
Eurographics Symposium on Parallel Graphics and Visualization (2010)
J. Ahrens, K. Debattista, and R. Pajarola (Editors)

Asynchronous Parallel Reliefboard Computation for Scene
Object Approximation

Tim Süßy and Claudius Jähnz and Matthias Fischer

University of Paderborn

Abstract
We present a parallel algorithm for the rendering of complex three-dimensional scenes. The algorithm runs across
heterogeneous architectures of PC-clusters consisting of a visualization-node, equipped with a powerful graphics
adapter, and cluster nodes requiring weaker graphics capabilities only. The visualization-node renders a mixture
of scene objects and simplified meshes (Reliefboards). The cluster nodes assist the visualization-node by asynchro-
nous computing of Reliefboards, which are used to replace and render distant parts of the scene. Our algorithm is
capable of gaining significant speedups if the cluster’s nodes provide weak graphics adapters only. We trade the
number of cluster nodes off the scene objects’ image quality.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.1]: Parallel processing—
Computer Graphics [I.3.2]: Distributed/network graphics—Computer Graphics [I.3.3]: Display algorithms—

1. Introduction

When planning cities, machineries, buildings, and factories
the complexity of three-dimensional scenes for their visuali-
zation increases continuously. The scenes result from CAD
data and consist of more and more objects each, compo-
sed of an increasing number of polygons, caused by lots
of details. For design review, layout check and other purpo-
ses, a real-time walk-through with high frame-rates (at least
10 fps [MH99]) is necessary. Often, the number of primiti-
ves in such scenes is so high that a single graphics adapter is
not capable to render the whole geometry in real time on its
own.

One common approach to face this problem is to compute
the frames in parallel. Several approaches and architectures
for parallel rendering have been suggested [MCEF94]. PC-
clusters [SFL01,SFLS00] intended for parallel rendering of-
fer a lot of distributed memory and frames can be computed
by multiple graphics adapters.

y This work is supported by the DFG-project DA155/31-1,
ME872/11-1, FI1491/1-1 AVIPASIA
z Research Training Group GK-693 of the Paderborn Institute for
Scientific Computation (PaSCo)

However, most PC-clusters do not provide graphics acce-
lerators or their 3D performance is weak if they are inten-
ded mainly for other applications, e.g. scientific computa-
tions. For example, the PADS and TeraPort PC-clusters at
the University of Chicago do not provide OpenGL accelera-
ting hardware, just as the JUGENE PC-cluster of the Jülich
Supercomputing Center does not either. Some systems, the
Paderborn Center of Parallel Computing’s (PC2) Arminius
PC-cluster for example, are equipped with weak OpenGL
accelerating graphics adapters. If such clusters should be
deployed for visualizations purposes too, an upgrade of the
complete PC-cluster is rarely done: Upgrading graphics ad-
apters in a PC-cluster is expensive and problematic because
high-performance graphics adapters produce a lot of heat.
The PC-clusters’ energy consumption and temperature con-
trol are a delicate topic for every provider. Sometimes, up-
grading a few dedicated nodes can be done with much less
effort. Furthermore, PC-clusters unspecialized in graphics
rendering, can hardly be used for modern rendering algo-
rithms, which require newer shader models or other new ex-
tensions.
To overcome this problem, we develop an algorithm that
needs a single visualization-node equipped with a high-
performance graphics adapter including modern functions
and extensions. We develop an algorithm running on the

c
 The Eurographics Association 2010.

DOI: 10.2312/EGPGV/EGPGV10/043-051

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/EGPGV/EGPGV10/043-051


T. Süß & C. Jähn & M. Fischer / Reliefboard Computation

Figure 1: Approximating objects by reproducing their sur-
face by Reliefboards.

visualization-node that uses the PC-cluster to compute on-
ly subroutines with simple graphics operations. Instead of
rendering large parts of the scene frame by frame, the PC-
cluster nodes assist the powerful visualization-node only.
Therefore, these PCs do not even need graphic adapters. A
software rendering system can be used as well. A requisi-
te is that the sum of the different nodes’ memory is large
enough to store the scene redundantly. Modern features, e.g.
new shaders can be used by the rendering algorithm running
on the visualization-node.
Our rendering algorithm gains its acceleration by replacing
and rendering the scene’s distant objects with meshes consis-
ting of a reduced number of polygons (Reliefboards). Reli-
efboards are computed during the walk-through of the scene
(see Figure 1). The image quality of Reliefboards depends
on the position of the viewer, i.e. the image quality beco-
mes poor if the visitor moves away from the position where
the Reliefboard was computed. The PC-cluster assists the
visualization-node by computing simplified objects in regu-
lar intervals. We trade the number of cluster nodes off the
scene objects’ image quality. If we increase the number of
cluster nodes, we increase the image quality. The rendering
of both close objects as well as distant objects replaced by
Reliefboards, is computed by a single visualization-node.
Distant objects can be single objects given by the modeling
of the modeler or groups of objects computed automatically
by our clustering algorithm.

