensor
operates in infrared light to avoid interference with the scene which is captured by
the colour video camera. I use a Kinect sensor in Chapter 4.

2.3.4. Time-of-flight cameras

Time-of-flight cameras record depth maps by measuring the time it takes a light Description
signal to travel from the camera to an object and back. Two approaches are in use for
measuring the time-of-flight of light. The first approach uses a fast optical shutter in
front of the image sensor which opens and closes in synchrony with the light pulses
that are sent out. The second approach works by modulating the outgoing light
and measuring the phase shift of the received signal. Examples of each type are
the 3DV ZCam4 and the MESA Imaging SwissRanger 4000 (Figure 2.11). Current
models cannot record colour images, but only an infrared intensity image.

Time-of-flight cameras have many industrial applications, for example in robotics Applications
and automobiles, and they are also increasingly used in computer graphics (Kolb
et al., 2010). However, the Microsoft Kinect is likely to replace time-of-flight cameras
– at least in graphics and vision applications – as it is considerably cheaper.

Microsoft Kinect

3DV ZCam MESA SR4000

infrared projector

colour camera

infrared camera

infrared LEDs

colour camera

infrared camera

Figure 2.11: Three commercial depth sensors and their components (not to scale).

4 In March 2009, Microsoft acquired the vendor 3DV Systems and later discontinued the ZCam.
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2.3.5. Analysis of strengths and weaknesses

The four described approaches use very different means to recover scene geometry.Introduction
To find the optimal approach for a particular application, one therefore needs to
weigh the pros and cons of each approach. The major advantages and disadvantages
of the four approaches are summarised in Table 2.1.

Approach Advantages Disadvantages
Photometric

stereo
(2.3.1)

– high-quality per-pixel surface normals

– easy to handle high resolutions

– need several light directions per frame

– difficulties with shadows & highlights

– need to integrate normals to get depth

Stereo
matching

(2.3.2)

– passive: no additional light required

– based on stereopsis (Section 2.2.2)

– well established in literature

– repetitive textures cause ambiguities

– poor performance near weak textures

Active stereo
(2.3.3)

– independent of scene texture

– good depth accuracy

– visible light interferes with scene

– projecting multiple patterns is slow

Time-of-flight
cameras
(2.3.4)

– independent of scene texture

– no scene interference

– low spatial resolution

– fairly noisy depth data

Table 2.1: Comparison of dynamic geometry capturing approaches.

This dissertation aims to show that RGBZ videos – which are colour videos withRequirements
depth – enable the creation of advanced video processing effects that are unfeasible
from a colour video alone. To achieve this goal, RGBZ videos hence need to be:

– clean: the colour video should be free of artefacts, the depth data free of noise;

– dense: every pixel should have an associated depth value;

– video-rate: depth and colour data for every RGBZ video frame;

– synchronised: no offset in time between colour and depth data;

– registered: corresponding depth and colour edges should overlap; and

– plausible: geometric accuracy is not required for many applications.

There is no commercially-available hardware that records RGBZ videos directly.Optimal techniques
Therefore, I need to build on and extend one of the four mentioned approaches
for dynamic geometry capture. In Chapter 3, I extend a stereo matching technique
to work on stereo videos, and improve the coherence of the computed disparity
maps, particularly in the presence of image noise. However, the depth data is still
not of sufficient quality to proceed. In a new attempt, I use time-of-flight cameras
in Chapter 4, because their depth maps are independent of scene texture which is a
major weakness of stereo matching techniques.
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2.4. Taxonomy of stereo correspondence techniques

Stereo vision is one of the most active fields in computer vision – hundreds of Stereo taxonomy
stereo matching techniques have been proposed. To organise, compare and evaluate
all of them in a meaningful way, Scharstein and Szeliski (2002) have proposed a
taxonomy of stereo correspondence algorithms and provide evaluation datasets
with results collected and ranked on a website. According to their taxonomy,
algorithms generally consist of the following four steps:

1. matching cost computation;

2. cost (support) aggregation;

3. disparity computation/optimisation; and

4. disparity refinement.

Decomposing a stereo matching technique into these steps helps in comparing the
performance of the individual components, although some techniques only use
a subset. The following introduces key concepts common to all stereo matching
techniques.

The input to all stereo correspondence (or matching) techniques is a single stereo Stereo images
image, which consists of a pair of ‘half-images’: one for the left view and one for
the right view. Scharstein and Szeliski assume that the stereo cameras are calibrated
and the half-images rectified, which means that any 3D point is projected onto the
same scan-line in both half-images (Hartley and Zisserman, 2004, section 11.12).

Rectified images significantly reduce the complexity of the correspondence problem. Disparity
Instead of having to search the entire image for a corresponding point (a 2D search),
the corresponding point is now constrained to lie on a given scan-line (a 1D search).
The displacement along the scan-line between corresponding points in the two
half-images is known as their disparity.

Dense stereo correspondence algorithms ultimately compute a disparity map d(p), Disparity map
which assigns a scalar disparity to each pixel p= (x, y) in a reference image. By
convention, the left half-image is the reference image. The corresponding pixel p in
the right half-image is then specified by

p = (x− d(p), y). (2.1)

Fundamental to stereo matching is also the concept of a cost space, which assigns Cost space
a cost C(p, d) to all pixels p and disparity hypotheses d. For any particular pixel,
different disparities generally result in different costs. Lower costs indicate better
matches depending on how well each disparity explains the observed image
evidence. Many stereo matching techniques compute an initial cost space in step 1,
refine it by aggregating support in step 2, find the optimal disparity from the cost
space in step 3 and refine it in step 4.

The four steps of the stereo taxonomy are described in detail in Sections 2.4.1 to 2.4.4, Structure of
this sectionand Scharstein and Szeliski’s evaluation methodology is outlined in Section 2.4.5.
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2.4.1. Matching cost computation

The first step computes the initial cost space C(p, d). In most algorithms, this initialIntroduction
cost matches individual pixels and it is determined by comparing corresponding
pixels. The costs are then aggregated over a neighbourhood in the next step.

The most basic costs are the absolute difference (AD) and squared difference (SD)Absolute & squared
differences between pixel values in the left and right half-images, L and R:

CAD(p, d) = |Lp − Rp| and (2.2)

CSD(p, d) = (Lp − Rp)
2, (2.3)

where Ip is the value of pixel p in an image I. When working on colour images,
the differences are generally computed per colour component and summed.

For pixel values that are sufficiently different, it is often unimportant how differentCost truncation
they are. A useful extension is thus to truncate (or saturate) costs above some
threshold τ. The truncated variants of AD and SD are known as TAD and TSD:

CTAD(p, d) = min
(
τ, |Lp − Rp|

)
(2.4)

CTSD(p, d) = min
(
τ, (Lp − Rp)

2) . (2.5)

Zero-mean normalised cross-correlation (ZNCC) is another frequently used match-Cross-correlation
ing cost. It blurs the boundary between cost computation and aggregation, as it
correlates (zero-mean normalised) windows of pixels instead of individual pixels:

CZNCC(p, d) =

∑
q∈Np

(Lq − Lp) · (Rq − Rp)√
∑

q∈Np

(Lq − Lp)
2 · ∑

q∈Np

(Rq − Rp)
2

, (2.6)

where Ip is the mean value of pixels in a square window Np centred on p:

Ip =
1
|Np|

· ∑
q∈Np

Iq. (2.7)

The stereo matching techniques I propose in Chapter 3 use absolute differencesUsage in this
dissertation without truncation. Furthermore, Chapter 6 predicts stereoscopic viewing comfort

using zero-mean normalised cross-correlation as the basis of a computational model
of human depth perception.

2.4.2. Cost aggregation

Pixel-wise matching costs produce very noisy disparity maps, and so costs areIntroduction
typically aggregated over a larger support area. This step essentially combines the
pixel-wise matching cost C of the previous step into a window-based matching
cost C′. The assumption is that nearby and/or similar pixels have the same disparity,
and their costs are hence aggregated to strengthen the correct disparity hypothesis.
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2.4. Taxonomy of stereo correspondence techniques

Box filter (square window) Shiftable windows

Figure 2.12: Comparison of the box filter and shiftable windows cost aggregation techniques.
Left: The box filter accumulates costs inside the 3×3 window centred on the shaded pixel.
Right: The box filter is shifted across pixels in the solid grey window, and the minimum cost
is taken. Three dotted windows are shown centred on different pixels (indicated by crosses).

The simplest cost aggregation technique is the box filter, which sums costs within a Box filter
square window of a given size around each pixel:

C′box(p, d) = ∑
q∈Np

C(q, d). (2.8)

The box filter (illustrated in Figure 2.12, left) generally produces a smoother dispar-
ity map, but it struggles at depth edges, where the support window straddles both
background and foreground. In this case, the costs of both fore- and background
will be mixed up, resulting in the thickening of image structures.

This problem can be addressed by shifting the window, so that in the ‘edge’ case, Shiftable windows
the window would be entirely in the same region as the pixel under consideration:

C′shift(p, d) = min
r∈Np

∑
q∈Nr

C(q, d). (2.9)

However, both the box filter and its shiftable variant cannot handle fine detail in
the images, as the level of detail is inevitably limited by their window size.

Yoon and Kweon (2006) proposed a more flexible technique using adaptive support Adaptive
support weightsweights, which are computed using the distance and similarity between pixels. This

chapter heavily draws on this approach, which is explained in detail in Section 3.1.

2.4.3. Disparity optimisation

Following cost aggregation, the next step finds the optimal disparity for all pixels Winner-take-all
given the cost space C′. Selecting the best disparity in terms of cost defines the
so-called winner-take-all (WTA) technique:

d(p) = arg min
d

C′(p, d). (2.10)

This is very fast, but the downside is that disparities are optimised for each pixel
independently, not taking into account the disparities of surrounding pixels.
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2. Technical background

When the steps described so far are used together, the result is a so-called local stereoLocal versus
global methods correspondence technique, as each pixel’s disparity is the result of computations

that only depend on a local neighbourhood around each pixel and not on image
data further away. Global techniques optimise across the entire disparity map. This
enables them, for example, to propagate edge information across weakly textured
regions in the image. They often also enforce smoothness constraints that restrict
the disparity map to be piecewise smooth.

The highest ranked optimisation techniques express the stereo matching problem asGlobal optimisation
a Markov Random Field (MRF), which they solve iteratively. The main competing
approaches are graph cuts (Boykov et al., 2001; Kolmogorov and Zabih, 2001)
and belief propagation (Sun et al., 2003; Felzenszwalb and Huttenlocher, 2006).
These techniques produce excellent results, but are computationally expensive
and difficult to implement efficiently, particularly on GPUs. Nevertheless, efficient
GPU implementations have been proposed for (single-label) graph cuts (Vineet and
Narayanan, 2008) and belief propagation (Liang et al., 2009).

For well-conditioned stereo images, local stereo matching approaches with winner-Usage in this
dissertation take-all produce results of almost similar quality to global techniques. However,

local techniques are more amenable to efficient GPU implementations, as will be
demonstrated in the next chapter.

2.4.4. Disparity refinement

The computed disparity maps can be rough and noisy, so a range of refinementIntroduction
techniques have been proposed to further improve disparity maps. The quantised
nature of disparity maps can be ameliorated using sub-pixel refinement techniques.
Many errors in disparity maps are caused by occlusion, and techniques like the left-
right check detect inconsistent pixels and invalidate them. General post-processing
also includes filling invalidated regions and ‘clean up’ using median filters.

The disparity map is usually limited to a discrete set of disparities, often integers.Sub-pixel refinement
To reduce the quantisation steps between adjacent disparities, Yang et al. (2007)
propose a sub-pixel refinement step. For each pixel, they fit a quadratic polynomial
to the three cost values around the lowest cost, C′(p, d(p) + {−1, 0, 1}), and find
the minimum to determine the refined sub-pixel disparity:

d′(p) = d(p)− 1
2
· C′(p, d(p) + 1)− C′(p, d(p)− 1)

C′(p, d(p) + 1)− 2 · C′(p, d(p)) + C′(p, d(p)− 1)
. (2.11)

The left-right check (LRC) is a popular technique for identifying occluded and otherLeft-right check
inconsistent pixels in disparity maps (Egnal and Wildes, 2002). It works on two
disparity maps: the left-to-right disparity map dL and the right-to-left disparity map
dR. Since both disparity maps should be ‘inverses’ of each other, the disparities of
corresponding pixels should sum to zero. A pixel dL(p) in the left-to-right disparity
map is hence considered consistent if this sum falls below a threshold TLRC (which
is usually set to TLRC=1): ∣∣∣ dL(p) + dR(p)

∣∣∣ < TLRC. (2.12)
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2.4. Taxonomy of stereo correspondence techniques

2.4.5. Middlebury stereo benchmark

In addition to proposing a taxonomy of stereo matching approaches, Scharstein Quantitative
evaluationand Szeliski discuss different approaches to evaluate stereo matching techniques

using images with ground truth disparity maps (in their section 5). The approach
that stood the test of time is the percentage of ‘bad pixels’, which are those that
deviate more than a given threshold from the correct disparities. Scharstein and
Szeliski also contribute stereo images with ground truth disparities: first piecewise
planar (2002) and later also more complex scenes (2003).

Perhaps the most useful contribution of Scharstein and Szeliski is the Middlebury Middlebury stereo
websitestereo website5. It lists a total of 114 stereo matching techniques as of November

2011, and evaluates their performance on four stereo images with ground truth
disparity maps. Disparity maps for the four images are uploaded by paper authors
and then automatically evaluated and listed on the website.

Each image is assessed, and ranked accordingly, in 3 categories: the nonoccluded Ranking techniques
pixels, all pixels and pixels near depth discontinuities (called nonocc, all and disc,
respectively). The average of the 12 ranks for a technique determines its average
rank, shown in the green column of Figure 2.13. Techniques are also sorted by
average rank, which means that the relative order of techniques can change when
new techniques are added to the table.

Figure 2.13: The top stereo matching techniques shown on the Middlebury stereo benchmark website.

5 http://vision.middlebury.edu/stereo/eval/
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2. Technical background

2.5. A brief introduction to bilateral filtering

The bilateral filter is a common edge-preserving smoothing filter. In contrast to theMotivation
Gaussian filter, which blurs image content across edges, the bilateral filter preserves
image edges. This is achieved by adapting the filter kernel to the image content,
making it a non-linear filter. As the bilateral filter is both versatile and conceptually
simple, it is widely used in computer graphics and computer vision.

The bilateral filter has been discovered independently at least three times. AurichHistory
and Weule (1995) first proposed the bilateral filter as a non-linear Gaussian filter for
“edge-preserving diffusion” and also demonstrated its edge-sharping qualities. The
authors further considered filter chains with varying filter parameters, to improve
the smoothing effect, and proposed a cross-bilateral extension (Section 2.5.2) where
filter stages use the previous filtering result to smooth the original input image. In
concurrent work6, Smith and Brady (1997) introduce the bilateral filter as part of
their SUSAN low-level vision framework for “structure preserving noise reduction”.
In 1998, Tomasi and Manduchi gave the filter its current name and showed the first
colour filtering results. They also remarked that filtering all colour components
jointly, for example in the CIELAB colour space, produces visually better results
than filtering the red, green and blue components independently. Paris et al. (2008)
provide “a gentle introduction to bilateral filtering and its applications”7.

original image Gaussian blur bilateral filter

original image Gaussian blur bilateral filteroriginal image Gaussian blur bilateral filteroriginal image Gaussian blur bilateral filter

Figure 2.14: Example results of a Gaussian blur (σ=10) and a bilateral filter (σs =10, σr =20/256) applied
to the Lena image. Notice how the bilateral filter removes fine detail such as image noise and
hair strands while preserving strong edges in the image.

6 Although Smith and Brady’s work was submitted earlier (3 May 1993 versus 31 March 1995), it
was not accepted until five months after Aurich and Weule’s work (23 October versus 31 May
1995) and not published until 16 months later (January 1997 versus September 1995).

7 A slightly extended version of their SIGGRAPH 2008 course was published as Paris et al. (2009).
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2.5. A brief introduction to bilateral filtering

2.5.1. Formulation of the bilateral filter

Like convolution-based filters, such as the Gaussian blur, the bilateral filter replaces Outline
each pixel with a linear combination of other pixel values. While convolution-based
filters apply the same mask of weights, known as a kernel, to each pixel that is
filtered, the bilateral filter adapts the kernel weights to the surrounding pixels
according to the distance and similarity of the pixels.

Specifically, for a pixel p in an image I, the filtered pixel value I′p is calculated as Generalised
formulation

I′p =

∑
q∈Np

f (‖p− q‖) · g(‖Ip − Iq‖) · Iq

∑
q∈Np

f (‖p− q‖) · g(‖Ip − Iq‖)
, (2.13)

where the pixel q ranges over Np, a set of pixels which conceptually is the set of all
pixels P , and the corresponding pixel values Iq are weighted by f and g, which
are functions of the distance ‖p− q‖ and difference in value ‖Ip − Iq‖ between
pixels, respectively. The sum of all weights in the denominator normalises the linear
combination of pixel values Iq in the numerator.

In computer graphics, the bilateral filter is most commonly used with Gaussian Gaussian
formulationweighting functions f (x) = Gσs(x) and g(x) = Gσr(x), where Gσ(x) = e−x2/2σ2

.
This approach provides parameters σs and σr for adjusting the spatial and range
bandwidths, respectively. Rewriting Equation 2.13 accordingly results in

I′p =

∑
q∈Np

Gσs(‖p− q‖) · Gσr(‖Ip − Iq‖) · Iq

∑
q∈Np

Gσs(‖p− q‖) · Gσr(‖Ip − Iq‖)
. (2.14)

Adams et al. (2009) introduce a simplification of the filter notation by representing Homogeneous
notationpixel values as homogeneous quantities, such as (r, g, b, 1) instead of (r, g, b), and

filtering the homogeneous coordinate like the others. This notation will be assumed
from this point on, as it eliminates the usual division by the sum of weights:

I′p = ∑
q∈Np

Gσs(‖p− q‖) · Gσr(‖Ip − Iq‖) · Iq. (2.15)

Naïve implementations of the bilateral filter evaluate Equation 2.13 directly for each Computational
complexitypixel in the image. This approach uses two nested loops: the outer loops over P ,

the set of all pixels in the image I, and the inner loops over Np, the set of pixels that
determine the new pixel value I′p. Assuming that pixel weights can be computed in
constant time, the total time complexity is O(|P| · |Np|).
Assuming that Np =P means that every pixel influences every other’s pixel value. Kernel truncation
However, in practice, this is unnecessary, as the weights given to pixels far from p
will be small, and their contribution to the filtered pixel value will be negligible
(Paris et al., 2008). For Gaussian weighting functions, the filter kernel Np is thus
commonly limited to a square of ‘radius’ 2σs or 3σs centred on p. This reduces the
computational complexity from O(|P|2) to O(|P| · σ2

s ).
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2. Technical background

2.5.2. Cross-bilateral filtering

A powerful extension of the bilateral filter is the cross- or joint-bilateral filter proposedFormulation
concurrently by Eisemann and Durand and Petschnigg et al. in 2004. The key idea
is to filter the input image I using another image E from which to extract the edge
information:

I′p = ∑
q∈Np

Gσs(‖p− q‖) · Gσr(‖Ep − Eq‖) · Iq. (2.16)

One application of this filter is in ‘flash/no-flash’ photography, where a noisy no-Example
flash photograph can be filtered using the clean, but flat-coloured flash photograph
of the same scene, to produce a denoised version of the no-flash photograph.

The cross-bilateral filter is used extensively in this dissertation. In the next chapter,Usage in this
dissertation I extend it into a cost aggregation technique for stereo matching (Section 3.1.2). In

addition, Chapter 4 builds a geometry fill-in procedure (Section 4.2) as well as a
spatiotemporal filtering technique (Section 4.3) on top of the cross-bilateral filter.