The rest of the paper is structured as follows: Section 2
gives an outline of the presented approach. Section 3 gi-
ves an overview on mesh replacement and parallel rendering
methods and techniques. Section 4 describes how to clus-
ter objects when the original objects of the scene can not be
replaced with Reliefboards. Section 5 describes the creati-
on of Reliefboards. Data distribution and load balancing are
handled in Section 6. Section 7 shows the quality of the ap-
proximation and Section 8 provides a short summary and an
outlook of future works.

2. Overview

Our system architecture consists of a visualization-node
equipped with a powerful graphics adapter and a PC-cluster
consisting of a large number of nodes equipped with weaker
graphics adapters. The visualization-node renders the scene.
We assume that a 3D scene consists of a certain number of
elementary objects. The visualization-node renders parts of
the objects with the original triangles. A large number of ele-
mentary objects are replaced by Reliefboards (see Figure 1).
A Reliefboard is a mesh consisting of colored vertices pla-
ced on a regular grid and shifted along the grid’s normal vec-
tor. Reliefboards approximate the original objects and their
quality depends on the viewer’s position. Therefore the Re-
liefboards are updated periodically. The PC-Cluster assists
the visualization-node by computing the Reliefboards asyn-
chronously.

Figure 2: Objects nearby the viewer, infeasible objects, and
too simple objects are rendered with original polygons. Far
away feasible objects are replaced and rendered with Reli-
efboards.

Rendering cycle: A visualization-node’s rendering cycle
consists of three steps. First, all infeasible objects are ren-
dered. We call objects, which are unsuitable for replacement
infeasible objects. Infeasible objects are rendered with ori-
ginal geometry because their diameter is too large or the
number of triangles is too small and thus a replacement with
a Reliefboard would not gain any speedup (see Section 4).
Second, all feasible objects are rendered in a front to back
manner. An object is suitable for replacement with a Reli-
efboard if the number of triangles and the diameter of the
object is adequate (see Section 4). We call the area where
feasible objects are rendered with original triangles near zo-
ne (see Figure 2). Third, distant feasible objects behind the
near zone are replaced and rendered with a Reliefboard. We
call this area far zone (see Figure 2).

3. Related Work

We overview related work for mesh replacement, displace-
ment mapping, and parallel rendering.

Mesh Replacement substitute objects’ original geome-
try with a simplified representative mesh, which typically

c
 The Eurographics Association 2010.

44



T. Süß & C. Jähn & M. Fischer / Reliefboard Computation

reduces rendering costs (e.g., billboards or level of details
(LOD)). Simple billboards replace original geometry by sin-
gle textures placed on a rectangle. A disadvantage of this
technique is that billboards can intersect at most once (see
Figure 3).
Shade et al. [SLS�96] use textures to reduce scene comple-
xity. They compute a kd-tree that contains the scene’s geo-
metry. By utilizing this kd-tree, the cell’s geometry can be
substituted by a rendered image of it, as seen from the ob-
server’s position. This technique’s drawback is that someti-
mes it is possible to see through a gap between textures and
geometry. Furthermore, if the position is changed there is no
parallax effect. Reliefboards support the parallax effect, the-
refore the picture looks correct for a longer period.
Hoppe et al. presents in [HDD�93] techniques to optimize
and simplify meshes, which can be used as LODs. For con-
tinuous LOD Hoppe presents Progressive meshes [Hop96].
These mesh simplifications must be generated in a prepro-
cessing and the quality must be checked manually. Relief-
boards are computed in parallel, automatically, and on-the-
fly. They can be used for groups of different objects and ge-
nerate a more simple representative for all of them at once.

Figure 3: The bunny is rendered with original geometry.
The upper left picture shows a picture detail using Relief-
boards. The lower left picture shows the original picture de-
tail and the lower right shows the picture detail using simple
billboards. These simple billboards neither support multiple
intersections nor correct lighting.