2.5.3. Acceleration approaches

Naïve implementations of the bilateral filter are very slow, so many accelerationBrief overview
approaches have been proposed. Durand and Dorsey’s layered approximation (2002)
achieves a significant speedup, but is not faithful to the full-kernel filtering result.
A separable implementation has been proposed by Pham and van Vliet (2005), but
it can cause axis-aligned filtering artefacts. Weiss’ technique (2006) only supports
spatial box-filters rather than Gaussian weights, and Yang et al.’s constant-time
bilateral filtering (2009) does not generalise well to higher dimensions.

The bilateral filter can be reinterpreted as a Gaussian filter in a higher-dimensionalHigh-dimensional
Gaussian filtering space (Barash, 2002). For this, the pixel coordinates p=(x, y) are augmented by the

pixel values Ip =(r, g, b) to yield new 5D pixel coordinates p′=(p, Ip)=(x, y, r, g, b).
This higher-dimensional space is then filtered using a 5D axis-aligned Gaussian
with standard deviations σ=(σs, σs, σr, σr, σr):

I′p = ∑
q′∈Np′

Gσ(‖p′ − q′‖) · Iq. (2.17)

This turns the bilateral filter into an almost entirely linear filter. The only non-linear
element is the division by the homogeneous coordinate (as per homogeneous filter
notation by Adams et al., 2009).

As the Gaussian blur is separable, it can also be implemented efficiently. This isBilateral grid
exploited by the bilateral grid (Paris and Durand, 2009), which stores a coarsely
quantised version of the 3D space for greyscale filtering (no full colour). It is also
amenable to real-time GPU implementation, as demonstrated by Chen et al. (2007).
The bilateral grid is described in detail in Section 3.2.1 and used shortly afterwards.

More recently, Adams et al. (2009, 2010) introduced two sets of data structuresSparse approaches
and algorithms to sparsely represent the higher-dimensional space, and thus allow
full-colour filtering (as well as other applications). These techniques use Gaussian
KD-trees (2009) and permutohedral lattices (2010), respectively.
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Coherent depth from

stereo matching
3

This chapter presents research that has been published and demon-
strated at the European Conference on Computer Vision 2010 in Crete,
Greece (Richardt et al., 2010b). Douglas Orr implemented the stereo
matching infrastructure (Section 2.4), and Ian Davies created the
ground truth stereo videos (Section 3.4.2).

A popular passive geometry capturing approach is (multi-view) stereo (Section 2.3). Introduction
Passive geometry acquisition has the primary advantage that a scene is observed
without throwing light into the scene, which is energy efficient, but also does not
cause interference which would disturb people during recordings. Also, humans
have evolved to perceive depth from binocular stimuli (Section 2.2), which has
motivated research in computer stereo vision for decades.

However, most research in stereo vision has concentrated on still images, and not Motivation
video sequences and their associated problems. Applying any stereo technique on
a sequence of frames most likely results in a sequence of temporally incoherent
disparity maps. This incoherence is predominantly caused by noise in the video.
In some form or other, continuity between video frames needs to be exploited to
ensure temporal coherence of the disparity maps.

The naïve approach to incorporate temporal information into stereo matching is to Early work
extend the spatial smoothness constraint into time. Leung et al. (2004) propose such
an energy minimisation approach and a method to solve it quickly (though approx-
imately) using iterated dynamic programming. The results of their implementation
are not convincing, as they are very coarse. Gong (2006) takes another approach by
extending a standard local stereo matching technique (as described in Section 2.4)
to compute costs for different ‘disparity flow’ hypotheses. This improves coherence
for videos that have little motion between frames – their default settings limit
motion to four pixels spatially and one disparity level per frame.

Markov Random Fields (MRFs) provide a clean foundation to optimise disparity MRF-based global
optimisationmaps in both space and time. Williams et al. (2005) and Isard and MacCormick

(2006) propose spatiotemporal extensions that enforce piecewise smoothness to
compute coherent disparity maps, and also optimise for occlusions and motion
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3. Coherent depth from stereo matching

estimation, respectively. While these approaches are conceptually attractive, they
are extremely computationally expensive due to their dense connectivity and large
label space: Williams et al.’s technique takes 6 minutes per 320×240 frame, and
Isard and MacCormick’s technique 5 seconds per 50×40 frame. This becomes
impractical for real-world video resolutions and larger disparity ranges.

The techniques presented in this chapter take a different approach than these globalLocal stereo
matching stereo correspondence techniques. They are based on Yoon and Kweon’s adaptive

support weights (2006) which aggregate evidence only over a finite window size.
The effectiveness of their technique is due to aggregation of support over large
window sizes as well as weights that adapt according to similarity and proximity to
the central pixel in the support window. The results are good, but the algorithm is
slow, taking about one minute for the basic Tsukuba stereo image (384×288 pixels).
My approach improves on their performance.

This chapter starts with an explanation of Yoon and Kweon’s technique (Section 3.1),Structure of
this chapter and then continues by rewriting their technique as a dual-cross-bilateral filter with

Gaussian weights. This allows me to approximate it using the bilateral grid to
achieve a speedup of about 200× and improve its accuracy using a dichromatic
approach (Section 3.2). Results for these still-image techniques show good real-time
performance on the Middlebury benchmark (Section 3.3). I finally present a spatio-
temporal extension that incorporates temporal evidence in real time (Section 3.4).

I believe in making source code and datasets publicly available for other researchersPublished
resources to reproduce my results and compare their techniques to my work more easily. The

project website8 thus contains a wealth of supplementary material: the source code
of all implemented techniques, the five synthetic stereo videos we created, and
supplementary videos showing the benefit of the spatiotemporal stereo matching
approach can all be found there and are linked to throughout this chapter.

8 http://richardt.name/dcbgrid/
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3.1. Adaptive support weights as a bilateral filter

3.1. Adaptive support weights as a bilateral filter

Yoon and Kweon (2006) describe a simple, but effective cost aggregation method Introduction
& motivationfor local stereo matching (see Section 2.4.2 for this stage in the stereo taxonomy).

The aggregated cost is determined by a weighted linear combination of the costs of
neighbouring pixels with the same disparity; the weights of pixels in this window
depend on their similarity and proximity to the central pixel. The key assumption
is that similar and close-by pixels likely have similar disparities.

This aggregation is in effect a dual-cross-bilateral filter applied to the cost volume: Reformulation
cross-bilateral because it smoothes the cost volume based on the stereo half-images,
and dual as it preserves edges in both stereo half-images. Following this insight,
Yoon and Kweon’s technique is reformulated as dual-cross-bilateral (DCB) cost
aggregation with Gaussian weights (Section 3.1.2). This prepares the ground for
speeding up the cost aggregation using the bilateral grid (Section 3.2).

3.1.1. Adaptive support weights

Simple cost aggregation approaches, such as shiftable windows (Section 2.4.2), Introduction
aggregate costs over a fixed-size square window of pixels. All pixels carry the same
weight in the cost aggregation regardless of the image content in those regions,
although they may have different colours or be at entirely different depths. The
aggregation simply averages over all pixels. The result is that fine detail is lost, as
the window size determines the finest level of detail that can be matched.

Yoon and Kweon (2006) proposed a simple solution to this problem: adaptive support Idea
weights. This is motivated by the Gestalt theory of perceptual grouping (Wertheimer,
1923; Todorović, 2008), which states that individual objects are grouped together
by proximity as well as similarity. Yoon and Kweon additionally advocate the use
of a large support window to provide sufficient spatial support for a particular
disparity hypothesis. At the same time, the larger window size does not limit the
level of detail, as the adaptive support weights respect image edges.

The support weight w(p, q) between two pixels p and q is calculated by Formulation

w(p, q) = exp
(
−∆E∗ab(p, q)

γc

)
· exp

(
−‖p− q‖

γp

)
, (3.1)

where ∆E∗ab is the Euclidean distance between pixel colours in the CIELAB colour
space, and the parameters γc and γp control grouping by similarity and proximity,
respectively. Yoon and Kweon use default values of γc =5 and γp =17.5. Figure 3.1
illustrates some examples of adaptive support weights.

Using the stereo notation of Section 2.4, the aggregated cost space C′ at pixel p for Cost aggregation
a disparity hypothesis d is calculated by weighting each pixel in a window around
p as per

C′(p, d) =
1
k
· ∑

q∈Np

w(p, q) · w(p, q) · C(q, d) , (3.2)

where k=∑q∈Np
w(p, q) · w(p, q) is the normalisation quotient and Np the set of

pixels in the support window of size 35×35, which is centred on the pixel p.
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Figure 3.1: Computation of adaptive support windows (Yoon and Kweon, 2006) for two pixels from the
Tsukuba stereo image. The pixel position is marked by a rectangle in the centre of the windows.
Lighter shades indicate higher weights.

For the remaining stages in Scharstein and Szeliski’s taxonomy in Section 2.4, YoonStereo pipeline
and Kweon use truncated absolute differences to compute costs, and then optimise
disparities using winner-take-all, without any disparity refinement. The techniques
described in this chapter further apply Yang et al.’s sub-pixel refinement step (2007),
as described in Section 2.4.4. This reduces quantisation artefacts in the disparity
maps without negatively influencing error metrics.

My straightforward GPU implementation produces comparable results to Yoon andImplementation
& discrepancies Kweon’s publicly-available, CPU-based implementation9, while being about 25×

faster than their reported run times. However, neither implementation achieves the
results reported in the original paper. These differences appear to be caused by
post-processing the raw disparity maps, which is not discussed in the paper.

To compare the different techniques in this chapter fairly, only GPU techniques arePost-processing
compared to other GPU techniques. Furthermore, all techniques share the same
post-processing consisting of the following four components:

1. The left-right check invalidates inconsistent pixels (with threshold TLRC=1).

2. Invalid pixels are then filled using a median filter, if they have at least four
valid pixels in their 8-connected neighbourhood.

3. Runs of invalid pixels along a scan-line are detected, and filled using the
lower of the two disparities found just before and after the invalid segment.

4. A final median filter reduces noise and removes outliers.

9 On the Middlebury stereo website: http://vision.middlebury.edu/stereo/code/.
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3.1. Adaptive support weights as a bilateral filter

3.1.2. Dual-cross-bilateral cost aggregation

The cross- or joint-bilateral filter is a variant of the bilateral filter (Section 2.5) which Parallels
smoothes an image with respect to edges in a different image. Yoon and Kweon’s
adaptive support weights approach is similar to this in that it smoothes the cost
space while preserving edges in both stereo half-images. In the bilateral filtering
framework, this kind of filter could be called dual-cross-bilateral (DCB), as it filters
the cost space cross-bilaterally with respect to two images (dual filtering).

Yoon and Kweon’s approach can be reformulated using Gaussian weights – the Reformulated
weightsde facto standard in bilateral filtering. This turns Equation 3.1 into

w(p, q) = Gσr(∆E∗ab(p, q)) ·
√

Gσs(‖p− q‖) , (3.3)

where σr and σs are similarity and proximity parameters, and Gσ(x)= e−x2/2σ2
is

the unnormalised Gaussian centred on zero, with standard deviation σ. The square
root is applied to the second factor in Equation 3.3 so that w(p, q) ·w(p, q) includes
the proximity weight exactly once.

The aggregation remains unchanged from Equation 3.2, resulting in Reformulated
cost aggregation

C′(p, d) =
1
k
· ∑

q∈Np

w(p, q) · w(p, q) · C(q, d) (3.2)

=
1
k
· ∑
q∈Np

Gσr(∆E∗ab(p, q)) · Gσr(∆E∗ab(p, q)) · Gσs(‖p− q‖) · C(q, d), (3.4)

computed within the same window of 35×35 pixels as per the original approach.
Experimentally, the parameter values σr =10 and σs =10 produce good results.

In general, filter windows are often truncated at 2 sigma (Section 2.5.1), resulting Meaning of σs & σr

in a support window size (4 · σs + 1)×(4 · σs + 1). If σs is too small, the support
window fails to aggregate sufficient support, but if it is too large, it will negatively
impact the run time which grows quadratically in σs. On the other hand, the value
of σr controls the range of pixel values that contribute and their weight: if it is too
small, only few pixels with very similar colours will contribute; and if it is too large,
too many pixels will contribute, some perhaps unintentionally.

51



3. Coherent depth from stereo matching

3.2. Approximation using the bilateral grid

The previous section reformulated Yoon and Kweon’s adaptive support weights asIntroduction
dual-cross-bilateral cost aggregation with Gaussian weights. This section shows how
the bilateral grid (Section 3.2.1) can be extended to accelerate dual-cross-bilateral
cost aggregation. The result is the dual-cross-bilateral (DCB) grid (Section 3.2.2). As
the DCB grid uses only greyscale inputs, it performs worse than the full-kernel DCB
approach. To recover some of the accuracy, Section 3.2.3 proposes a dichromatic
approach which incorporates a second colour axis into the DCB grid. Section 3.3
evaluates all techniques in terms of Middlebury accuracy and run times.

3.2.1. The bilateral grid

Section 2.5.3 discussed some approaches for speeding up the bilateral filter. FromAcceleration
approaches these, the bilateral grid (Chen et al., 2007; Paris and Durand, 2009) is the best fit for

a GPU-based implementation of Equation 3.4, and is hence used. The bilateral grid
counter-intuitively also runs faster and uses less memory as standard deviations
increase, as data is sub-sampled proportionally, which is useful for accumulating
support over large support windows.

Consider the example of a greyscale image I(x, y). The bilateral grid embeds it in1D example
a 3D space: 2D for spatial coordinates and 1D for pixel values. Each pixel (x, y)
is mapped to (x, y, I(x, y)) in the bilateral grid Γ. The 1D example in Figure 3.2
illustrates the use of the bilateral grid in three steps.

1. Grid creation
All grid voxels (x, y, c) are first zeroed using Γ(x, y, c)=(0, 0). All pixels I(x, y) areCreate
then accumulated into the grid Γ using

Γ
([

x
ss

]
,
[

y
ss

]
,
[

I(x, y)
sr

])
+= (I(x, y), 1) , (3.5)

where [ · ] is the rounding operator, and ss and sr are the spatial and range sampling
rates, which are set to σs and σr, respectively. Note that the pixel values and the
number of pixels are accumulated using homogeneous coordinates, which make it
easy to compute weighted averages in the grid slicing stage.

2. Grid processing
The grid is now convolved with a Gaussian filter, of standard deviation σs andProcess
σr along the space and range dimensions, respectively. As the previous step has
already sub-sampled the data accordingly, we only need to convolve each dimension
with a 5-tap 1D Gaussian kernel with σ=1.

3. Grid slicing
The result is now extracted by accessing the grid coordinates (x/ss, y/ss, I(x, y)/sr)Slice
using trilinear interpolation, and dividing the homogeneous vector to access the
actual filtered values.
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3.2. Approximation using the bilateral grid

(a) input signal (b) grid created from signal (c) filtered grid (d) filtered signal

create process slice

Figure 3.2: Illustration of 1D bilateral filtering using the bilateral grid: the signal (a) is embedded in the grid
(b), which is processed (c) and sliced to obtain the filtered signal (d). Please see Section 3.2.1
for details. Adapted from Chen et al. (2007).

3.2.2. Extending the bilateral grid to the dual-cross-bilateral grid

Chen et al. (2007) show that the bilateral grid can also be used for cross-bilateral Cross-bilateral
filtering using
the bilateral grid

filtering. This is achieved by using different images for indexing into and storing
values in the grid: the edge image E(x, y) determines grid coordinates and the
other image I(x, y) determines the stored values to be filtered:

Γ
([

x
ss

]
,
[

y
ss

]
,
[

E(x, y)
sr

])
+= (I(x, y), 1) . (3.6)

The grid processing remains the same, and the slicing stage accesses the grid
accordingly at (x/ss, y/ss, E(x, y)/sr).

Recall that the dual-cross-bilateral cost aggregation smoothes the cost space while The DCB grid
preserving edges in both stereo half-images. To implement this using the bilateral
grid, it needs to be extended to take into account both input images as edge images
when calculating grid coordinates, and to accumulate cost space values instead of
pixel values. This extension is called the dual-cross-bilateral (DCB) grid.

For a pixel p=(x, y) in the left image, and its corresponding pixel p=(x− d, y) in DCB grid creation
the right image, the DCB grid for a disparity d is created using

Γd

([
x
σs

]
,
[

y
σs

]
,
[

L?
L(p)
σr

]
,
[

L?
R(p)
σr

])
+= (C(p, d), 1) , (3.7)

where the subscripts L and R indicate the left and right images, respectively.

Instead of image intensities, as per Chen et al., this formulation uses the lightness Limitation
to lightnesscomponent L? of the CIELAB colour space which is perceptually more uniform and

hence more closely models how humans perceive greyscale images. However, this
also degrades accuracy compared to a full-colour approach such as the full-kernel
DCB aggregation. The trade-off between the number of colour dimensions and the
corresponding memory requirements for the bilateral grid is discussed in more
detail in the next section.

Finally, the result of slicing the DCB grid is the aggregated cost DCB grid slicing

C′(p, d) = Γd

(
x
σs

,
y
σs

,
L?

L(p)
σr

,
L?

R(p)
σr

)
. (3.8)
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3. Coherent depth from stereo matching

For each disparity d, the corresponding DCB grid Γd is a four-dimensional array ofImplementation
two floating-point numbers. To efficiently implement all grid processing operations,
each grid is first flattened into two dimensions. All flattened grids are then tiled
into a single 2D texture to have fast random access to the grid data and to exploit
texture filtering hardware. This is crucial to efficiently perform the grid slicing step.

The bilateral grid downsamples each dimension by a factor σ. For a value v∈ [0, x],Grid flattening
the downsampled range of values are therefore the integers 0, 1, . . . , [x/σ], a total
of [x/σ]+1 values. An image of size w×h and with lightness L? ∈ [0, 100] then
has a DCB grid of the dimensions dw×dh×dc×dc, where dw = [(w−1)/σs]+1,
dh =[(h−1)/σs]+1 and dc =[100/σc]+1. As illustrated in Figure 3.3, the 4D DCB
grid is then split into a 2D layout of dc×dc components of size dw×dh each, resulting
in a flattened size of (dw · dc)×(dh · dc).
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...
· · ·

· · ·
· · ·
· · ·
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. . .

dc components
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dw pixels
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h

pixels

One component

Figure 3.3: Illustration of flattening the four-dimensional DCB grid into two dimensions.

The quadrilinear interpolation of the slicing stage can be efficiently implementedQuadrilinear
interpolation by using hardware-accelerated bilinear texture filtering to fetch the values stored at

the four surrounding dw×dh components. Within each component, bilinear texture
reads are used, and the four resulting values are bilinearly interpolated.

All the flattened grids, one for each disparity, are then tiled into a 2D texture ofGrid tiling
float2s. Given a particular number of grids, a rectangular layout of grids is looked
for as it makes optimal use of graphics memory without wasting memory. To find a
rectangular tiling, all combinations of numbers of rows and columns are examined,
starting from a square configuration, and stopping at the first tiling that fits into
the maximum texture size of 8192×8192 pixels. In the case that no valid rectangular
tiling exists (see example below), the grids are laid out in reading order instead,
fitting as many in horizontally as possible. Note that this may result in texture
space being allocated which goes unused.

The Teddy stereo image has a resolution of 450×375 pixels and 60 disparity levels.Example
Assuming default parameters of σs =10 and σr =10, each DCB grid has a size of
46×38×11×11, or (46 · 11)×(38 · 11) = 506×418 when flattened. A rectangular
tiling of 10×6 exists, resulting in a (6 · 506)×(10 · 418) = 3030×4180 texture.
However, for 61 disparities, no rectangular tiling exists, and a layout with 16×4
grids is allocated, of which the last three are not used (which wastes about 5 MB).
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3.2. Approximation using the bilateral grid

3.2.3. Regaining accuracy using a dichromatic approach

The dramatic speedup achieved by the DCB grid comes at some loss of quality. Trading off speed
for accuracyThis is because the underlying bilateral grid only works on greyscale images and

hence does not differentiate colours that have similar greyscale values, as shown in
the examples of Figure 3.4.

Colour discriminability can be increased by adding additional colour axes to the Memory
requirementsgrid. Unfortunately, the memory requirements of the bilateral grid are exponential

in the number of dimensions. The Teddy and Cones stereo images, for example, each
have a total memory footprint of

60 disparities× 450
10
× 375

10
×
(

100
10

)k

× 8 bytes (3.9)

when using the standard parameters σs =10 and σr =10, k total colour dimensions,
and two single-precision floating-point numbers per grid cell. For the greyscale
DCB grid, where k=2, this amounts to 78 MB. However, the best results, with full
CIELAB colours in both images (k=6), would require a prohibitive 764 GB.

Given this constraint, a total of at most k = 3 colour dimensions in both images Dichromatic
approachcan be afforded on current generation graphics cards, resulting in 783 MB for the

Teddy stereo image. This allows one additional colour axis in one of the stereo
half-images, in addition to each image’s greyscale lightness component. The result
is a dichromatic technique which can differentiate colours along two colour axes
in one of the two images. This is an interesting trade-off between the common
monochromatic and anthropocentric trichromatic stereo approaches, that has not
previously been explored.

input image DCB grid input image Dichromatic DCB grid

greyscale greyscale + hue

Ts
uk

ub
a

C
on

es

Figure 3.4: Comparison of the mono- and dichromatic DCB grid. The input images are displayed as ‘seen’
by the algorithms. Note that the disparity map of the dichromatic DCB grid visibly improves
on the monochromatic DCB grid.
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3. Coherent depth from stereo matching

A range of additional colour dimensions are evaluated in Table 3.1. The tableComparison of
colour dimensions compares the following seven candidate colour dimension: HSL hue and saturation,

CIELAB chromaticities a? and b?, and the derived properties hue hab, saturation sab
and chroma C?

ab. The ‘Rank’ column shows the ranking each particular candidate
would have achieved in the Middlebury stereo benchmark (Section 2.4.5). The best
technique, in terms of lowest average rank, is CIELAB hue hab.

In follow-up work to mine, Zhu (2011) uses principal component analysis (PCA) toPrincipal
components find the first two principal colour components of a stereo image instead of using

the lightness L? and hue hab as proposed in this chapter, which reportedly improves
accuracy even further.

Technique Rank Tsukuba Venus Teddy Cones
nonocc all disc nonocc all disc nonocc all disc nonocc all disc

hab =atan2(b?, a?) 48.6 4.28 5.44 14.1 1.20 1.80 9.69 9.52 16.4 19.5 4.05 10.4 10.3

HSL saturation 49.0 4.44 5.37 12.9 1.05 1.58 8.29 9.46 16.4 19.4 4.30 10.7 11.3

C?
ab =

√
a?2 + b?2 49.9 4.97 5.94 16.7 1.15 1.75 8.65 9.55 16.4 19.9 4.00 10.4 10.5

sab =C?
ab/L? 50.0 4.36 5.45 12.9 1.19 1.86 9.32 9.41 16.3 19.2 4.41 10.8 11.6

b? 50.8 4.79 5.83 16.2 1.25 1.84 10.10 9.53 16.3 19.6 4.28 10.7 11.6

a? 52.0 5.36 6.49 18.3 1.24 1.84 9.13 9.62 16.5 19.9 4.28 10.5 11.3

HSL hue 51.2 4.62 5.85 14.9 1.30 1.87 10.40 9.83 16.6 20.2 4.18 10.7 11.1

Table 3.1: Accuracy comparison of the dichromatic DCB grid with various colour properties using the
Middlebury stereo benchmark (Section 2.4.5), to 3 significant digits.
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3.3. Still image results and applications

3.3. Still image results and applications

This section considers the performance of the techniques presented so far, compar- Introduction
ing them to other real-time stereo matching techniques in terms of run times and
accuracy, and showing an application that benefits from the speed of the DCB grid.
As in Yoon and Kweon’s paper, the left-right post-processing is included when
reporting accuracy figures, but not for the run time measurements.

All techniques in this chapter are implemented using C for CUDA – NVIDIA’s Implementation
parallel computing architecture for general purpose computation on their GPUs10.
The techniques are implemented against CUDA 2.3 and take advantage of newly
introduced features such as atomic integer arithmetic in global memory for creating
the DCB grids (see Section 3.2.2). Exact implementation details are omitted here,
but the source code is publicly available on the project website11.

All results in this chapter were created using an NVIDIA Quadro FX 5800 graphics Configuration
card with 4 GB video memory – the largest of any commercial GPU as of late 2009

(6 GB is the limit of 2012 graphics cards). The GPU was supported by a 2.4 GHz
Intel Quad Core processor with 4 GB RAM.

3.3.1. Run time measurements

The run time measurements for the standard stereo datasets are shown in Table 3.2. Relative speed
My re-implementation of Yoon and Kweon’s technique is about 25× faster than
their reported figures, and 30 per cent faster than the full-kernel DCB aggregation.
Relative to these techniques, the DCB grid is more than 165× and 200× faster,
respectively. The DCB grid is also 14× faster than its dichromatic variant.

The run times in Table 3.2 also show that the DCB grid runs at a frame rate of 13 Hz Absolute speed
or higher on all datasets, with 70 Hz on the Tsukuba stereo image. This made the
DCB grid the fastest stereo correspondence approach on the Middlebury evaluation
website at the time of publication (September 2010).

Technique Tsukuba Venus Teddy Cones
384×288×16 434×383×20 450×375×60 450×375×60

DCB Grid 14.2 25.7 75.8 75.0

Real-time GPU (Wang et al., 2006) 30? 60? 200? 200?

Reliability DP (Gong and Yang, 2005) 42 109 300? 300?

Dichromatic DCB Grid 188 354 1 070 1 070

Plane-fit BP (Yang et al., 2008) 200? 400? 1 000? 1 000?

Y&K (my GPU implementation) 2 350 4 480 13 700 13 700

Full-kernel DCB 2 990 5 630 17 700 17 600

Yoon and Kweon (2006) 60 000 100 000? 300 000? 300 000?

Table 3.2: Run time comparison in milliseconds. Techniques implemented for this chapter are emboldened.
Asterisks (?) mark run times estimated from reported figures, rounded to one significant digit.

10 http://developer.nvidia.com/what-cuda
11 http://richardt.name/dcbgrid/
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3. Coherent depth from stereo matching

3.3.2. Accuracy comparison

The disparity maps of all proposed techniques are shown in Figure 3.6 for visualGeneral
comparison, and evaluated quantitatively on the Middlebury datasets in Table 3.3.

It is notable that the dual-cross-bilateral cost aggregation improves on my GPUFull-kernel DCB
aggregation implementation of Yoon and Kweon in the nonocc (non-occluded pixels) and all

pixels categories in almost all cases. This is the highest ranked, but also slowest
technique proposed in this chapter.

The dual-cross-bilateral grid is the lowest ranked technique amongst the real-timeDCB grid
techniques in Table 3.3, but also the fastest. It performs particularly poorly on the
Tsukuba image. But with its hand-labelled disparity map and low disparity range
(16 levels), it is an unrealistic dataset. On the more realistic Cones image, with large
disparity range (60 levels), the DCB grid performs reasonably competitively. The
poor accuracy is caused by its operation in greyscale instead of full colour.

The dichromatic DCB grid improves on the monochromatic DCB grid in all categor-Dichromatic
DCB grid ies, achieving results comparable (Tsukuba, Teddy) or superior (Venus) to the GPU

implementation of Yoon and Kweon, at a 13× speedup. The close-ups in Figure 3.4
also show qualitative improvements. These results demonstrate that partial-colour
solutions can improve stereo results, and I believe that this idea has more general
applicability in computer vision.

Tables 3.2 and 3.3 also show an interesting trade-off between a technique’s runTrade-off of run time
versus accuracy time and its accuracy (visualised in Figure 3.5): both ‘Real-time GPU’ (Wang et al.,

2006) and ‘Reliability DP’ (Gong and Yang, 2005) are slower than the DCB grid, but
faster than the dichromatic DCB grid, with accuracy being inversely related: the
dichromatic DCB grid outperforms both ‘Real-time GPU’ and ‘Reliability DP’ which
in turn outperform the DCB grid. Yang et al.’s plane-fit BP (2008) outperforms the
dichromatic DCB grid at similar run times, but their technique occupies both CPU
and GPU, whereas the proposed GPU-based techniques leave the CPU available
for other tasks.

Technique Rank Tsukuba Venus Teddy Cones
nonocc all disc nonocc all disc nonocc all disc nonocc all disc

Plane-fit BP 19.4 0.97 1.83 5.26 0.17 0.51 1.71 6.65 12.10 14.7 4.17 10.70 10.60

Yoon and Kweon 32.8 1.38 1.85 6.90 0.71 1.19 6.13 7.88 13.30 18.6 3.97 9.79 8.26

Full-kernel DCB 47.7 3.96 4.75 12.90 1.36 2.02 10.40 9.10 15.90 18.4 3.34 9.60 8.26

Y&K (GPU impl.) 48.2 4.39 5.29 8.10 1.30 2.07 8.31 9.39 16.30 18.4 3.68 9.96 8.42

Dichr. DCB Grid 52.9 4.28 5.44 14.10 1.20 1.80 9.69 9.52 16.40 19.5 4.05 10.40 10.30

Real-time GPU 56.2 2.05 4.22 10.60 1.92 2.98 20.30 7.23 14.40 17.6 6.41 13.70 16.50

Reliability DP 59.7 1.36 3.39 7.25 2.35 3.48 12.20 9.82 16.90 19.5 12.90 19.90 19.70

DCB Grid 64.9 5.90 7.26 21.00 1.35 1.91 11.20 10.50 17.20 22.2 5.34 11.90 14.90

Table 3.3: Performance accuracy of the presented techniques to Yoon and Kweon (2006) and selected
real-time techniques using the Middlebury stereo benchmark.
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Figure 3.5: Scatter plot visualisation of run time (Table 3.2) versus Middlebury rank (Table 3.3) for the
techniques presented in this chapter and other stereo matching techniques. Most techniques
lie close to a straight line which trades off run time and Middlebury rank.
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Figure 3.6: Disparity maps for the Middlebury datasets (Scharstein and Szeliski, 2002).
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3. Coherent depth from stereo matching

3.3.3. Application: spatial-depth super-resolution

Yang et al. (2007) use Yoon and Kweon’s method as a central component in theirSpatial-depth
super-resolution spatial-depth super-resolution system. Starting from a low-resolution depth map,

they iteratively upsample it to the full resolution of the input images using Yoon
and Kweon’s cost aggregation:

D0 ← up-sample disparity map using nearest neighbour interpolation
for iteration i = 1 to n do

Ci ← compute cost space from disparity map Di−1 (Equation 3.10)
C′i ← aggregate costs based on Ci

Di ← run sub-pixel winner-take-all on C′i
end for

At the start of each iteration, the cost space Ci is derived from the previous disparityCost space from
disparity map map Di−1 using the truncated squared difference of disparities,

C(p, d) = min(η · ∆, (d− D(p))2), (3.10)

where η=0.5 and ∆ is the disparity range. The iterative refinement in the loop is
typically executed n=3 times.

Modifying this algorithm to use the DCB grid instead results in a speedup of morePlug-in replacement
for 100× speedup than 100×. Figure 3.7 compares results, run times and errors.

Yoon and Kweon (2006) My DCB Grid (Section 3.2.2) Difference image

Hz nonocc all disc
0.15 17.1 17.4 41.7

Hz nonocc all disc
17.0 19.9 19.2 42.5

Figure 3.7: Comparison of cost aggregation techniques in Yang et al.’s spatial-depth super-resolution on
8× sub-sampled Teddy. My DCB grid is more than 100× faster, at only a small loss of quality.
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3.4. Incorporating temporal evidence

3.4. Incorporating temporal evidence

Stereo videos pose different challenges to stereo images: the application of stereo Difficulties of
stereo videosmatching techniques on a per-frame basis is generally insufficient to achieve flicker-

free and temporally coherent disparity maps. This is because variations in the two
videos over time, such as noise, may result in multiple disparity hypotheses with
identical costs. Which one of these disparities ‘wins’ a pixel can change over time,
and hence cause flickering.

Given the speed and success of the DCB grid method, this section turns its attention Temporal
DCB gridto introducing time as an additional dimension to the DCB grid. This approach is

inspired by ‘spacetime stereo’ algorithms (Davis et al., 2005; Zhang et al., 2004) that
aggregate costs over a 3D spatiotemporal support window, instead of just a spatial
window in the current video frame.

For each frame of the video, the DCB grid is created and processed as in Sec- Formulation
tion 3.2.2. However, the slicing stage linearly combines costs from grids of several
frames, each weighted by wi:

C′(p, d) = ∑
i

wi · Γd,i

(
x
σs

,
y
σs

,
L?

L(p)
σr

,
L?

R(p)
σr

)
. (3.11)

The following assumes a streaming approach to video processing, in which new Streaming
approachvideo frames become available as soon as they are decoded from a file or recorded

by a camera. In this approach, any upcoming frames are not available, as they
would be from the ‘future’. This is also known as causal video processing, as the
current frame can only depend on frames which came before it.

Let the temporal DCB grid in Equation 3.11 sum over i∈ [1−n, 0], where i=0 stands Equation 3.11
explainedfor the current frame, i=−1 the previous frame and so on. Empirically, a window

of n=5 frames works well for videos with a frame rate of 30 frames per second.
Each grid Γd,i is sliced at the same coordinate (x/σs, y/σs, L?

L(p)/σr, L?
R(p)/σr), to

extract the aggregated costs of a disparity hypothesis d at a pixel p=(x, y), but for
a particular frame i∈ [1−n, 0]. Each of these costs is then weighted by a factor wi.

The original spacetime stereo approaches (Davis et al., 2005; Zhang et al., 2004) use Temporal weights wi
constant weights (wi =1) for all frames. But Gaussian weights, wi =exp(−i2/2σ2

t )
with σt = 2, work better and also extend the DCB grid into the time dimension.
I also tried Paris’ adaptive exponential decay (2008), but did not see improvements.

There are several practical limitations of this approach. Firstly, the dichromatic and Limitations
temporal extensions of the DCB grid cannot be used at the same time, as there is
insufficient memory to handle six dimensions of data. Secondly, the spatiotemporal
support does not compensate for object motion. And lastly, the key assumption of
the temporal DCB grid extension is that pixels with similar colours have similar
disparities, both across space and time. Although this assumption is valid in many
cases, if it is violated, results may suffer.

Results of qualitative and quantitative nature are discussed next. The temporal Evaluation
DCB grid is evaluated qualitatively using real stereo videos and quantitatively on
synthetic stereo videos with ground truth disparities, where it is also compared
against per-frame techniques.

61



3. Coherent depth from stereo matching

3.4.1. Qualitative Evaluation

Figure 3.8 shows frames from a skydiving video, processed at a spatial resolutionSkydiving video
of 480×270 with 40 disparities and without the left-right consistency check. On the
test machine (Section 3.3), the per-frame DCB grid runs at 16 Hz and the temporal
DCB grid at 14 Hz. As can be seen in the paper’s supplementary videos12, the
temporal DCB grid visibly reduces flickering compared to the per-frame method.

Video frame Per-frame DCB grid Temporal DCB grid

Figure 3.8: Disparity maps for selected frames of the ‘skydiving’ stereo video. Note that the temporal DCB
grid visibly reduces errors (see highlighted regions). Video © Eric Deren, Dzignlight Studios.

3.4.2. Quantitative Evaluation

The quantitative evaluation of disparity maps from stereo videos is hindered bySynthetic
stereo videos the general lack of ground truth disparity maps. For this reason, Ian Davies and I

created a set of five stereo videos with ground truth disparity maps (see Figure 3.9).

We generated the sequences using Blender, an open source modeller. Each frameVideo design
is 400×300 pixels in size with a disparity range of 64 pixels. The Book, Tanks and
Temple objects were taken from the Official Blender Model Repository13, while the
Tunnel scene was our own design. For the Street sequence, we combined models and
materials by Andrew Kator and Jennifer Legaz14. We added two parallel cameras
to each scene with a small lateral offset between them, to provide the left and right
views, and used the Blender node system to render disparity maps from the point
of view of each camera.

Internally, Blender uses a z-buffer and thus only works with depth, not disparity.Rendering
disparity I determined the mapping from depth z to disparity d to be d=(w · f · b)/(s · z),

where w is the frame width in pixels, f the focal length (in mm), b the baseline
of the two cameras (in Blender units) and s = 32 mm the sensor size. I found this
experimentally by extracting corresponding depth extrema in each scan-line of the
two images, whose distance along the scan-line is the disparity equivalent to their
depth.

12 http://richardt.name/dcbgrid/supplement/
13 http://e2-productions.com/repository/
14 Licensed under CC-BY 3.0, available at http://www.katorlegaz.com/3d_models/.
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3.4. Incorporating temporal evidence

Book (41 frames)
In this sequence, a page of an old book is turned,
which tests how deformable objects are handled.

Street (100 frames)
This sequence pans across a street view,
testing translations ‘in the camera plane’.

Tanks (100 frames)
Here, the camera flies along a grid of tanks,
testing translations ‘out of the camera plane’.

Temple (100 frames)
This sequence shows a rotating Mayan temple,
which is testing rotational motions.

Tunnel (100 frames)
In this sequence, the camera moves through a tunnel,
which tests zooming camera motions.

video frame disparity map

Figure 3.9: Overview of the synthetic stereo videos with ground truth disparity maps (left views).

Using the synthetic ground truth videos, the temporal DCB grid can be compared Evaluation setup
quantitatively against per-frame techniques. All videos were processed using all
techniques, including the same left-right consistency post-processing as earlier.

The ground truth stereo videos are noise-free, but real videos are not. Therefore, Performance on
noisy videosthe robustness of per-frame techniques and the temporal DCB grid to noise was

analysed first. To simulate thermal imaging noise, zero-centred Gaussian noise was
added to all colour channels of the input frames. The accuracy and run times of
all implementations are shown in Table 3.4. The level and variability of errors is
summarised using the mean and standard deviation of the percentage of bad pixels
across frames.

Technique Time Book Street Tanks Temple Tunnel
in ms mean stdev mean stdev mean stdev mean stdev mean stdev

Temporal DCB Grid 90 44.0 2.02 25.9 2.00 31.4 6.06 31.7 1.82 36.4 7.88

DCB Grid 51 52.2 2.04 32.5 2.33 36.0 6.16 39.5 1.91 25.7 11.10

Dichromatic DCB Grid 782 58.9 1.83 39.2 2.62 47.8 12.00 43.0 1.73 32.9 12.00

Full-kernel DCB 13 200 65.9 1.45 49.1 3.13 53.5 6.15 52.0 1.28 43.0 11.70

Y&K (my impl.) 9 770 84.2 1.24 56.1 2.67 87.7 2.01 72.8 1.80 58.4 11.70

Table 3.4: Accuracy comparison of the proposed methods with additive Gaussian noise (σ = 20). Shown
are the average and standard deviation of the percentage of bad pixels (threshold is 1), and
per-frame run times. For most datasets, the temporal DCB grid has the lowest mean error.
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3. Coherent depth from stereo matching

The best results are produced by the temporal DCB grid which significantly outper-Ranking of
techniques forms the per-frame techniques on all datasets except ‘tunnel’, on which it shows

the least variation in error. The per-frame DCB grid techniques come second and
third, and the full-kernel implementations are placed last.

The relatively poor accuracy of the temporal DCB grid on the ‘tunnel’ video is likelyAnalysis of
accuracy because it has a lot of texture, so that simple per-frame approaches work well, while

the temporal DCB grid tends to over-smooth. The camera motion also violates the
assumption that similar colours correspond to similar disparities. Nevertheless,
it reduces flickering visibly in all videos, as can be seen in the supplementary
videos15.