Displacement mapping is used to add depth to sim-
ple surfaces. In contrast to techniques like bump mapping,
which only simulate the visual effects of depth (e.g. by ligh-
ting or shadowing), displacement mapping changes the geo-
metry of a surface [Coo84]. These techniques support the
parallax effect and intersection of objects. Typically, a sim-
ple surface is transformed to a more complex one by using
several maps. By using these meshes correctly, shadowing
and occlusion can be computed. Furthermore, objects’ sil-
houettes appear realistic [WWT�03]. Often the underlying

geometries are overtessellated, so that a retesselation is nee-
ded [GH99, DH00]. Typically, the displacement of the ver-
texes must be computed in every frame. If the number of
vertexes to displace is high, this technique can influence the
rendering time negatively. For this reason Reliefboards dis-
place the vertexes not in every frame. The vertexes of the
grid are shifted only one time for many frames.

Parallel rendering has been categorized into three ba-
sic approaches by Molnar et al. [MCEF94]: sort-first, sort-
middle and sort-last. These approaches specify where and
when geometric primitives are distributed in parallel running
PC-cluster nodes. Samanta et al. [SFL01,SFLS00] presented
several systems to combine these approaches. There are also
several frameworks that provide parallel rendering in PC-
clusters; some replace the OpenGL driver [HHN�02], others
use shaders to exploit coherency between frames [AR05].
The main challenges are load balancing and PC-hardware’s
and network’s latency. Response times are extremely import-
ant when frames are computed synchronously. Another pro-
blem is that the graphics adapters of the PC-cluster nodes
have to support all needed features and extensions.
Our rendering approach distributes the different objects as in
sort-last on the backend-nodes. Furthermore, the backend-
nodes render their pictures independently from each other.
Similar to sort-last-sparse every renderer computes only
small parts of the frame and cuts out the needed values from
the frame- and depth-buffer. But instead of sending these
values to the visualization-node, the backend-nodes create
meshes from this data. These generated meshes are send to
the visualization-node, where they are used as approximati-
on for multiple frames.
Although sort-last based approaches normally scale well in
the number of render nodes in the network, the composition
of the frames into one final image can easily result in a bott-
leneck. There are different hardware solutions to overcome
the problems with the network or GPU-CPU communicati-
on [DY08,MOM�01]. But there are other disadvantages, like
the limited number of applications that support such hard-
ware. Rendering progresses have to be modified to use these
accelerators. The Lighting-2 module needs the depth buffer
encoded in the framebuffer [SEP�01], for example. Another
drawback is that this special hardware is inflexible and new
techniques like PCI-Express allow even faster data transfer
from GPU to CPU. Thus software solutions become feasi-
ble [EP08]. There are different techniques that can benefit
from this, for example Direct Send Compositing or Binary
Swap [lMPHK94]. But many older clusters do not support
these techniques. In the PC2 for example, most of the PCI-
Express lanes are dedicated to the Infiniband adapters.
Reliefboards combine the idea of billboards and automati-
cally created displacement-maps. Reliefboards allow the ap-
plication of a wide range of PC-clusters equipped without
special graphics hardware.

c
 The Eurographics Association 2010.

45



T. Süß & C. Jähn & M. Fischer / Reliefboard Computation

4. Identifying Objects by Clustering

To apply Reliefboards, feasible objects are needed. The ob-
jects must have a high triangle count and must be compact
in space. If the objects are given in a usable form, Relief-
boards can be applied directly. Otherwise, if the objects are
unfeasible or the geometry consists of triangles in arbitra-
ry order, we segment the scene in several parts. Therefore,
we use a heuristic with two phases, based on agglomerative
clustering [DE84].

Figure 4: Clustering based on the smallest joined bounding
box

In the first phase we determine the range of the near zone
dnz, where only original geometry should be rendered. Using
this size we can calculate the side length of the clusters slc,
that can be substituted by Reliefboards. For this calculations,
we need the maximal amount of triangles tnz rendered in the
near zone, the Reliefboards’ maximal projected side length
in p pixels and the display resolution r as parameters. In the
second phase we determine the required clusters with side
length slc.
In the beginning of the first phase we remove redundant ver-
tices and faces. Afterwards we determine connected com-
ponents and their axis aligned bounding boxes (AABB) -
that are the base-clusters for our agglomerative clustering
algorithm. Until we calculated a cluster with tnz triangles,
the algorithm works as follows: Compute the joined AABB
for all potential smallest cluster pairs. Union those two clus-
ters, whose longest side of their combined AABB is mini-
mal, with respect to all other cluster pairs. For optimization
purposes, we do not compute all possible joined AABBs.
Instead we compute only a constant number of AABBs for
each cluster; we use only those clusters that are nearby. By
this we reduce the clustering time from O(n3) to O(n2) whe-
re n is the number of connected components at the begin-
ning. The cluster cs that reaches a triangle count of tnz firstly,
is by definition the smallest we can reach with our clustering
algorithm. The diameter of cs is the range of our near zone
dnz. Using the determined dnz, p and r, we can calculate the
needed side length for the clusters slc.
In the second phase we use the base-clusters and slc in