It is also notable that the temporal DCB grid has a run time that is sub-linear in theSub-linear run time
number of frames: it only takes 76 per cent longer than the per-frame DCB grid to
process a five frame window instead of a single frame.

Plots of the error levels at noise standard deviations between 0 and 100 (out of 255)Better accuracy
on noisy videos are shown in Figure 3.10. The graphs show that the temporal DCB grid improves

on the per-frame technique at increased noise levels in all cases. In particular, it
is superior for all noise levels in the ‘street’ and ‘temple’ sequences, and starting
from noise levels of 5–45 for the other sequences. It is the integration of temporal
evidence across several frames that makes this improvement possible.
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Figure 3.10: Error versus noise curves for ground truth stereo videos: the temporal outperforms the per-
frame DCB grid at higher noise levels. See the supplementary video15 for a visual comparison.

15 http://richardt.name/dcbgrid/supplement/
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3.5. Conclusion

3.5. Conclusion

Rewriting Yoon and Kweon’s adaptive support weights as a dual-cross-bilateral Reformulation
for accelerationfilter with Gaussian weights enables the use of the bilateral grid for acceleration.

The DCB grid achieves real-time frame-rates through a speedup of more than 200×
compared to a full-kernel GPU implementation, at only a small loss of precision.

The speed of the DCB grid makes it versatile. Techniques building on Yoon and Faster applications
Kweon’s method automatically benefit from a large speedup. I showed this by
applying it to Yang et al.’s spatial-depth super-resolution, achieving a speedup of
100×, with minimal loss of quality.

The DCB grid also extends into the temporal domain, aggregating support over Spatiotemporal
stereo matchingadaptive spacetime support windows. It outperforms per-frame techniques in the

presence of noise in the input images, and enforces temporal coherence under the
assumption that pixels of similar colour in consecutive frames have a similar depth.

To evaluate stereo matching on videos, we introduced five computer-generated Evaluating stereo
matching on videosstereo videos with ground truth disparity maps. We hope that these videos will

enable others to develop and evaluate new and improved techniques that are aimed
at solving the challenges of stereo videos. In fact, some researchers already use our
videos for evaluation (Khoshabeh et al., 2011; Hosni et al., 2011).

The source code for all techniques, the ground truth stereo videos and further Published
code & datasupplementary materials are available from the project website16.

The dichromatic DCB grid showed that colour is a useful component in achieving Future work:
full-colour filteringhigh quality disparity maps. However, the enormous memory requirements of the

bilateral grid preclude filtering in full colour. Recent work by Adams et al. (2010)
proposes a method with linear memory requirements. They confirm that the bilat-
eral grid is the fastest technique for 4D bilateral filtering with a standard deviation
of 10, as used by the DCB grid. However, full-colour 8D filtering would be about
4× faster with their technique, with significantly reduced memory requirements.

We hope that our new ground truth stereo videos provide a useful resource for Future work:
Evaluation website
for stereo videos

research in depth estimation from stereo videos. There is a need for specialised
stereo video correspondence techniques that incorporate temporal evidence to
resolve ambiguities. With this in mind, it will be necessary to set up a stereo video
evaluation website, perhaps as part of the Middlebury vision website. For this,
one also needs to find metrics that objectively quantify flickering and temporal
coherence in disparity videos.

Despite the increased temporal coherence offered by the technique developed in Next chapter
this chapter, it became apparent that the quality of the disparity map is insufficient
for more demanding applications such as some video effects described in Chapter 5.
For this reason, I take a step back in the next chapter and investigate how to use
depth data from a time-of-flight camera (Section 2.3) to overcome the shortcomings
of approaches based on stereo matching.

16 http://richardt.name/dcbgrid/
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Coherent depth from

time-of-flight cameras
4

This chapter presents research that was carried out during a research
visit at the Max-Planck-Institut Informatik in Saarbrücken, Germany,
in collaboration with Carsten Stoll and Christian Theobalt.

The work has been accepted at Eurographics 2012 and will be published
in a special issue of Computer Graphics Forum (Richardt et al., 2012).

Time-of-flight cameras acquire distance maps by timing how long light takes to Introduction
travel from the camera into the world and back. This approach makes the quality of
distance maps largely independent of textures in the scene – as long as objects reflect
light in the relevant range of wavelengths. In this respect, time-of-flight cameras
improve on stereo matching techniques, as stereo techniques often have difficulties
in weakly or periodically textured regions. However, the main disadvantage of
time-of-flight cameras is their low spatial resolution (such as 176×144) and high
noise levels (±1 cm).

The principal idea in this chapter is to combine a time-of-flight camera with a Motivation
synchronised high-resolution video camera and to merge both video streams into
a coherent RGBZ video – a video with plausible per-pixel depth at colour video
resolution, with strongly reduced noise level and correspondence over time. This
requires aligning the two input streams, upsampling and denoising of the depth
stream, and making the depth stream coherent over time.

Diebel and Thrun (2006) were among the first to fuse data from a low-resolution Related work:
old & slowrange scanner and a high-resolution colour camera. They infer an upsampled and

denoised depth map using Markov Random Fields by observing that strong colour
and depth edges often coincide. This assumption is also exploited by more recent
approaches based on the bilateral filter (Section 2.5). Joint-bilateral upsampling
(Kopf et al., 2007) is one such depth super-resolution approach which evaluates
the data and range terms on depth and intensity channels respectively. Another
approach is Yang et al.’s spatial-depth super-resolution (2007), which was discussed
in Section 3.3.3. All these techniques have run times of several seconds per frame.
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4. Coherent depth from time-of-flight cameras

Chan et al. (2008) proposed a real-time technique for joint-bilateral filtering thatRelated work:
new & fast locally adjusts the filter to simple noise estimates. All these techniques only consider

single frames from a video, and do not exploit the temporal coherence of video
streams to further reduce noise levels, as is done in this chapter. Dolson et al.
(2010) upsample sparse data acquired from a laser range finder using a spatio-
temporal joint-bilateral filter for interpolating missing data. In contrast, the filtering
approach in this chapter performs spatiotemporal filtering and super-resolution on
time-of-flight distance maps, which are dense, but much noisier.

This chapter presents a novel fast geometry filtering approach that fuses theChallenges
colour and depth videos captured from a prototype camera (Section 4.1) into a
coherent RGBZ video. Note that the aim is not geometric accuracy, but plausible
geometry which is sufficient for many of my applications, such as non-photorealistic
rendering. The four main challenges to address are:

– Video alignment
The videos are captured from laterally displaced viewpoints, and thus capture
different views of a scene. To combine the videos, they first need to be aligned.

– Half-occlusions
Different viewpoints also mean that each camera can see into areas which are
occluded in the other camera’s view. This is illustrated in Figure 4.2 (right).

– Resolution mismatch
The depth data captured by the time-of-flight camera has a spatial resolution of
176×144, whereas the video camera has a maximum resolution of 1024×768.

– Noisy depth data
The accuracy of the depth data is ±1 cm, but this is masked by extreme temporal
fluctuations with a standard deviation of several centimetres (see Figure 4.8).

The limitations of time-of-flight cameras are caused by the technical difficulty ofPhysical limitations
measuring the short time intervals associated with light travelling only a few metres
through air. In vacuum, light travels at a speed of around 30 cm/ns, so to achieve
better distance precision, the camera sensor needs to read out pixels more quickly.
The number of photons per time interval then limits the pixel size on the sensor, as
reducing the pixel size would decrease the signal-to-noise ratio.

This chapter presents a video processing pipeline (illustrated by Figure 4.1) thatStructure of
this chapter addresses the four challenges above. The colour and depth videos are first aligned

using a rigid transform (Section 4.1), half-occluded areas are invalidated and filled
in again (Section 4.2), and a novel spatiotemporal filter performs super-resolution
and denoising simultaneously (Section 4.3).

colour video

depth video

Video Alignment
(4.1)

Geometry Fill-In
(4.2)

Spatiotemporal
Filter (4.3)

RGBZ video

Figure 4.1: The RGBZ video processing pipeline that combines a high-resolution colour video with a
noisy, low-resolution depth video into a coherent RGBZ video.
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4.1. Aligning the colour and depth videos

4.1. Aligning the colour and depth videos

I built a prototype camera at MPI Informatik which comprises a MESA Imaging Prototype camera
SR4000 time-of-flight camera and a Point Grey Flea2 colour camera (Figure 4.2, left).
The cameras are fitted side by side to minimise their baseline, their optical axes are
aligned to be almost parallel to achieve similar fields of view, and I adjusted the
video camera’s lens to cover the time-of-flight camera’s fixed field of view.

video
camera

depth
camera

background

depth camera video camera

foreground

half occlusions

Figure 4.2: Left: The prototype camera setup with video and depth cameras mounted on a tripod.
Right: Schematic of the camera setup, with highlighted half-occlusion areas.

The prototype camera allows full hardware and software control over all modules. Synchronisation
The two cameras are synchronised using a custom circuit which connects the
video camera’s strobe output to the time-of-flight camera’s trigger input. Due to
limitations of the trigger circuitry, the setup is limited to capture video at 15 Hz,
which could be overcome with additional engineering. However, this frame rate is
sufficient for demonstrating many interesting RGBZ video processing tasks.

Other sensors are now commercially available, such as the Microsoft Kinect17 which Microsoft Kinect
is the first mass-market product to combine an IR-based active stereo system with
a colour video camera. Both the prototype camera and the Kinect suffer from
the same general noise problem – time-of-flight depth data are contaminated by
measurement noise whereas Kinect data are quantised in depth. Both cameras also
use separate depth and video cameras. Therefore, the fill-in and filtering techniques
in Sections 4.2 and 4.3 are needed in the same manner. While I explain these
techniques using the prototype camera, the very same approach is also applicable
to the Microsoft Kinect, as shown in Section 4.4.

The alignment of the colour and depth videos involves the choice of a common Reference frame
reference frame. Using the view of one of the two cameras limits occluded areas
(see Figure 4.2, right) to be of a single type: either colour or geometry would be
occluded in the reference view; any other reference frame would result in a mix of
these occlusions, which would be harder to deal with than a single type. This leaves

17 The development of the prototype camera system and the filtering techniques presented in this
chapter precede the November 2010 launch of the Microsoft Kinect by a few months.
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4. Coherent depth from time-of-flight cameras

two options: (1) aligning the depth video to the colour video using reprojection;
or (2) aligning the colour video to the depth video using projective texturing as in
Lindner et al. (2007). I chose the first option, as the goal is to upsample and denoise
the distance map using the more reliable image data. Projective texturing would
reduce the quality of the available colour image and hence also the filtered distance
map, due to texture interpolation and unavoidable texturing artefacts.

To reproject the distance map to the video camera’s view, the cameras were firstCamera calibration
calibrated using standard tools18. Video frames from both cameras are undistorted
using the intrinsic camera calibration parameters on the fly. Time-of-flight cameras
also exhibit a systematic depth bias and more sophisticated calibration approaches
exist to address this (Kolb et al., 2010, section 4). However, we found the basic
calibration to be sufficient, because of the small baseline between the colour and
depth cameras which makes the influence of systematic depth errors negligible.

The terms ‘depth’ and ‘distance’ are often used interchangeably, so let me againNotation: depth
versus distance clarify what is meant by each. The term ‘distance’ (or ‘range’) denotes the Euclidean

distance between a 3D world point and the camera centre, whereas ‘depth’ refers
only to the distance along the viewing direction. Points at constant distance form a
sphere, and points at constant depth a plane. Depth maps can be converted to and
from distance maps if the intrinsic camera calibration is known.

Using the calibrated time-of-flight camera parameters, the distance map is back-Alignment by
reprojection projected to the world coordinate frame as a triangle mesh that connects the centres

of neighbouring pixels in the distance map like a ‘rubber sheet’ ( ). This triangle
mesh, in world-space coordinates, is then projected into the video camera’s view.

Specifically, a vertex buffer of the size of the distance map is first created, withReprojection
in OpenGL simple triangle connectivity described by the corresponding index buffer. For each

new video frame, the vertex shader uses the distance map to position the vertices
in the vertex buffer as specified in the distance map. The OpenGL model-view
matrix is set to the relative transform from the time-of-flight to the video camera,
as given by the extrinsic camera parameters, and the projection matrix is defined
by the colour video camera’s intrinsic camera parameters.

The output is an aligned distance map at colour video resolution, but the true visibleDistance map format
detail has not been increased, just linearly upsampled. It is stored as an RGBA32
texture in OpenGL, where the first three components encode the 3D coordinates
and the fourth the distance of a pixel. If a pixel’s distance is set to zero, it is invalid.
In this case, the 3D coordinates of the pixel encode the viewing ray through the
pixel, so that the pixel may be filled in in the correct location in the next stage.

18 Initially using Jean-Yves Bouguet’s Matlab Camera Calibration Toolbox, later using OpenCV.
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4.2. Filling in invalid geometry

4.2. Filling in invalid geometry

The time-of-flight and video cameras capture slightly different views due to their Introduction
displacement. This results in regions occluded in one camera’s view that are visible
in the other view (as in Figure 4.2, left). Projecting the distance map onto the video
camera’s view thus introduces holes that need to be filled.

The reprojection of the distance map in the previous section is performed using Motivation
& outlinea ‘rubber sheet’ triangle mesh. In regions that are occluded in the time-of-flight

camera’s view, this geometry slopes to the background instead of showing a clear
depth discontinuity (see Figure 4.3a). The time-of-flight camera also introduces so-
called flying pixels at depth discontinuities which fluctuate at intermediate distances
(Kolb et al., 2010) and need to be removed. The first step is hence to invalidate
half-occluded and unreliable regions (Figure 4.3b), and then fill them in again from
the surrounding geometry with the help of the colour image (Figure 4.3c).

background

foreground
depth

colour

a ‘rubber sheet’ geometry

half-
occlusions

b invalidated geometry c geometry filled in

Figure 4.3: Illustration of the geometry fill-in procedure on a slice of scene geometry as seen from above:
(a) ‘rubber sheet’ with half-occlusions; (b) after geometry invalidation; (c) with geometry fill-in.

Half-occlusions could be prevented by using co-linear optics for depth and colour Co-linear optics
video capture, for instance using a beam splitter, but flying pixels would still occur.
Furthermore, all current systems, including the Kinect, use two displaced cameras.
An algorithmic solution to overcome the resulting half-occlusions is thus highly
relevant and ensures applicability to a wider range of possible RGBZ camera setups.

Pixels near depth edges in the time-of-flight camera’s view are generally inaccurate Geometry
invalidationas these flying pixels have a depth value somewhere between the front and the back

surfaces covered by the pixel (Kolb et al., 2010). These pixels are thus removed by
thresholding the gradient magnitude of the depth map, as approximated by a 3×3

Sobel filter with a threshold in [0.1, 0.2], assuming distances in metres. In some
cases, like the ‘hand’ sequence, visibly too little geometry is invalidated. In that
case, I instead choose to use the surface normal to discard pixels which diverge too
much from the view direction, as these tend to be noisy in time-of-flight cameras.

The next step is to fill the holes in the aligned distance map. The key assumption Multi-resolution
geometry fill-inis again that depth and colour discontinuities coincide – a hypothesis exploited

by joint-bilateral filters (Section 2.5.2). To fill large holes, as in the distance maps,
a large filter radius (σs > 25) is needed, which precludes fast online processing.
Instead, this section proposes a new multi-resolution joint-bilateral fill-in algorithm
which is inspired by joint-bilateral upsampling (Kopf et al., 2007), and produces
results of comparable quality but is suitable for online processing (see Figure 4.4).
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10.4 ms 70.2 ms 13.7 ms

14.8 ms 92.8 ms 15.1 ms

invalidated geometry
(shown in orange)

single-resolution fill-in
(σs = 10)

single-resolution fill-in
(σs = 27)

our multi-resolution fill-in
(n= 3, g= 3, σs = 3)

Figure 4.4: The multi-resolution geometry fill-in technique is 5−6× faster than the single-resolution fill-in
with the large kernel size (σs =27) necessary to fill holes, with comparable quality. A smaller
kernel (σs =10) has a similar run time, but shows errors (highlighted in yellow).

The multi-resolution fill-in uses n resolution levels: 0 to n−1 from fine to coarse.Algorithmic
description To aid with the following explanation, a concrete example using n=3 resolution

levels in shown in Figure 4.5. Each level k has two inputs and one output, all of
the same spatial resolution: the colour image ik and aligned distance map dk are
inputs, and the filled-in distance map fk is the output. The coarsest level, n−1, fills
invalid pixels in the distance map dn−1 based on the corresponding colour image
in−1 using a standard joint-bilateral filter, resulting in the filled-in distance map
fn−1. All levels except the coarsest one, that is k = 0, . . . , n−2, work as follows:

1 The image ik and distance map dk are downsampled by using every gth pixelDownsampling
& recursive call along the x and y axes, resulting in the downsampled versions ik+1 and dk+1.

These are passed to the next lower level, k+1, which returns a filled-in distance
map fk+1 after all recursive processing has finished.

2 The coarser levels have recursively filled all invalid pixels of dk+1 in fk+1. These‘Sparse’ upsampling
newly-filled pixels are now upsampled to a sparse grid of pixels, which is
used to fill invalid regions in the distance map dk. This results in the ‘sparsely
upsampled’ distance map uk with filled-in values at every gth invalid pixel.

3 The same joint-bilateral filter as at the coarsest level is applied to the sparselyFill in pixels
upsampled distance map uk and the image ik to fill in all invalid pixels in dk.
Note that this recomputes the sparsely upsampled pixels to avoid artefacts.

The results shown in this chapter use filter parameters σs =10 and σr =0.05. MostUsed parameters
sequences use n=3 levels, with resolution halving at each level (g=2), except for
the ‘hand’ sequence which has the largest half-occlusion regions and uses n= 4
resolution levels with threefold downsampling (g=3), just like Figure 4.5 but with
one additional resolution level. This is necessary to ensure good results across all
video frames. Additionally, to reduce the influence of noise in the colour image, it
is first filtered bilaterally using parameters σs =3 and σr =0.1.
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Figure 4.5: Illustration of the multi-resolution geometry fill-in technique using the ‘hand’ sequence
(with parameters n= g=σs =3). Please refer to Section 4.2 for a step-by-step explanation.

The approach described in this section uses a multi-resolution joint-bilateral filter to Alternative
approachesfill in invalidated regions in the aligned distance map. A potential alternative to this

interpolation approach are inpainting algorithms (Bertalmio et al., 2000; Criminisi
et al., 2004). These could extend background surfaces in invalidated regions by
matching the slant of surrounding surfaces, which this section’s approach cannot.
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4. Coherent depth from time-of-flight cameras

4.3. Spatiotemporal geometry filtering

The result of the geometry fill-in step is passed into a spatiotemporal filter whichIntroduction
simultaneously denoises and super-resolves distance maps: the denoising step
strongly reduces the spatial and temporal noise which is contained in distance
maps recorded by time-of-flight cameras; and the super-resolution step uses the
high-resolution colour video to increase the spatial resolution of distance maps by
exploiting the coincidence of colour and depth edges.

A standard joint-bilateral filter applied at a single time step reduces spatial noiseMotivation
while preserving image and depth edges, but flickering caused by time-independent
noise persists (Figure 4.8). To overcome the temporal noise, a spatiotemporal filter
is proposed in this section, which incorporates information from previous frames.

Videos may contain significant motion and the filter therefore needs to be motion-Motion
compensation compensated. A related technique in this context is Herzog et al.’s spatiotemporal

upsampling technique (2010) for efficient high-resolution rendering. Their technique
uses a single motion-compensated sample from the previous filtered frame to
filter the current frame. While this works well on the clean rendered geometry, it
performs poorly on the noisy distance maps acquired from time-of-flight cameras.
Better results are achieved using the filter described in this section, which motion-
compensates all kernel pixels, not just the centre, as illustrated in Figure 4.6.