the agglomerative clustering algorithm. At first we remo-
ve all base-clusters whose maximal side length is longer

Figure 5: Clustering of the power plant. Green (brighter)
objects exceed the maximal side length of clusters and red
(darker) ones are feasible clusters. Different colored parts
are clusters, whose complexity is not large enough to replace
them with Reliefboards.

than slc - these clusters should not be substituted by Relief-
boards (that are infeasible objects). The algorithm enlarges
the other clusters as long as their longest side is smaller than
slc. When a cluster exceeds this limit it is completed and re-
moved from further clustering. The resulting clusters are the
objects, which are potentially replaced by Reliefboards. In
Figure 5 these different types of objects are visualized.

5. Reliefboard structure and creation

Reliefboard’s foundation is a mesh consisting of colored ver-
tices placed on a regular grid, which are shifted along the
grid’s normal vector. The general orientation of the grid’s
base plane is orthogonal to the vector from the center of the
Reliefboard to the observer’s position at the time when the
Reliefboard is created. This absolute orientation stays fixed
as long as the Reliefboard is valid. It does not change when
the observer’s position changes, unlike this may be the case
for simple billboards that always face the observer.
The displacement of the vertices reproduces the surface of
the approximated object as seen from original observer’s po-
sition in orthographic projection – i.e. without perspective
distortion. If the position of a vertex does not lie in the area
that is covered by the original object’s projection onto the
Reliefboard’s plane, this vertex is cut out from the mesh. As
a result, the Reliefboard’s silhouette reproduces the original
object’s silhouette (again, as seen from the observer’s origi-
nal position). The vertex-colors and vertex-normals are also
taken from the projection of the unlighted original object.
The combination of unlighted color and the normal vector
allows exploiting the normal (possibly dynamic) lightning
techniques, used during the Reliefboard’s rendering on the
visualization-node.

c
 The Eurographics Association 2010.

46



T. Süß & C. Jähn & M. Fischer / Reliefboard Computation

5.1. Creation

The data and parameters necessary for the creation of a Re-
liefboard are:

� The geometry (including colors, etc.) and the position of
the original object,

� the directional vector from the observer’s position to the
original object’s center (which also becomes the center of
the Reliefboard)

� and the resolution of the grid. As the Reliefboard should
reproduce the original object as good as possible at least
at the time it is created, the resolution is set to the cur-
rent projected size of the object in pixel. So every pixel is
initially represented by one colored vertex.

For the computation of a Reliefboard, the original object’s
orthogonal projection needs to fit into an area on the given
resolution’s screen, the desired side facing towards the came-
ra. Hence the object is initially translated, rotated and scaled
accordingly. Then several intermediate two-dimensional co-
lor maps of the given resolution are created by rendering the
original object onto the screen (or to an off-screen buffer).
As we want to exploit a cluster’s nodes with possibly not
up-to-date graphics hardware for the generation of the Re-
liefboards, we do not make use of multi target rendering to
render to multiple buffers at once. Instead, we use multiple
rendering passes to obtain the data for the different target
maps separately. Each of the four rendering passes exploits
a simple shader to support the efficient processing of the data
into the target map:

� The distance-map encodes the displacement by extracting
the depth information of the pixels.

� The stencil-map marks which pixel are covered by the
projection and which vertices should be cut out.

� The color-map reproduces the unlighted (but possibly tex-
tured) color of the object.

� And a normal-map encodes the surface normals, in order
to support correct lighting.

Finally these maps are combined to form the mesh of the
Reliefboard at the given position.

6. Distributed rendering

The parallel system used for rendering consists of two types
of nodes: A group of backend-nodes is utilized for the distri-
buted creation of the Reliefboards. One visualization-node
requests and uses the Reliefboards to render the actual sce-
ne to the screen and provide the interface for the interactive
movement of the observer.