In the following, I will first explain a purely spatial version of the filter as aStructure
& notation baseline, and then extend it to the temporal domain. The following uses the homo-

geneous notation of the bilateral filter described in Section 2.5.1, where values are
represented as homogeneous quantities and the homogeneous coordinate is filtered
like the others, as this eliminates the division by the sum of weights in the filter
notation.

4.3.1. The spatial joint-bilateral geometry filter

The distance map can be filtered in one time step using a dual-joint-bilateral filter,Spatial filter
definition which preserves edges in the colour image i(p, t) and the distance map d(p, t). This

is conceptually similar to the dual-cross-bilateral filter described in Section 3.1.2.
The spatially filtered distance for pixel p at time step t is given by

fS(p, t) = ∑
q∈Np

wc(p, q) · wd(p, q) · ws(p, q) · d(q, t), (4.1)

where Np is the set of pixels in the kernel of radius 2σs centred on p, and the colour,
distance and spatial weights are given by

wc(p, q) = Gσc(‖i(p, t)− i(q, t)‖), (4.2)
wd(p, q) = Gσd(|d(p, t)− d(q, t)|), (4.3)

and ws(p, q) = Gσs(‖p− q‖), (4.4)

where, as before, Gσ(x)= e−x2/2σ2
.

The pixels indices p and q are always in the current frame, at time t, whereas pPixel indices
and q (which are introduced next) are in the previous frame (t−1). Typical filter
parameters are σc∈ [0.05, 0.1], σd∈ [0.075 m, 0.1 m], and σs∈ [4, 8].
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4.3. Spatiotemporal geometry filtering

4.3.2. The spatiotemporal joint-bilateral geometry filter

Spatial filtering alone cannot suppress noise completely – residual low-frequency Spatio-temporal
filter definitionnoise is still visible in Figure 4.8. However, since this noise is independent for every

time step, it can be further reduced by averaging frames from several time steps.
The spatiotemporally filtered distance at p and time step t is a linear combination
of the spatially and temporally filtered distances,

fST (p, t) = ϕ · fS(p, t) + (1− ϕ) · fT (p, t), (4.5)

where the falloff ϕ specifies the trade-off between spatial filtering and temporal
filtering, with fT (p, t) propagating filtered distances from the previous time step
t−1 to the current time step t using motion compensation. The larger ϕ, the more
weight is given to the current frame. The results reported here use ϕ∈ [0.01, 0.1].

A basic technique such as exponential averaging of the spatially filtered distances Temporal smoothing
over a window of time generates artefacts in areas of high motion. This filters pixels
which are not in correspondence, for example across depth discontinuities, and
leads to ‘smearing’ artefacts. To address this problem, previous frames need to be
motion-compensated to align moving objects across frames.
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Figure 4.6: Illustration of the motion-compensated filter kernel: arrows indicate optical flow from the kernel
centre p and a kernel pixel q in the current frame (t, right) to the previous frame (t−1, left).

Let p at time step t−1 denote the motion-compensated location of p at time step t, Definition
of temporal
smoothing

as shown in Figure 4.6. The temporal contribution towards p is computed by

fT (p, t) = ∑
q∈Np

w(p, q, p, q) · fST (q, t− 1), (4.6)

which combines distances from the previous spatiotemporally filtered distance
map at the motion-compensated locations q of all pixels q in the filter kernel Np.
This drastically reduces the flickering caused by time-independent noise.

The filter weights w(p, q, p, q) in Equation 4.6 are designed to evaluate the similarity Filter weights
of the motion-compensated pixel q to the centre pixel p:

w(p, q, p, q) = wc(p, q) · wd(p, q) · ws(p, q) · w f (q, q). (4.7)

As before, the first three weights determine similarity in colour and distance, as
well as spatial proximity. However, the spatial weight ws does not penalise distance
from p, but its motion-compensated location p.
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4. Coherent depth from time-of-flight cameras

Finally, the flow weight w f reduces the influence of past data in areas of fast motion,Flow weight
as they tend to be unreliable:

w f (q, q) = exp
(
−‖q− q‖2 / 2σ2

f

)
. (4.8)

For the prototype camera described in Section 4.1, σf ∈ [4, 5] produces good results.

Fast motion also leads to increased noise levels in time-of-flight distance maps, asHandling fast
motions multiple images are sampled per frame (Kolb et al., 2010). To suppress this noise in

areas of fast motion, the spatial filter is augmented by redefining wc(p, q):

wc(p, q) = exp(gc) · Gσc(‖i(p, t)− i(q, t)‖), (4.9)

gc =
[
2− ‖q− q‖/σf

]1
0 , (4.10)

where [x]ba clamps x to the range [a, b]. The result is that in areas of fast scene
motion, the importance of spatial filtering is increased and distances are smoothed
across colour edges. In practice, this effectively prevents motion noise amplification.

I use a full-kernel implementation of the spatiotemporal filter, as the non-GaussianImplementation
colour weight wc cannot be easily mapped to the acceleration approaches discussed
in Section 2.5.3. The correspondences across frames are computed using Brox et al.’s
optical flow (2004), adapted and implemented for GPUs by Eisemann et al. (2008).
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4.4. Results

The prototype camera was used to record a variety of scenes, including close-ups of Recorded sequences
objects, close-ups of people, and multiple people interacting. A total of 26 sequences
were captured, with over 30 000 frames and about 35 minutes in length. The RGBZ
video processing pipeline described in this chapter produces good results with
remaining artefacts only in very few frames. The captured sequences are used to
demonstrate the efficacy of the proposed processing techniques.

The proposed geometry fill-in step removes and fills in unreliable and half-occluded Geometry fill in
geometry, as demostrated in Figure 4.4. While similar results can be achieved by a
single joint-bilateral filter with a larger kernel size, the proposed multi-resolution
approach is 5−6× faster, while outperforming a smaller kernel with similar run
time in terms of quality.

The proposed spatiotemporal filtering step computes visually plausible high-quality Geometry filtering
distance maps from spatially and temporally noisy input data. In contrast, a simple
spatial filter still exhibits noise and flickering, which are effectively removed by the
spatiotemporal method (see comparison in Figure 4.7). Figure 4.8 shows that the
spatiotemporal filter clearly produces the best results: the distance maps are free of
noise, have a higher spatial resolution and clean object boundaries. However, the
full improvement only becomes apparent in motion, in the supplementary video19.

The overall filtering approach is also applicable to the Microsoft Kinect without Microsoft Kinect
algorithmic modifications – only two filtering parameters were tweaked. Although
the Kinect has different noise characteristics than time-of-flight cameras, similar
problems exist, like the disparity between depth maps and video. The last row of
Figure 4.8 shows that the filtering approach is similarly necessary and leads to
clearly improved, coherent depth maps, with the Kinect’s typical depth quantisation
steps smoothed out.

spatially-filtered distance maps spatiotemporally-filtered distance maps

Figure 4.7: Difference images of consecutive distance maps using spatial and spatiotemporal filtering
(scaled to show differences of ±2.5 cm). Motion creates black and white boundaries around
objects, but temporal noise results in cloudy deviations from grey (see left image).

19 http://richardt.name/rgbz-camera/
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4. Coherent depth from time-of-flight cameras

no filtering (just aligned) spatial filtering only spatiotemporal filtering

Figure 4.8: Mesh renderings of distance maps without filtering, with spatial and spatiotemporal filtering.
It is essential to refer to the supplementary video to see the full improvement in quality. The
last row shows data captured using a Microsoft Kinect, with holes and the characteristic depth
quantisation steps. This chapter’s filtering approach results in a clear improvement.
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4.4.1. Run time and performance
The RGBZ video processing runs at a frame rate of 5.2 Hz for a 584×506 RGBZ Run times
video in the prototype implementation – which uses a GeForce 295 graphics card
and a 2.8 GHz quad core processor. The bottleneck is GPU time, which divides as
follows: 28 per cent each for computing optical flow and the spatiotemporal filter,
and 22 per cent each for the geometry fill-in and view alignment computations. The
RGBZ video processing can be used interactively, which allows processing and also
application parameters to be modified on-the-fly and their outcome to be observed.
Alternatively, the video processing can be performed in an offline pre-processing
step, and the filtered video can then be used in real time. Additional fine-tuning
and advances in hardware will soon make end-to-end real-time processing feasible.

This work is inspired by the work of Snavely et al. (2006), but it differs in some Comparison to
previous workimportant aspects. The entire RGBZ processing pipeline is specifically designed

for interactive performance, whereas their reconstruction and registration steps are
computationally expensive and hence not suited for interactive processing of input
data. The proposed multi-resolution fill-in procedure also produces higher quality
distance maps than the simple interpolation used by Snavely et al. An important
consideration in the design of the filtering pipeline was to handle the challenging
noise characteristics present in recent depth cameras. Due to this, the proposed
approach produces higher-quality, noise-free distance maps at interactive frame
rates, whereas Snavely et al.’s results still exhibit flickering due to temporal noise.

4.4.2. Limitations
The result of the spatiotemporal filter depends on the quality of the optical flow Optical flow
between frames: in areas of fast motion, optical flow tends to be unreliable due
to motion blur, large displacements and occlusions, which can lead to artefacts
such as smearing in the filtered distance map. This could be ameliorated by using
a higher capture frame rate, as this reduces the maximum extent of motions, or by
extending the optical flow to also respect depth discontinuities.

The geometry fill-in and filtering steps rely on the assumption that similar colours Colour/depth edges
imply similar depth. This assumption can be violated in two ways: (1) strong texture
on smooth geometry may introduce ‘texture copy’ artefacts into the distance map;
and (2) depth edges with small colour differences may not be preserved well, for
example at the left shoulder in the second row of Figure 4.8. Nevertheless, this
assumption holds in many real scenes.

The used time-of-flight camera also has a low spatial resolution, which limits the Depth detail
level of detail in the filtered distance map. Although the filtering increases the
resolution beyond the physical limits of the depth sensor, not all fine details can
be recovered. Even more detail may potentially be recovered by refining the result
using shape-from-shading, but this would incur additional computational costs.

The joint-bilateral filtering approach taken in Section 4.2 is not guaranteed to Joint-bilateral filter
fill geometry optimally, as new values are computed as a linear combination of
existing values. This may result in incorrect geometry in the geometry fill-in and
spatiotemporal filtering steps. In practice, this only has limited influence on the
quality of reconstruction, but it allows the system to run at interactive frame rates.
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4. Coherent depth from time-of-flight cameras

4.5. Conclusion

This chapter presented the first computational camera system that captures high-RGBZ video camera
resolution coherent RGBZ videos at interactive frame rates. It builds on a prototype
camera which combines a colour video camera with a recent time-of-flight camera,
and an RGBZ video processing pipeline that turns the noisy, low-resolution distance
maps and the high-resolution colour video into a plausible and coherent high-
resolution RGBZ video.

The proposed RGBZ video processing pipeline consists of three processing stages:Pipeline stages

1. the depth video is aligned to the colour video using reprojection (Section 4.1),

2. unreliable geometry is invalidated and filled in again (Section 4.2), and

3. a spatiotemporal filter gently smoothes the geometry (Section 4.3).

The previous section showed qualitative evidence that these steps work effectively
and efficiently.

Time-of-flight cameras are limited in their spatial resolution and the accuracy ofDiscussion
their distance measurements. New models will no doubt feature increased sensor
resolutions, and perhaps even improved depth accuracy, but they will be behind
commercial video cameras in terms of resolution for years to come – if they ever
catch up, which I doubt. I believe that time-of-flight cameras will remain noisy by
nature, and the mismatch in sensor resolution between time-of-flight and video
cameras will remain a problem. The proposed geometry filtering approach hence
remains valid.

The next chapter demonstrates that the RGBZ videos created using the filteringNext chapter
approach described in this chapter enable a wide variety of video processing effects
which are unobtainable from videos alone.
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RGBZ video

processing effects
5

This chapter presents research that was carried out during a research
visit at the Max-Planck-Institut Informatik in Saarbrücken, Germany,
in collaboration with Carsten Stoll and Christian Theobalt (both MPI).
Chenglei Wu (also at the MPI) contributed source code for relighting.

The work has been accepted at Eurographics 2012 and will be published
in a special issue of Computer Graphics Forum (Richardt et al., 2012).

Over millions of years, the human visual system has evolved to process visual Introduction
inputs to make sense of the world around us. The geometry of objects and their
arrangement in space is integral to our experience of the world. Hence, the human
visual system has evolved to elucidate the spatial relationships between objects in
a multitude of ways (for depth perception see Section 2.2). It is this inference of
geometric information that enables our visual system to perform so well.

Similarly, many video processing effects are infeasible from video input alone, and Motivation
require additional geometric information. The lighting of objects, for example, is
principally determined by surface normals. To synthesise new views from different
viewpoints, one also needs to know the depth of objects to render them in the correct
order and with correct parallax. In addition to this, depth is also an important
semantic cue, as nearby objects are generally more salient than distant ones.

However, existing video cameras cannot capture geometric data. In the preceding Acquisition of
RGBZ videoschapters, I therefore considered two approaches to additionally acquire geometric

information. The first approach, in Chapter 3, adds a second video camera to infer
scene depth using stereo matching – one purely passive geometry capture approach
surveyed in Section 2.3. However, the quality of the computed disparity maps is
insufficient to achieve some of the effects presented in this chapter, because of poor
depth accuracy and hence inaccurate surface normals. The approach in Chapter 4

instead uses an additional depth sensor in combination with a specialised filtering
and upsampling approach that results in high-quality RGBZ videos.
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5. RGBZ video processing effects

In this chapter, I present five video processing effects that critically rely on theStructure of
this chapter high quality of geometric information available through RGBZ videos to achieve

results that are unobtainable from a colour video alone. Perhaps the most basic
effect is background segmentation (Section 5.1), which is greatly simplified when
geometry is available. Next, I describe a relighting technique which relies solely
on plausible surface normals (Section 5.2). The two following effects extend video
abstraction and stroke-based rendering techniques to make use of the geometry for
placing lines and brush strokes along meaningful geometric features (Section 5.3).
And the last effect renders videos in stereoscopic 3D by synthesising new views
(Section 5.4).

The effects shown in this chapter all work at real-time frame rates (15 Hz or more).Performance
An interesting and powerful option is to interactively apply these effects subsequent
to the RGBZ video processing pipeline in Chapter 4. This allows processing and
rendering parameters to be modified on the fly and their outcome to be observed
– all at interactive frame rates (about 4 Hz).
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5.1. Video foreground segmentation

5.1. Video foreground segmentation

Perhaps the most basic use of depth information is ‘z-keying’: thresholding depth Segmentation
to separate the foreground from the background. I implemented a slightly more
general technique that thresholds each pixel relative to a 3D plane in world space.
Given a pixel’s coordinates p=(x, y, z, 1), and a plane defined in the form n·p=
(a, b, c, d)·(x, y, z, 1)= ax+by+cz+d=0, their distance is δ=n·p/‖(a, b, c)‖, where
the plane’s normal vector (a, b, c) lies in the half-space with positive distances.

This is particularly useful when the background in a video is not orthogonal to the Oblique planes
camera’s view direction, as is often the case. For example, the fruit bowl sequence
in Figure 5.1 was recorded at an angle above a table and z-keying is hence unable
to segment it. However, using an oblique plane 7 cm above the table’s surface works
well, as demonstrated in the figure.

Thresholding is a binary operation which classifies pixels to be either visible or Basic matting
not, leading to a binary matte with hard boundaries. These boundaries can easily
be softened using a 3×3 Gaussian blur. An additional matting step would likely
further improve results by separating foreground and background colour cleanly,
but this would come at additional computational expense.

Figure 5.1 shows an example which compares the segmentation results based on Example
the unfiltered and spatiotemporally filtered distance maps, respectively. It is clear
that the foreground is not cleanly segmented from the background when using
the unfiltered distance map. On the other hand, using the filtered distance map
produces a cleanly segmented foreground.
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Figure 5.1: Examples of video foreground segmentation. The filtered depth produces clean object outlines.
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5.2. Video relighting

Photographers and cinematographers routinely use lighting to great effect in orderMotivation
to achieve a desired aesthetic effect, such as setting the mood or directing attention.
In these settings, lighting is often carefully designed and professionally set up, and
it cannot be changed easily in post-production unless a suitable lighting basis has
been captured in a light stage (Wenger et al., 2005). However, this is impractical
for casual video camera users. Alternatively, a still image can be relit if a specific
lighting model is assumed and scene geometry is known, for example if a normal
map is painted by the user (Okabe et al., 2006). This is clearly infeasible for RGB
videos, but RGBZ videos provide the required geometry.

Using existing methods, we20 implemented a simple technique for relighting RGBZApproach
videos in real time, which consists of three steps:

1. estimation of scene illumination from a single RGBZ video frame,

2. computation of albedo maps for each video frame, and

3. rendering of the albedo map with new lighting parameters.

Figure 5.2 shows the main components of our video relighting approach.

Input image Estimated lighting Estimated albedo map

Figure 5.2: The main components of our video relighting: the input image is used to estimate incident
illumination, which is then removed from the input image to compute an albedo map.

The scene illumination is assumed to be constant and thus estimated offline from aLighting estimation
single RGBZ video frame, using the known surface normals and corresponding
pixel colours. By assuming purely diffuse, Lambertian reflectance, the estimation of
the incident lighting reduces to computing the first 9 spherical harmonic coefficients
of the environment map (Ramamoorthi and Hanrahan, 2001a; Basri et al., 2007).
Only the most reliable pixels are used for the lighting estimation: pixels at or near
depth discontinuities or in shadows are manually masked out. Without a given
albedo map, lighting estimation is ambiguous, as the colour of an object depends
on both its albedo and the colour of the lighting. Hence, we estimate the lighting
independently for the red, green and blue colour channels, and the one with the
strongest constant coefficient is taken to be the scene illumination. The albedo map
is then computed by dividing each pixel’s colour by the estimated illumination.

20 Chenglei Wu (MPI Informatik) created the original implementation of this technique and I
translated the relighting component to GLSL shaders for real-time video relighting.
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5.2. Video relighting

In principle, any lighting model could be applied to the computed albedo maps Relighting
to relight the original video. We use the same spherical harmonics technique for
rendering new lighting conditions, as it efficiently approximates environment maps
for diffuse objects (Ramamoorthi and Hanrahan, 2001b). Figure 5.3 shows several
plausible relighting results created using this approximation to light probes (inset).

input frameinput frameinput frameinput frameinput frameinput frameinput frameinput frameinput frameinput frameinput frameinput frameinput frameinput frameinput frameinput frameinput frameinput frameinput frameinput frameinput frameinput frameinput frameinput frameinput frameinput frameinput frameinput frameinput frameinput frameinput frameinput frameinput frameinput frameinput frameinput frameinput frame point light sourcepoint light sourcepoint light sourcepoint light sourcepoint light sourcepoint light sourcepoint light sourcepoint light sourcepoint light sourcepoint light sourcepoint light sourcepoint light sourcepoint light sourcepoint light sourcepoint light sourcepoint light sourcepoint light sourcepoint light sourcepoint light sourcepoint light sourcepoint light sourcepoint light sourcepoint light sourcepoint light sourcepoint light sourcepoint light sourcepoint light sourcepoint light sourcepoint light sourcepoint light sourcepoint light sourcepoint light sourcepoint light sourcepoint light sourcepoint light sourcepoint light sourcepoint light source
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Figure 5.3: Example frames from relit video sequences. The light probes are courtesy of Paul Debevec.
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5. RGBZ video processing effects

5.3. Non-photorealistic rendering of videos

Previous non-photorealistic rendering techniques for videos produce effects basedIntroduction
on imagery alone (Collomosse et al., 2005; Winnemöller et al., 2006). The aim of
the work described in this section is to show that the depth data in RGBZ videos
enables more advanced non-photorealistic video rendering effects.

5.3.1. Related work

Raskar et al.’s non-photorealistic camera (2004) was the first work to reveal theNPR camera
potential of depth in non-photorealistic rendering. They built a prototype camera
that uses four flashes to detect and highlight depth edges in real-world scenes.
This effectively highlights occlusion boundaries which helps in conveying shape
features. However, no actual scene geometry is recovered apart from the location
and orientation of the depth discontinuities.

The first non-photorealistic rendering technique for RGBZ videos is due to Snavely2.5D video
et al. (2006), who describe how to process and stylise ‘2.5D videos’. The source of
these videos is an existing active spacetime stereo approach (Zhang et al., 2003).
The raw depth maps are first filtered bilaterally and shape correspondence between
frames is then optimised, to achieve coherent stylisation. As temporal information
is not taken into account during the filtering step, some temporal noise remains.

The first real-time photometric stereo system for capturing images with normalsRGBN images
(‘RGBN images’) was demonstrated by Malzbender et al. (2006). Their system uses a
high-speed video camera that captures video frames illuminated by up to 16 LEDs.
They compute surface normals on the GPU using photometric stereo (Section 2.3),
and then perform basic reflectance and normal transformations to emphasise the
surface detail of objects, for example for documenting archaeological artefacts.

Toler-Franklin et al. (2007) go into more detail on how to process and stylise RGBNRGBN stylisation
images. They describe tools for filtering, curvature estimation and segmentation of
RGBN images. However, the largest part of their paper concentrates on showing a
large variety of rendering styles that can be applied to such RGBN images: from
straightforward cel shading and suggestive contours (DeCarlo et al., 2003) to the
more complex multiscale curvature shading style.

Wang et al. (2010) also use photometric stereo to compute real-time normals, withContext-aware
light source the aim to transfer a new style onto the scene by projecting the appropriate image.

To achieve their goal, they use a beam splitter to align an infrared camera – for
photometric stereo – with a projector that projects scene-enhancing imagery, for
example to sharpen image features in a scene. However, as no motion compensation
is applied, any scene motion results in incorrect normals.

Apart from the last, all of these systems interfere with the scene in the visible lightBottom line
spectrum. In contrast to this, the prototype camera described in Chapter 4 captures
colour and depth simultaneously without interference. A further disadvantage of
the majority of described systems is that photometric stereo does not provide depth
information per se, but just normal maps. These would need to be integrated to
compute depth maps, which amplifies any errors in the normal map.
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5.3. Non-photorealistic rendering of videos

5.3.2. Geometry-based video abstraction

Natural scenes are cluttered with unnecessary detail and, as a response, the human Motivation
visual system has evolved to find the most visually salient regions on which to
focus our attention. Yet, abstracting imagery by smoothing low-contrast regions
and emphasising high-contrast features can further boost the recognition rate of
faces and performance in memory tasks (Winnemöller et al., 2006). Similarly, line
drawings, which take abstraction to the extreme, can effectively depict shape, with
computer-generated line drawings rivalling the effectiveness of artists’ drawings
(Cole et al., 2009).

Using RGBZ videos, it is possible to unify video abstraction and line drawings (Sec- Approach
tion 2.1.1) into a geometry-based video abstraction rendering style that combines
the benefits of both original styles. This new style consists of three components,
which are illustrated in Figure 5.5: an abstracted colour video, toon shadows and
abstraction lines. These are composited to produce the final result.

The colour video is abstracted using a bilateral filter (Section 2.5), with parameters Abstracted colour
σs =3 and σr =0.1, which gently smoothes low-contrast regions while preserving
edges in the image. Afterwards, I increase saturation by 40 per cent using Haeberli’s
method (1990), to make the colours more vibrant:

luminance = (0.2126, 0.7152, 0.0722) · (r, g, b), (5.1)
greyscale = (luminance, luminance, luminance), and (5.2)

result = [(1− saturation) · greyscale + saturation · (r, g, b)]10 , (5.3)

which uses the operator [x]ba to clamp the value of x to the range [a, b].

The second component is a cel-shaded version of the scene geometry which exhibits Toon shadows
toon shadows with prominent, stylised shadow boundaries. I use the following
sigmoid toon step function (see Figure 5.4) to map diffuse shading to toon shading:

toon shading = τo + τs · S(τl , τh, diffuse shading), (5.4)

where S is the smoothstep function21, and the default parameters are τo =0.7 (for
offset), τs =0.3 (for scale factor), τl =0.4 and τh =0.6 (for low and high end of step).
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Figure 5.4: Plot of the toon step function in Equation 5.4.

21 A common implementation of the smoothstep function is S(a, b, x)=3t2−2t3 with t=
[

x−a
b−a

]1

0
.
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Figure 5.5: The main components of my geometry-based video abstraction style.
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The final component uses Lee et al.’s image-based line drawing technique (2007), Abstraction lines
which detects ridges and valleys in a diffusely shaded image of the scene geometry.
These lines help to visually communicate the shape of objects in the scene above
and beyond what can be derived from the colour video. Please refer to Lee et al.’s
paper for a description of the algorithm and its parameters. The default settings I
used are: a line width of w=8, a step size of β=0.3, and lower and upper curvature
thresholds, respectively, of cl = 0.01 and cu = 0.05; however, most parameters are
tweaked to produce appealing results on each individual video sequence.

The three components of the geometry-based video abstraction style are composed Composition
& resultsby multiplying the abstracted video (with an exponential weight of 0.6) and toon

shadows, and adding the black and white lines using alpha blending – the line
opacity determining the amount of black or white used. Figure 5.6 compares the
result to Winnemöller et al.’s purely image-based approach, which relies only on
image information to create an abstracted video. Additional results for more RGBZ
videos are shown in Figure 5.7.

geometry-based video abstractionWinnemöller et al.’s abstraction

Figure 5.6: Comparison to Winnemöller et al.’s video abstraction technique. Since the proposed technique
exploits scene geometry, it places feature lines at geometrically meaningful locations.
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input frames geometry-based video abstraction

Figure 5.7: Examples of geometry-based video abstraction.
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5.3.3. Stroke-based rendering

Many artistic techniques in the visual arts essentially come down to the skilful Motivation
placement of primitives such as paint strokes, hatches or stipples on a medium such
as canvas, wood or paper. Artists rely on a wealth of experience as well as geometric
scene knowledge to help them with stroke placement. In recent years, many NPR
techniques have been proposed that imitate these stroke-based rendering styles
(Hertzmann, 2003), but they all rely on either only image content or only geometric
models. Here, I propose a technique that uses both colour and depth data.

The technique is based on the stochastic sprite distribution approach by Lu et al. Sprite distribution
(2010), which generates sprites (one for each stroke) that uniformly cover the image
area. The density of sprites is calculated using an off-screen coverage buffer into
which each sprite is rendered additively as a square, so that the value of each
pixel will be the number of sprites that overlap with it. To maintain a uniform
density of sprites, new sprites are added and old sprites deleted stochastically if
the coverage falls below or exceeds given thresholds. These sprites are advected
from frame to frame using optical flow, to follow the underlying image content. In
my implementation, I reuse the optical flow computed as part of Section 4.3.2.

Lu et al. did not name the parameters they use, so I call the size of the square Distribution
parametersdrawn into the coverage buffer the coverage size (default size: 4, for a 4×4 square).

The target coverage determines the desired number of overlapping sprites at each
pixel in the coverage buffer (default: one sprite per pixel). New sprites are added
with a certain probability if the coverage is less than the add threshold (default: 1, for
1×target coverage); conversely, existing sprites are deleted if the coverage exceeds
the delete threshold (default: 3, for 3×target coverage). The probabilities of adding and
removing sprites depends on the difference between the current and target coverage,
so that the coverage after this step will be close to the target coverage.

stroke sprites
(black on white)

image-based
stroke orientation

geometry-based
stroke orientation

Figure 5.8: Position of sprites (left) and comparison between image- and geometry-based stroke orientation.
The geometry-aligned strokes represent the face better than strokes aligned to image gradients.
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Lu et al. orient strokes along image gradients; however, using the distance map,Stroke orientation
the strokes can be aligned along meaningful geometric features instead (Figure 5.8).
In this case, strokes are aligned along the principal curvature at the sprite position.
Like the original approach, I draw strokes in the screen plane, and not in 3D space,
as this produces a more painterly look (Meier, 1996). For additional artistic effect,
the position and orientation of strokes can also be jittered.

The brush strokes can be rendered with different stroke textures, but single-colouredStroke rendering
strokes nonetheless often produce appealing results. I use a single layer of elongated
strokes of a single stroke size, by default 10×2 pixels. The resulting stroke-based
rendering style is the most flexible of all effects described in this chapter, as
changing the many rendering parameters results in a large variety of stroke-based
rendering styles (Figure 5.9).

A rendering style that closely resembles hatching can be achieved by attenuatingStroke attenuation
strokes inversely to the diffuse shading at their position, so that strokes concentrate
near object boundaries. I attenuate strokes by reducing their opacity using

alpha =
[
1.0− attenuation ·

√
diffuse shading

]1

0
, (5.5)

where the attenuation factor is in the range [1, 1.1], or zero to disable the effect.
Examples of this stroke attenuation style are shown in Figure 5.10.
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Figure 5.9: Illustration of a variety of rendering styles created by modifying rendering parameters.
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5.3. Non-photorealistic rendering of videos

input frames stroke-based rendering with attenuated strokes

Figure 5.10: Examples of stroke-based rendering with and without stroke attenuation. The attenuated
examples also use the foreground segmentation to remove the background (Section 5.1).
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5.4. Stereoscopic 3D rendering

The previous RGBZ video effects have demonstrated a few different ways in whichMotivation
the depth component of RGBZ video can be used to improve on conventional video
processing effects. However, all these effects only capture a single view of the scene.
This section shows how RGBZ videos can be rendered stereoscopically to improve
the perception of scene depth (Section 2.2). In a sense, rendering the RGBZ videos
stereoscopically makes their depth maps perceivable by humans.

The key to stereoscopic rendering is to synthesise two views – one for each eye.Virtual stereo
camera setup RGBZ videos make this easy, as they can be reprojected as textured triangle meshes,

like in the video alignment step of the previous chapter (Section 4.1). I use a parallel
setup of virtual stereo cameras that are horizontally displaced to either side of
the real camera position by half the interocular distance. Next, I shift the cameras’
image planes horizontally so that the screen plane (of zero disparity) is at a given
depth. The interocular and screen distance are parameters that can be adjusted to
provide a comfortable viewing experience.

Any change in viewpoint leads to disocclusions – areas that are occluded in theDisocclusions
original view which are visible (disoccluded) from the new viewpoint. In fact, these
are the same half-occlusions as described in Section 4.1 and they also align with
depth discontinuities in the original view. In contrast to the previous discussion,
however, there is no additional information available for the new virtual viewpoints,
and thus the fill-in procedure of Section 4.2 cannot be applied. Instead, I detect
depth discontinuities in the original view and fill the collocated disoccluded areas
with the background colour. This colour is sampled from the side of the depth
discontinuity furthest from the camera. The virtual cameras are shifted to either
side of the real camera, as this minimises the total size of disocclusions in both
viewpoints. Figure 5.11 shows that the accurate depth boundaries produced by my
filtering approach are required to dramatically reduce artefacts.

using unfiltered depth map using filtered depth map

Figure 5.11: The quality of the distance map directly influences the quality of stereoscopic 3D rendering.
This is particularly visible in disoccluded regions, as shown in these right stereo half-images.
The unfiltered depth data (left) results in many more artefacts than the filtered depth (right).
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Using RGBZ videos with reprojection-based stereo view synthesis affords a lot of Benefits
flexibility as the interocular distance and screen distance can be changed freely after
recording a video. This allows these setting to be adjusted to produce comfortable
yet solid-looking results. Figure 5.13 shows a range of stereoscopic images generated
using this approach, shown as half-colour red-cyan anaglyphs.

Unlike traditionally recorded stereoscopic videos, the synthesised videos are RGBZ Differences
videos themselves, with dense, high-quality depth maps. Depth maps estimated
using stereo matching (Section 2.4) are often inaccurate in weakly textured regions
whereas the synthesised stereoscopic RGBZ videos do not suffer from this problem.
Thus, the RGBZ video processing effects described in this chapter can all be applied
in stereoscopic 3D, by simply applying the effects to each stereo view independently.

This is a convenient approach to apply non-photorealistic rendering to stereoscopic Application:
stereo NPRimagery. Previous work, such as Stavrakis and Gelautz (2004), explicitly warps

features from one half-image to the other. This is not necessary using the approach
proposed here, as shown by the examples in Figure 5.12, which show stereoscopic
video relighting and stereoscopic geometry-based video abstraction. However, the
stroke-based rendering style would be inconsistent when applied to both stereo
half-images, but consistent if warped using Stavrakis and Gelautz’s approach.

stereoscopic relighting stereoscopic abstraction
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Figure 5.12: Examples of stereoscopic RGBZ video processing effects: video relighting (left) and geometry-
based video abstraction (right). The top shows processed versions of the synthesised right
half-images and bottom shows the stereoscopic result as half-colour red-cyan anaglyphs .
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Figure 5.13: Stereoscopic 3D renderings of a range of RGBZ video sequences. The images are shown as
half-colour red-cyan anaglyph images .
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5.5. Conclusion

This chapter has demonstrated that RGBZ videos enable a range of video processing Usefulness of
RGBZ videoseffects that are not achievable from colour videos alone as the geometric information

is a critically important ingredient to create these effects. The simplest such example
is video foreground segmentation, which produces clean object boundaries from
simply thresholding videos relative to a plane.

RGBZ videos can also be relit using new lighting environments after they have Video relighting
been captured, and some examples of this were shown in this chapter. However,
relighting is most sensitive to geometry inaccuracies and simplifying assumptions,
such as diffuse reflectance, and on most scenes, the quality of geometry and lighting
estimation was insufficient to produce plausible results.

The availability of geometric information in addition to a colour video also creates Non-photorealistic
renderingnew opportunities in video-based non-photorealistic rendering. In this chapter,

I described extensions to existing techniques that use the additional depth and
normal information. The geometry-based video abstraction style overlays cel-
shaded shadows and line drawings extracted from the geometry on top of the
conventionally abstracted video for a solid look; and surface normals are used in a
stroke-based rendering style to make strokes follow the geometry of objects. These
are just two examples; other styles (Section 2.1) could likely be extended as well.

And finally, I presented a technique to create stereoscopic 3D content from RGBZ Stereoscopic
renderingvideos by synthesising the two stereo views. This provides flexibility in stereoscopic

rendering, as the view settings can be modified freely to create a comfortable result.
The synthesised stereoscopic RGBZ videos can also be used to apply other video
effects stereoscopically, by just applying them to both views independently.

The video effects proposed in this chapter are temporally coherent by virtue of the Discussion
temporally coherent RGBZ videos they use as input. However, errors in the filtered
geometry, such as blurred depth discontinuities, can still lead to artefacts, such as
misplaced lines in the abstraction style, halos in the relit video or boundary errors
in the foreground segmentation. Textureless regions in the video further result in
poor optical flow, which may lead to correspondence errors becoming visible in
some effects, such as strokes that ‘swim’ over a uniform background. Nevertheless,
this chapter shows that RGBZ videos enable computational videography effects of
higher quality and complexity than possible before.

With algorithmic optimisations and improvements in hardware performance, these Applications
video processing effects could soon be applied to video conferencing, for example
using the Kinect sensor. By embedding a depth camera and dedicated processing
hardware in a digital camera, these effects might also find their way into consumer
digital cameras, empowering their users with better and more interesting effects.

The stereoscopic video effects raise the question of whether applying the same Next chapter
effect to both stereo views always produces a stereoscopic result that is comfortable
to look at. The next chapter argues that this is not the case by analysing how various
effects cause different human comfort ratings. The aim is a computational model
that can predict the level of visual discomfort caused by stereoscopic 3D images.
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Predicting stereoscopic

viewing comfort 6
This chapter presents research that has been published at CÆ 2011,
with the preliminary case study presented at CÆ and NPAR 2010
(Richardt et al., 2010a, 2011). The perceptual study (Section 6.4) was
jointly designed and carried out with Ian Davies and Lech Świrski.
Lech Świrski further implemented the ‘shower door’ detection (6.6.2).

Interest in stereoscopy has seen a resurgence in recent years (Section 2.2.3) – a Introduction
development primarily driven by the computer gaming and film industries, which
are taking advantage of the availability of improved stereoscopic display technology.
The primary purpose of all such displays is to present each eye with its own image
(or video), so that the human visual system can be tricked into perceiving a scene
stereoscopically – see Section 2.2 for an overview of human depth perception.

The transition from standard 2D to stereoscopic computer-generated imagery is Motivation
not as straightforward as rendering two different viewpoints; care is required to
produce visually plausible results that do not cause viewing discomfort. Existing
rendering techniques – photorealistic or not – therefore need to be reviewed and
revised if necessary to ensure that they work correctly and comfortably in stereo.
Non-photorealistic rendering techniques often use randomness to create a hand-
crafted look, which causes inconsistencies between views in stereoscopic rendering.
A notable exception is the work by Marković, Stavrakis and Gelautz (Section 2.1.3),
who explicitly enforce consistency between views.

The primary aim of this chapter is therefore to advance the understanding of how to Aim
extend non-photorealistic rendering techniques to stereoscopic rendering without
causing visual discomfort.

The first step in this direction is a case study, which compares the stereo coherence – Case study
or consistency of stereoscopic views – in animations created using two stereoscopic
variants of the same watercolour rendering style. The result of the case study is
clear-cut: the majority of participants preferred the object-based technique over
the image-space technique. However, image-based NPR techniques are often more
flexible than object-based ones (see Section 2.1), as they require less input: a single
image is often sufficient instead of a complete geometric model.
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More importantly, the case study highlighted the need for objective assessmentAssessment of
visual comfort of stereoscopic viewing comfort. However, as this is very much a subjective – if

not subconscious – issue of visual perception, the assessment of visual comfort is
usually carried out by expert viewers or a panel of naïve viewers (Neuman, 2008).
But conducting such subjective assessment is both time-consuming and costly. For
this reason, it would be desirable to automatically assess the visual comfort levels
of stereoscopic imagery using a computational model of the human visual system.

The main contribution in this chapter is the first computational model for objectivelyComputational
model assessing the visual comfort of stereoscopic imagery. The model is based on recent

work in visual perception, which showed similarities between human observers and
normalised cross-correlation – a local stereo correspondence technique. Combined
with tools from stereo computer vision, the coherence scores computed by the
model strongly correlate with human comfort ratings.

The experimental validation of the computational model consists of a perceptualExperimental
validation study, in which 20 participants were asked to rate the level of comfort for each of

80 stereo images. The results show that the model performs on a par with human
observers, and it could therefore be used to automatically assess the visual comfort
levels of stereoscopic imagery, without the need to run costly perceptual studies
which would be impractical in real-world uses of stereoscopy like movies or games.

Throughout both the case study and the larger perceptual study, it became appar-Taxonomy of stereo
coherence issues ent that the differences between left and right stereo half-images cause varying

types and levels of visual discomfort. Based on the judgment of expert viewers,
we identified three broad categories of stereo coherence issues that cause visual
discomfort: binocular rivalry, the shower door effect, and randomness.

This chapter closes with a discussion of how these stereo coherence issues can beCoherence tools
automatically identified and localised using a set of computational tools that build
on the computational model.
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6.1. A case study in watercolour rendering

In recent years, the issue of temporal coherence in non-photorealistic rendering has Temporal coherence
received significant attention (DeCarlo et al., 2004; Collomosse et al., 2005; Bousseau
et al., 2006). Although the non-photorealistic rendering community agrees that
temporal coherence is, in general, a desirable property of NPR techniques, it still
lacks a clear definition. The main goal is to suppress flickering, which is often
caused by applying rendering techniques on a per-frame basis.

By analogy, one could argue that similar attention should be given to the issue of Stereo coherence
stereo coherence, which is the consistency of the two half-images in stereoscopic
imagery. In the real world, the two views created on our retinas are projections of the
same 3D world and for this reason typically consistent, except for certain physical
phenomena such as reflection and refraction. However, this is not necessarily the
case for non-photorealistic rendering techniques if it is not explicitly enforced.

Image-based NPR techniques, in particular, are prone to introduce inconsistencies Inconsistencies
when applied stereoscopically, as each view is processed independently without
ensuring stereo coherence. Object-based techniques, on the other hand, apply styles
in the 3D world, and project them twice to produce the stereo views. As projection
is stereo-coherent, object-based techniques often are as well.

I conducted a case study designed to experimentally evaluate the importance of Case study
stereo coherence in non-photorealistic rendering. As mentioned in the introduction,
stereoscopic perception is best analysed using a perceptual study, in which stimuli
are shown to participants who are then asked to comment using introspection. The
study compares stereoscopic animations created using two watercolour rendering
techniques, as this rendering style shows sufficient visual complexity to exhibit any
potential issues.
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Figure 6.1: Example stimuli shown for the case study on watercolour rendering. The red-cyan anaglyph
images on the right are shown without colours for improved viewing comfort. They are
also best viewed at a larger zoom level.
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6.1.1. Experiment

The case study compares animations created using two rendering styles similar toStimuli
the watercolour rendering technique by Bousseau et al. (2006). Their main difference
is how the watercolour’s turbulence flow texture – which models granulation, or the
deposition of ink pigments on paper (Curtis et al., 1997) – is generated. The first
method uses the first of the two techniques proposed by Bousseau et al., which
creates a dynamic image-space noise texture by blending between six dynamic
canvases (Cunzi et al., 2003), attached to 3D points in the scene. The second method
uses object-space noise created using a dynamic solid texture (Bénard et al., 2009).

Both animations were rendered stereoscopically using quad-buffered OpenGL,Setup
displayed using a stereoscopic projector by Lightspeed Design Inc. and viewed
through passive, circularly-polarised glasses. Stereo settings, such as screen size
and distance, were calibrated before the study, to ensure optimal stereo viewing
conditions. Around 5–10 per cent of the population are considered to be ‘stereoblind’
as they cannot fuse stereo images (Lambooij et al., 2009; Richards, 1970). Hence,
each session started by showing a test image with a recessed square on a textured
background, similar to a Julesz figure (1964, Figure 2.10), to identify if individual
participants were affected by binocular vision problems.

Each participant was shown rendered versions of the same model of a building,Procedure
performing a pre-recorded rotation in the centre of the projection screen (for an
example see Figure 6.1). The sequences were shown alternately and repeated once
more, for about ten seconds each. The participants were then asked how comfortable
they found viewing each sequence, and if they could see any differences between
them. Finally, they were asked to express a preference for one of the two sequences.

The pilot study comprised six participants, all passing the initial stereo test. FiveResults
out of the six participants saw differences between the two rendering techniques,
and all of those preferred the object-based technique. The participants found that
“buildings looked more textured” compared to the image-based technique which
they found to have “flatter textures” which were “swimming”. An illustration of
the mentioned noise behaviour is shown in Figure 6.2.

The participants of the case study in watercolour rendering expressed a strongConclusions
preference for the object-space technique which exhibits better coherence. It also
appears to be the case that stereo coherence is closely related to temporal coherence,
because object-based techniques are generally more temporally coherent than image-
based techniques. Overall, stereo coherence appears to be beneficial in stereoscopic
non-photorealistic rendering techniques. The following sections measure stereo
coherence objectively and show that it is a good indicator for stereoscopic viewing
comfort.
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image-space noise
using dynamic canvas

object-space noise
using dynamic solid textures

incoherent
noisezo
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Figure 6.2: Visual comparison of noise coherence when zooming into the scene. Left: the motion of the
image-space noise is inconsistent with the geometry’s motion, resulting in the ‘shower door
effect’. This is even more apparent when the zoom is animated continuously, or if shown
stereoscopically. Right: the object-space noise is fixed to the geometry and moves coherently.
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6.2. Related work on stereoscopic viewing comfort

Numerous sources contribute to fatigue and discomfort when viewing stereoscopicIntroduction
content. The first half of this section outlines the different sources of discomfort,
and the second half concentrates on work relevant to the study of inconsistencies
between the two stereo half-images.

6.2.1. Sources of discomfort

Stereoscopic display technology has seen considerable technological progress in theTechnological
progress last five years, resulting in increased practicality as well as financial viability. The

starkly increasing demand for this technology has been primarily driven by the
film industry, but computer games and TV broadcasting also increasingly feature
stereoscopic ‘3D’ content.

However, even the latest stereoscopic displays can lead to visual discomfort andDiscomfort
fatigue (Lambooij et al., 2009; Howarth, 2011) for a variety of reasons related to the
physiology of vision, the particular display technology used or the image content.

Variance of inter-pupillary distance Stereoscopic imagery implicitly assumes some
particular inter-pupillary distance, which may not match that of the viewer, as no
single distance will be right for all people (Dodgson, 2004).

Vergence–accommodation conflicts Most displays require the observer to focus
their eyes on the screen instead of the virtual point in 3D space, resulting in the
disconnect between vergence and accommodation (Hoffman et al., 2008).

Incorrect depth cues Many depth cues contribute to depth perception (Section 2.2),
but some may be inconsistent, such as ‘window violations’ caused by contradicting
occlusion and disparity (Seymour and Neuman, 2011), and other cues may be
absent, such as defocus blur away from the plane of fixation (Hoffman et al., 2008).

Absence of motion parallax Moving the head in the real world changes both views
due to parallax, but most displays show the same static images (Howarth, 2011).

Crosstalk or ghosting If the stereoscopic views are optically not perfectly separated,
each view ‘leaks’ into the other, creating ‘ghost images’ (Seuntiëns et al., 2005).

Excessive screen disparity Extreme disparities – when objects are pulled too far
out of the screen or pushed back ‘beyond infinity’ – can lead to the breakdown of
binocular fusion and to diplopia, or double vision (Lambooij et al., 2009).

Image discrepancies Image processing operations such as blur, vertical shifts,
image compression as well as non-photorealistic filters can lead to irreconcilable
differences in the stereo half-images (Kooi and Toet, 2004; Benoit et al., 2008).

The remainder of this chapter concentrates on this last category.
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6.2.2. Relevant related work

Kooi and Toet (2004) were the first to analyse experimentally the effect that different Image discrepancies
image manipulations have on stereoscopic viewing comfort. They considered
35 different image manipulations, including spatial distortions, crosstalk, blur,
luminance and contrast adjustments. Based on their experimental results, they
concluded that vertical disparity, crosstalk and blur were the factors that most
strongly determined visual discomfort. Their exploration of the space of image
manipulations informs the design of systems that predict the viewing comfort of
stereoscopic display systems. The next Section proposes such a system.

Benoit et al. (2008) propose a stereoscopic image quality assessment metric for Stereo image
quality metricassessing the impact of compression algorithms like JPEG and JPEG 2000 on the

stereoscopic viewing experience. In their metric, they combine conventional image
similarity metrics (SSIM, C4) applied to each half-image with a disparity distortion
measure, which encodes the difference between the disparity maps of the original
and distorted stereo images. Like all image quality metrics, their work relies on the
original stereo image being available, while this chapter’s model does not.

Benoit et al.’s disparity maps are computed using state-of-the-art stereo matching Visual perception
techniques like belief propagation and graph cuts (Section 2.4). The computational
model in this chapter, on the other hand, is based on normalised cross-correlation –
a much simpler stereo matching technique. However, it has been experimentally
shown to have similar stereo performance to humans in a number of psychovisual
experiments (Banks et al., 2004; Filippini and Banks, 2009; Vlaskamp et al., 2009).

Stavrakis and Gelautz (2005b) describe the inherent problems in creating stereo- Stereoscopic artwork
scopic artwork and outline strategies for extending ‘monocular’ non-photorealistic
rendering techniques to stereoscopic 3D. Their insights draw on their extensive work
on stereoscopic painterly rendering, stylisation and sketching (see Section 2.1.3).
This chapter expands on two of their criteria: Section 6.3 provides a quantitative
measure of ‘consistency’ by computing stereo correspondences, and Section 6.6.3
localises regions contaminated by ‘randomness’.

In concurrent work, Didyk et al. (2011) introduce a perceptual model of disparity Disparity model
to estimate the perceived effect of disparity distortions and enhancements. Their
model builds on a series of psycho-visual experiments to quantify the effect of
changes in disparity magnitude and frequency. While their model can predict
which disparity changes are noticeable by human observers, it was not designed to
assess viewing comfort of stereoscopic imagery and thus cannot perform this task.
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6.3. Computational model of stereo coherence

I have developed a computational model for objectively estimating the level of visualIntroduction
comfort from a given stereoscopic image. The model combines visual perception
research with tools from stereo computer vision to construct a metric for visual
comfort based on stereo coherence, that is the consistency of the two half-images.

The input to the computational model is a stereo image and the range of disparitiesInterface
used. The percentage of consistent pixels is output as a coherence score, which was
found to be a good indicator for visual comfort (see Section 6.4).

The computational model builds on a model of human stereopsis – depth perceptionComponents
from binocular disparity (Section 2.2.2) – recently proposed by Filippini and Banks
(2009). As per their model, the left and right stereo half-images are first blurred
according to the optical properties of the human eye. Disparity maps for the
two half-images are then computed using their local cross-correlator, and then
the left-right consistency check (Egnal and Wildes, 2002) is applied to check if
corresponding pixels in both disparity maps have consistent disparities.

Exemplary results are shown in Section 6.3.4 and the full experimental validationResults and
validation of the model is in Section 6.4. Section 6.6 further describes a set of computational

tools extending the model to identify and localise stereo coherence issues.

6.3.1. Optical blur of the human eye

The first step in the computational model is a preprocess that applies a mixtureEye blur
of two isotropic 2D Gaussian blurs to the stereo half-images, in order to emulate
the optical properties of the human eye. Specifically, this applies the point-spread
function of the well-focused eye with a 3 mm pupil after Geisler and Davila (1985):

h(x, y) = a · gs1(x, y) + (1− a) · gs2(x, y), (6.1)

where the 2D Gaussian blur of standard deviation s is

gs(x, y) =
(
2πs2)−1 · e−(x2+y2) / 2s2

, (6.2)

with a = 0.583, s1 = 0.433 arcmin, and s2 = 2.04 arcmin. These parameters assume
that the distance between pixels, and therefore the pixel size, is 0.6 arcmin, which
roughly corresponds to the spacing between foveal cones.

6.3.2. Local cross-correlator

Banks et al. (2004) first introduced local cross-correlation as a computational modelNormalised
cross-correlation to help explain why spatial stereoresolution is lower than luminance resolution. The

technique they use is known as normalised cross-correlation in computer vision
and is described in Section 2.4.1. Recall that it calculates the correlation between
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windows of pixels in both stereo half-images. The correlation between windows of
disparity d centred on a pixel p is given by Equation 2.6, that is

CZNCC(p, d) =

∑
q∈Np

(Lq − Lp) · (Rq − Rp)√
∑

q∈Np

(Lq − Lp)
2 · ∑

q∈Np

(Rq − Rp)
2

, (6.3)

where Ip is the mean intensity in a square window Np centred on p in image I.

In Banks et al.’s original version (2004), the correlation window Np is a square, but Window shape
Filippini and Banks recently (2009) proposed to mimic the envelopes associated
with cortical receptive fields using a Gaussian weighting function (truncated at 3σ):

Np = e−(x2+y2) / 2σ2
. (6.4)

Filippini and Banks report the best results for σ=3 arcmin, which corresponds to
5 pixels, as per the assumptions in the previous section.

The disparity maps are then computed using the winner-take-all technique (as per Winner-take-all
Section 2.4.3), by selecting the disparity with the highest correlation score.

6.3.3. Left-right check

The left-right consistency check (LRC) is a popular technique in stereo matching for
identifying occluded or otherwise inconsistent pixels in disparity maps (Egnal and
Wildes, 2002). As described in Section 2.4.4, the check works on two disparity maps:
the left-to-right disparity map dL(p) and the right-to-left disparity map dR(p).
Since both disparity maps are for corresponding views, they should be ‘inverses’
and disparities of corresponding pixels should sum to zero. A pixel dL(p) in the
left-to-right disparity map is hence considered consistent if this sum falls below a
threshold TLRC (which is set to TLRC = 1 throughout this chapter, Equation 2.12):∣∣∣ dL(p) + dR(p)

∣∣∣ < TLRC. (6.5)

6.3.4. Example results

Figure 6.3 shows results of the computational model when applied to the computer-
generated City stereo image as well as five versions with Photoshop filters applied
to both half-images independently. As the stereo images get increasingly incoherent,
the coherence score computed by the model decreases steadily. It is interesting to
note that the original image does not achieve a perfect coherence score according
to the model, which is caused by errors in the stereo matching as well as occlusions
in the half-images. The next section (6.4) provides a full experimental validation of
the model using subjective human ratings of visual comfort.
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Figure 6.3: Results of the computational model on the City stereo image and five versions manipulated
using Photoshop filters. The red-cyan anaglyph images may appear less comfortable than on a
polarised stereo projector. Note how the disparity maps dL and dR, which are scaled to the
visible range, are near-inverses of each other. As filters produce less coherent results – from
top to bottom – the disparity maps get noisier and more inconsistent as measured using the
left-right check. The coherence score in the last column is the percentage of consistent (black)
pixels in the left-right check map. If viewed on a display, please zoom in for more visual detail.
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6.4. Perceptual study on stereoscopic viewing comfort

To validate the computational model, we22 conducted a perceptual study in which Motivation and
hypothesiswe asked volunteers to rate the viewing comfort of 80 stereo images. The hypothesis

was that there would be a strong correlation between human comfort ratings and
the coherence score produced by the model, which would indicate that it would be
able to automatically assess the visual comfort levels of stereoscopic images with
performance similar to that of human observers. This hypothesis was confirmed by
the results of the experiment, as discussed in Sections 6.4.4 and 6.4.5.

6.4.1. Experimental setup

We recruited 20 participants (12 male, 8 female) between the ages of 20 and 60; all Participants
had normal or corrected-to-normal vision and stereopsis (self-reported).

Figure 6.4 shows our experimental setup. Stereoscopic 3D images were displayed Setup
using a DepthQ projector by Lightspeed Design Inc. and viewed through passive,
circularly-polarised glasses from two chairs placed side-by-side in the centre of the
room. The projected stimuli did not show any visible crosstalk.

12
8

cm

155 cm

98
cm

280 cm

Figure 6.4: Experimental setup for the perceptual study.

6.4.2. Stimuli

In a pilot study, we considered six stereoscopic images and 51 Photoshop filters. Selected images
and filtersWe created three of the images and used three from the Middlebury stereo datasets

(Scharstein and Szeliski, 2003). To design an experiment that could be completed
in reasonable time, we selected a subset23 of the 306 image–filter combinations.
We chose four images (Figure 6.5) and 19 filters (Table 6.1), so including the four
original images, a total of 80 images were shown to be rated by the participants.

The images were rescaled to the projector’s height of 720 pixels, and the horizontal Preparation of
stereo imagesdisparity was adjusted by shifting the images, so that the front-most object was just

in front of the screen, to ease viewing by avoiding excessive disparities.

22 The perceptual study was jointly designed and carried out with Ian Davies and Lech Świrski
(both at the University of Cambridge Computer Laboratory).

23 We selected the subset so that it covered the full range of artefacts described in Section 6.5.
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Books
873× 720

disparity range: [−18, 6]

City
946× 720

disparity range: [−22, 3]

Moebius
873× 720

disparity range: [−17, 6]

Teddy
845× 720

disparity range: [−13, 6]
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Figure 6.5: The four original stereo images used in the perceptual study: Book, Moebius and Teddy from
the Middlebury datasets (Scharstein and Szeliski, 2003), and the City image created by me.

Chalk & Charcoal Glass Palette Knife Spatter
Craquelure Grain Photocopy Stained Glass
Cutout Halftone Pattern Poster Edges Stamp
Diffuse Glow Ocean Ripple Reticulation Texturizer
Find Edges Paint Daubs Rough Pastels

Table 6.1: The 19 Photoshop filters used in the perceptual study.

6.4.3. Procedure

We asked participants to rate each of the 80 images for viewing comfort on a five-Rating scheme
point Likert scale ranging from 1 (very uncomfortable) to 5 (completely comfortable)
and we clearly explained that they should rate physical comfort rather than aesthetic
quality of the images.

We scheduled participants to complete the experiment in pairs to save time; noMethod
discussion between them was allowed. For each pair, the order of images was
randomised for counter-balancing. Before beginning the main experiment, we
showed ten additional images to allow the participants to familiarise themselves
with the experimental environment as well as the range of comfort ratings. For
each image, the participants were given as long as they wanted to rate it and they
were allowed to change their minds until they were content with each rating.

The ratings were collected using two laptops which transmitted each participant’sData collection
rating to a third computer, which then wrote the ratings to disk. The images were
manually advanced shortly after the last change of rating. Each experimental run
took around 15 minutes to complete.
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6.4.4. Analysis of correlation

The perceptual study produced 1600 human comfort ratings, as 20 participants Human ratings &
coherence scoresrated each of the 80 stereo images that were shown. The computational model also

produces a rating for each of the images, albeit a coherence score in the range from
0 to 100 per cent, whereas the human ratings are given on a five-point Likert scale
from 1 to 5. Upon visual inspection, scores and ratings appeared to be linked, with
a largely linear relationship (Figure 6.6).

This relationship between human comfort ratings and the model can be analysed Analysis using
correlationusing correlation coefficients, specifically the correlation between 80-element vectors

representing a set of comfort ratings. The familiar Pearson correlation coefficient
is best suited for analysing linear effects. Table 6.2 summarises the distribution of
correlation coefficients between participants, the average comfort rating for each
image, as well as the computational model.
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Figure 6.6: Scatter plot of coherence score versus mean human comfort rating for all 80 shown images.
The error bars indicate one standard deviation of uncertainty.

percentiles

mean min 25% 50% 75% max

participant – participant 0.69 0.46 0.63 0.70 0.75 0.85

participant – model 0.67 0.46 0.66 0.68 0.71 0.79

mean – participant 0.84 0.70 0.81 0.85 0.89 0.91

mean – model 0.80 — — — — —

Table 6.2: Distribution of Pearson correlation coefficients between participants and other participants
(row 1) as well as the computational model (row 2), and between the mean comfort rating and
participants (row 3) as well as the computational model (row 4). The bottom row only shows a
single correlation coefficient, and not a distribution of them.
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The upper half of Table 6.2 shows that the correlation between the model and anyPairwise correlation
participant is very similar to the correlation between pairs of participants. The
average correlation between pairs is also similar. The conclusion is that the model is
as indicative of a particular participant’s viewing comfort as any other participant’s
comfort ratings. In other words, the model is ‘as good’ as any other participant.

However, comfort ratings vary between participants, as evidenced by the relativelyCorrelation to mean
comfort rating low correlation between pairs of participants (r=0.67). For this reason, the lower

half of Table 6.2 compares ratings to the mean comfort rating, which is the average
rating vector of all 20 participants. The model outperforms the lowest quartile
of participants in terms of correlation with the mean comfort rating. Overall, the
computational model is strongly correlated with the mean comfort rating (r=0.80,
p=6.6× 10−19). The coefficient of determination is R2= r2=0.64. A linear model
is thus a good fit as 64 per cent of the variance in the mean human comfort ratings
can thus be explained by the computational model’s coherence scores.

6.4.5. Analysis of differences

To produce a predicted comfort rating on the same scale as the human comfort ratings,Predicted comfort
the model’s coherence scores are rescaled linearly using a least squares fit:

x′ = 4.36 · x− 0.07, (6.6)

which achieves a root mean square error (RMSE) of 0.59. The absolute term is
close to zero, which suggests a direct relationship between stereo coherence and
visual comfort. It also suggests a limited influence of other sources of discomfort
(Section 6.2.1) – at least in the context of this perceptual study.

The remaining differences in the mean and predicted comfort ratings are shown asHistogram
of differences a histogram in Figure 6.7. The differences are approximately normally distributed,

so the linear model is a good fit. The model predicts 61 per cent of images (49 out
of 80) to within half a unit of comfort. The baseline against which to compare this
is 24 per cent for uniformly random scores in the continuous range [1, 5], and 36

per cent for a constant score of 2.35 (the median of all 80 mean comfort ratings).
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Figure 6.7: The histogram of differences between the ratings predicted by the computational model and
the average user rating (the model overestimates visual comfort for positive differences).
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The images near the negative end of the axis, where the model underestimates Negative outliers
visual comfort by more than one unit, are caused by noise, which the human visual
system is good at filtering out. A further limitation of the model is that it cannot
produce a perfect correlation score, as mentioned in Section 6.3.4.

The outliers where the model overestimates visual comfort are mostly caused by Positive outliers
the ‘shower door effect’ (see Section 6.5.2), which the computational model appears
to tolerate better than human observers.

6.4.6. Discussion

The experimental setup had a physical pixel size of 2.2 arcmin compared to the Size of a pixel
0.6 arcmin assumed in the model. Despite the inconsistency, using the model with
this ‘incorrect’ pixel size results in stronger correlation to the mean comfort rating
(0.80 vs 0.71). This is likely due to reduced noise in the disparity maps, as receptive
fields are 13× the area compared to using a pixel size of 2.2 arcmin in the model.

The computational model is a good predictor of stereoscopic viewing comfort, as it Summary
correlates strongly with comfort ratings given by human observers and 61 per cent
of predicted comfort ratings are within half a unit of the mean comfort rating.
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6.5. Taxonomy of stereo coherence issues

The model presented in Section 6.3 can evaluate the impact of image manipulationsMotivation
on stereoscopic viewing comfort from a processed stereo image alone. However, it
is also important to understand which categories of image manipulations are most
detrimental to visual comfort – primarily to avoid them.

Before the perceptual study, Ian Davies and I observed all combinations of six stereoCategories of stereo
coherence issues images and 51 Photoshop filters – a total of 306 images. During this process, we took

free-form notes on all images and later independently categorised the perceived
issues into groups. The categories were nearly identical. We combined them into
a taxonomy that we believe represents the major stereo coherence issues in this
dataset: binocular rivalry, the shower door effect, and randomness. These categories,
which can overlap to some degree, are illustrated by example in Figure 6.8. They
are defined and described in more detail in the following sections.

Binocular rivalry Shower door effect Randomness

Figure 6.8: Red-cyan anaglyph examples of the identified stereo coherence issues.

6.5.1. Binocular rivalry

Also known as retinal rivalry, binocular rivalry describes alternations in perceptionDefinition
that are experienced when mismatched stimuli are presented to the two eyes (Blake,
2001; Blake and Logothetis, 2002). The first detailed description of this phenomenon
is due to Wheatstone (1838), who mounted different letters in his stereoscope and
described his observations. What he saw was that one eye’s stimulus dominates over
the other for a few seconds, until the image “breaks into fragments, while fragments
of the letter which is about to appear mingle with them, and are immediately after
replaced by the entire letter”, and that this process would repeat every few seconds.

Binocular rivalry is caused whenever image regions are strongly conflicting betweenSources
the two stereo half-images, that is if they are not in correspondence with a region
in the other half-image. This definition has some overlap with our third category,
randomness, so we restrict our definition to regions covering at least a few degrees
of visual arc. Binocular rivalry is most prominently caused by Photoshop filters
that use morphological operators, segmentation or colour quantisation, as they can
remove objects or modify object boundaries. For an example, see Figure 6.9.
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6.5.2. Shower door effect

The shower door effect is a term commonly used in non-photorealistic rendering Definition
(Section 2.1) to describe a look that resembles textured glass in front of the main
content of an image. This effect is most easily achieved by compositing identical
textures into both stereo half-images, like in the ‘texturizer’ filter shown in Fig-
ure 6.3. The resulting flat, transparent texture has a disparity of zero, which places
it exactly at the depth of the screen.

If the texture is in front of other objects, it creates visible artefacts in the plane of the Placement relative
to the screenscreen which can partially obscure or distort what is behind (Akerstrom and Todd,

1988). If it is behind other objects, the situation is worse because there are conflicting
depth cues: the ‘shower door’ appears to be in front of the objects visually but
behind them in terms of depth. This conflict increases visual discomfort.

A perhaps more deserving example is the ‘glass’ effect in Figure 6.3, which applies Canonical example
an identical distortion to both half-images. The result looks like a shower door with
rippled glass, or, “like looking through a window”, as one participant put it.

6.5.3. Randomness

The final category captures everything where randomness is in play. In general, if Definition
the same effect applied twice to the same image produces two noticeably different
resulting images, then the stereo half-images are also most likely incoherent. The
simplest example is per-pixel noise, such as film grain.

While small amounts of noise are tolerated by the human visual system, stronger Tolerance
noise can make it hard to fuse the stereo half-images, which causes visual discom-
fort. Another example is the ‘chalk & charcoal’ effect in Figure 6.3, which places
strokes randomly and with random length.

One way to ameliorate the effects of randomness is to fix the seed value of the Connection to the
shower door effectrandom number generator. In general, this reduces effects based on randomness

to the shower door effect of the previous section, as the same manipulation is
now applied to both half-images. One example of this is the ‘ocean ripple’ filter in
Figure 6.3, which has a mean comfort rating of 1.6 (σ=0.7). Fixing the seed of the
random number generator used by this filter would produce results resembling the
‘glass’ filter, which has a slightly higher mean comfort rating of 1.9 (σ=0.7).
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6.6. Computational tools for stereo coherence analysis

The computational model described in Section 6.3 is based on the general approachIntroduction
& motivation of checking disparity maps for consistency. This allows the model to objectively

quantify the degree of stereoscopic coherence, and thus estimate viewing comfort.
However, because of this generality, the model cannot differentiate between different
types of incoherencies, which is of interest to stereoscopic content creators such
as artists. For this purpose, this section presents extensions to the computational
model that help to identify and localise the different stereo coherence issues.

6.6.1. Binocular rivalry

The computational model’s left-right consistency map highlights inconsistenciesBlur left-right
check map between the half-images directly. The influence of occlusion artefacts can be reduced

using a Gaussian blur with the same parameters used in windowing the local cross-
correlator of Section 6.3.2. This is because the human visual system does not operate
on a ‘per-pixel’ level, but rather using larger receptive fields. Some results of this
approach are shown in Figure 6.9.
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Figure 6.9: Examples of binocular rivalry detection: ‘poster edges’ cause hardly any binocular rivalry,
‘palette knife’ shows artefacts near object boundaries, and ‘stained glass’ is globally incoherent.
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6.6.2. Shower door effect

The coherence analysis detects stereo inconsistencies, but the shower door effect Different approach
does not cause inconsistencies. Nevertheless, it causes the 3D structure perceived
due to stereopsis to be ambiguous or incorrect (Akerstrom and Todd, 1988). The
normalised cross-correlator (Section 6.3.2) can be modified to detect these issues.

The cross-correlator calculates each pixel’s most likely disparity as the one which Likely disparities
has globally maximal correlation over all disparities. In the shower door effect,
a texture is blended onto both stereo half-images, with zero disparity. Given the
blending, the texture’s disparity may not be the most likely disparity, and would
therefore be discarded in the winner-take-all approach. However, it may still be a
‘likely disparity’ with locally maximal correlation.

We24 accumulate the likely disparities of all pixels using a histogram, which Histogram of likely
disparitiesreveals the likelihood of each disparity. With this definition, peaks in the histogram

correspond to many pixels with the same likely disparity. A strong peak at zero
disparity is therefore indicative of the shower door effect, as shown in Figure 6.10.
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Figure 6.10: Results of the ‘shower door effect’ detection. Notice that the bottom two effects have large
peaks at a likely disparity of zero, which is indicative of the shower door effect.

24 Joint work with Lech Świrski, who also implemented this technique.
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6.6.3. Randomness

As mentioned in Section 6.5.3, an elementary check for randomness is to applyElementary check
an operation twice to the same image and to compare the resulting images. This
comparison could also be automated using image quality metrics such as structural
similarity (SSIM; Wang et al., 2004b) or the visible differences predictor (VDP; Daly,
1992). However, it is not always possible to apply an effect twice, for example when
working with existing imagery.

A more general approach is the following image-based cross-check, which com-Image-based
cross-check pares the colours of consistent pixels. Specifically, the corresponding colours of

all consistent pixels, as indicated by the left-right check map (Section 6.3.3), are
compared using the ∆E∗ab colour difference in the CIELAB colour space. Pixels with
inconsistent disparities are set to zero. As before (Section 6.6.1), this is followed by
a Gaussian blur to mimic the behaviour of receptive fields.

Figure 6.11 shows some examples of this approach, where the image-based cross-Interpretation
check map is scaled to the range of just-noticeable differences from 0 (black, ∆E∗ab = 0)
to 2 (white, ∆E∗ab = 6). Images with correctly calculated disparity, but rivalry due to
noise, show problem areas as large, mostly white regions in the image cross-check.
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Figure 6.11: Results of the image-based cross-check. The lower two filters show a lot of randomness.
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6.7. Conclusion

I have demonstrated the first computational model to estimate the viewing comfort Summary
of stereoscopic images. By building on research in visual perception and stereo
computer vision, my model measures the coherence of stereo half-images, which I
hypothesised to be indicative of viewing comfort. Using a perceptual study with
20 participants, I could demonstrate that this is indeed the case, as the computed
coherence scores strongly correlate with human comfort ratings.

This makes my model ideal for automatically assessing computer-generated stereo- Applications
scopic content without the need for perceptual studies. I have also described the
primary obstacles to stereo coherence, which are retinal rivalry, the shower door
effect and randomness in the two half-images. Furthermore, I proposed extensions
of my model to detect and localise these issues in stereo images.

Future work could improve the performance of the model further, for example by Improving the model
using occlusion handling to allow a more accurate comfort prediction for stereo
images that are completely coherent, or using global stereo matching techniques
which would improve the handling of weakly textured areas. The model could also
be extended to take other sources of discomfort (Section 6.2.1) into account. An
interesting and orthogonal avenue of future work is the analysis of the temporal
dynamics of stereoscopic viewing comfort, perhaps by quantifying the combined
stereo-temporal coherence.
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Conclusions 7
In this dissertation, I have considered the full life cycle of RGBZ videos: from video Summary
capture via filtering and processing to evaluation of display. On this journey, I have
proposed two techniques for capturing RGBZ videos, which are, respectively, based
on spatiotemporal stereo matching (Chapter 3), and on a sensor fusion approach
combining a time-of-flight camera with a normal colour video camera (Chapter 4).
Using the recorded RGBZ videos, I next demonstrated a variety of effects that rely
on high-quality depth data, such as video relighting and stereoscopic rendering
(Chapter 5). Finally, these stereoscopic renderings inspired me to study the aspects
leading to visual discomfort, which resulted in a model for predicting stereoscopic
viewing comfort (Chapter 6).

The following sections summarise the main contributions in these three areas in Structure
more detail before revisiting my hypotheses and discussing some of the potential
research directions that are opened up by my work.

7.1. Coherent depth acquisition

I have considered two approaches for capturing depth videos to create temporally Approaches
coherent RGBZ videos in this dissertation: using spatiotemporal stereo matching
and time-of-flight sensor fusion.

The spatiotemporal stereo matching approach, described in Chapter 3, starts with Contributions to
stereo matchingthe dual-cross-bilateral grid – a novel real-time stereo matching technique derived

by accelerating a reformulation of an existing cost aggregation approach. This
is the basis for a temporal extension that aggregates costs over spatiotemporal
support windows. The result is increased temporal coherence of the disparity maps
– particularly in the presence of image noise. Five synthetic stereo videos with
ground truth disparity maps were created to qualitatively evaluate this technique,
which processes these videos at 11 Hz (for 400×300 videos with 64 disparities).

The time-of-flight sensor fusion system presented in Chapter 4 combines data from Contributions to
ToF sensor fusiona noisy, low-resolution time-of-flight camera and a high-resolution colour video

camera into a coherent, noise-free RGBZ video. The system consists of a three-step
video processing pipeline that aligns the depth and RGB video streams, efficiently
removes and fills invalid and noisy geometry, and finally uses a spatiotemporal
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filtering approach to increase the spatial resolution of the depth data and strongly
reduce the depth measurement noise. The results are high-quality RGBZ videos,
processed at about 5 Hz (for a 584×506 RGBZ video).

Having reviewed the contributions of Chapters 3 and 4, I can confirm the validityFirst hypothesis
of my first hypothesis from Section 1.2, that is that

H1. It is possible to reconstruct dynamic scene geometry coherently
at interactive frame rates.

Both geometry capture approaches confirm this hypothesis independently. However,
the time-of-flight sensor fusion approach produces higher-quality RGBZ videos,
which enable more advanced RGBZ video processing effects than are possible with
the disparity maps computed using the spatiotemporal stereo matching approach.

The stereo matching approach of Chapter 3 is one of the first techniques to addressImproving stereo
performance the problem of processing stereo videos. This problem is certainly not solved yet.

Clearly, there is room for substantial improvements in quality. An obvious starting
point is to experiment with different acceleration approaches to the bilateral filter
(Section 2.5.3) to enable full-colour filtering of the cost volume which promises
to deliver noticeable performance improvements. Rhemann et al. (2011) propose
such an approach which provides greatly improved performance while also further
reducing run time. I expect further advances in quality can be achieved by lifting
the assumption of frontoparallel surfaces by using slanted support windows, and
by incorporating explicit occlusion handling. All these aspects would improve the
single-frame technique. For videos, adapting the spatiotemporal support windows
to the underlying scene motion, similar to the geometry filter in Section 4.3, would
most likely reduce artefacts in the disparity map caused by fast motions. For this to
work well, high-quality optical flow is required, which could potentially be jointly
estimated with the disparity flow – the change of disparities over time.

More interesting from a research perspective is the open question of how to evaluateEvaluating stereo
matching on videos stereo correspondence techniques working on stereo videos. Although we have

created a set of synthetic videos with ground truth disparity maps that techniques
can be compared against, it is not clear how to compute meaningful performance
metrics that objectively quantify flickering and temporal noise in disparity videos.
In addition, it would be desirable to broaden the range of ground truth videos
available to also include live action footage – although it would be difficult to obtain
ground truth depth maps. Once these question are settled, it would be prudent to
set up an evaluation website in the spirit of Middlebury stereo evaluation website
which would allow techniques to be evaluated objectively and ranked accordingly.

The spatiotemporal geometry filter in Section 4.3 results in a fairly strong smoothingImproving ToF
sensor fusion effect that is a byproduct of removing all temporal noise. While suppressing noise

is the top priority, preserving prominent features in the RGBZ video should come
a close second. At least for the moment, however, there appears to be an inherent
trade-off between the strength of noise reduction and the preservation of smaller
features. Breaking this connection would be an important contribution to research.
Independently, the computational complexity of the proposed processing pipeline
could likely be reduced – perhaps using a multi-resolution approach or an efficient
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bilateral filter approximation. Lastly, the quality of distance maps is also influenced
by the quality of the optical flow which tends to be unreliable due to motion blur,
large displacements and occlusions. An interesting avenue of future work would
therefore be an optical flow formulation that respects depth discontinuities, as this
would hopefully prevent ‘smearing’ artefacts in the filtered distance map.

The proposed RGBZ video capturing approaches still require specialised hardware Commodification of
RGBZ video camerasand considerable processing power to filter the captured data. With miniaturisation

of the camera hardware, algorithmic optimisations and improvements in hardware
performance, such RGBZ video cameras could soon become available commercially.
Some consumer devices exist already, like the Fujifilm FinePix REAL 3D W series
digital stereo cameras, or the Microsoft Kinect sensor. However, these devices still
lack the processing power to create aligned, high-quality RGBZ videos, and instead
just capture raw image data, which cannot easily be used for RGBZ video effects.

7.2. RGBZ video effects

RGBZ videos provide additional geometric information over normal colour videos. Contributions to
RGBZ video effectsI showed in Chapter 5 that this enables a range of video processing effects that

are not achievable from colour videos alone, because the geometric information
is a critically important ingredient to create these effects. One example for this
is the proposed video relighting technique, which requires high-quality surface
normals to produce plausible results. I also presented non-photorealistic rendering
techniques that benefit from geometric information to help place lines, shadows and
brush strokes, producing clear improvements over existing video-based techniques.
Perhaps the strongest application of RGBZ videos is the ability to synthesise stereo
videos, which allows other RGBZ video effects to be applied stereoscopically.

The range of RGBZ videos effects presented directly supports my second hypothesis Second hypothesis
from Section 1.2, that is that

H2. RGBZ videos facilitate a variety of advanced video processing
and non-photorealistic rendering effects.

The presented effects demonstrate beyond doubt the advantages of RGBZ videos. Commodification of
RGBZ video effectsHowever, the techniques I described are only a few samples from a much larger

space of possible RGBZ video effects that I did not explore in detail. Many existing
effects could be extended and enhanced using the available depth or surface normal
information, and completely new effects could be created to exploit the combined
RGBZ data. I believe these effects provide benefits for both commercial and personal
applications. The video segmentation and relighting effects are examples which
provide practical improvements for commercial applications in video editing and
post-production. Personal users, on the other hand, could use the larger and more
expressive arsenal of non-photorealistic rendering techniques to help express the
emotions captured in a video, for example to conserve emotional holiday memories.
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7.3. Stereoscopic viewing comfort

Predicting the viewing comfort (or discomfort) of stereoscopic images is the topic ofContributions to
stereo comfort Chapter 6. In this chapter, I described the first computational model that predicts the

visual comfort of stereoscopic images, which I validated using a perceptual study.
This study concluded that the predicted comfort scores correlate strongly with
human comfort ratings, which makes them ideal for automatic comfort assessment
– without the need for costly and lengthy perceptual studies. The preparation
of the study has furthermore shown that there are three broad categories of
stereo coherence issues which affect human viewing comfort, and I have described
computational tools to detect and localise these issues.

The results of the perceptual study are compared to the predicted comfort scoresThird hypothesis
in Section 6.4.4, which concluded that the computational model is ‘as good’ as any
participant in the study, and overall, the model is strongly correlated with the mean
comfort rating. This confirms my third, and final, hypothesis of Section 1.2:

H3. Stereoscopic viewing comfort can be predicted from stereoscopic
images alone.

Some options to improve the model of stereoscopic viewing comfort were alreadySupporting the
stereographer discussed in Section 6.7, so I shall not repeat them here. Instead, I will discuss

applications beyond image manipulations and computer-generated imagery which
are the focus of Chapter 6. One such application is live-action stereoscopic filming,
which is usually supported by a stereographer – a member of the film crew who
oversees ‘all things stereo’ and needs to rely on their judgement regarding all
settings of the stereo camera rigs. Mistakes such as misaligned cameras, vertical
disparity, mismatched zoom, focus, white balance or brightness can be difficult and
costly to fix in post-production (Technicolor, 2011). However, these problems could
potentially be identified algorithmically – and perhaps even corrected automatically
– which would result in ‘better stereo’ and also save money. Some of this is already
implemented in the commercial stereoscopic analyser STAN25 by Fraunhofer, which
also provides basic tools for correcting some of the problems.

However, I believe that there is always room for improvement.Last words

25 http://www.hhi.fraunhofer.de/stan/
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