6.1. Rendering on the visualization-node

The rendering of a frame on the visualization-node is per-
formed in three steps. Initially all infeasible objects inside
the viewing frustum which were identified as too large or to

have a too low complexity are rendered to the screen. Their
polygon count is thereby accumulated. In neither case would
it be practical to replace these objects by Reliefboards. If an
object is too large, even a slight change of the observer’s
position is likely to cause an unacceptable change in the per-
spective. If the object consists of too few polygons, the origi-
nal object’s rendering time could actually be better than the
approximation’s.
In the next step, the other objects are rendered in front-to-
back order from the observer as long as the overall poly-
gon count does not exceed the value of the parameter tnz.
If the number of objects is small enough, we can sort the
objects using a standard sorting algorithm. Otherwise one
should utilize a spatial data structure like a loose-octree for
storing the objects and traverse it in front-to-back order.
This implicitly results in the subdivision of the frustum into
near zone where only original geometry is rendered and the
far zone where Reliefboards can be used (compare to Figure
2).
Finally, a decision whether the original object or the corre-
sponding Reliefboard should be rendered, is made for each
of the remaining objects in the viewing frustum. If no Relief-
board has yet been received for an object, the original object
is rendered and – if no request for this object is pending –
a new request is issued. Each request consists of an unique
identifier for the object, the direction vector from the obser-
ver’s position to the object’s center and the object’s projec-
ted size in pixel for the Reliefboard’s resolution. Requests
are processed asynchronously and the resulting data arrives
after a few frames.

Figure 6: When the angle-error exceeds ε a new Reliefboard
is requested. If the angle-error exceeds E, the visual error is
considered too large and the original geometry is rendered.

If an Reliefboard has already been received, the current
angle-error is calculated (see figure 6). The angle-error is
defined as the angle between the direction vector that was
used as parameter for creating the Reliefboard and the cur-
rent direction vector from the observer to the center of the
board. This is taken as an indicator for the visual similarity
of the Reliefboard’s projection and the original object. If the
error is higher than a fixed parameter ε and no request for
this object is pending, then a request for a new Reliefboard

c
 The Eurographics Association 2010.

47



T. Süß & C. Jähn & M. Fischer / Reliefboard Computation

incorporating the current direction is issued. If the error is
unacceptably large (defined by another fixed parameter E),
then again the original object is rendered until a new ver-
sion is received. Another source for artifacts produced by a
Reliefboard is the difference in the current projected size to
the Reliefboard’s original resolution. If the observer approa-
ches a low resolution mesh, blocking artifacts occur. If the
observer moves away from a high resolution mesh, aliasing
artifacts occur. Hence we use another parameter indicating
that relative difference in the projected size should also lead
to an update request.
If a Reliefboard with acceptable error is available, the corre-
sponding relief mesh is rendered at the original object’s po-
sition, oriented towards the direction it was created in. This
should be the most common case, as a Reliefboard can nor-
mally be used for many frames.

Also, in every frame it is checked whether newly created
Reliefboards have been received from the backend-nodes.
Then the corresponding old ones are replaced. This results in
the occurrence of a slight popping effect in the next frame.
This effect is more visible as the old and new direction vec-
tor differ. If the new Reliefboard replaces an original object,
the Reliefboard’s direction vector differs from the actual di-
rection in which the object was seen last.

6.2. Distributed creation and load-balancing

One goal of the distributed creation of the Reliefboards is to
obtain a latency for the requests as low as possible. When a
request is delayed, it is possible that the out-dated old versi-
on of a Reliefboard is used for a longer period resulting in a
increased visual error. If the request for an object, which is
currently rendered originally, is delayed, even the rendering
time may increase.
We initially distribute the data of all objects randomized and
redundant, with a fixed number of replicas over the backend-
nodes. In order to assign the requests to the nodes at runti-
me, we make use of a modified version of the c-Collision-
Protocol [DadH93], which aims at having a low contenti-
on of every network node and spreading the requests evenly
over the nodes (see Figure 7). This protocol is implemented
on the visualization-node and is executed after each frame if
new requests were made.
The distribution is performed in rounds. In every round a no-
de handles at most c requests, but if it should answer more
than c requests, it answers none. We begin with a value of c
of 1. If not all requests can be handled with that value, c is
increased until one further request can be fulfilled. Then c is
reset to 1 and the distribution is continued until all requests
are assigned to a node. The assignment of a request to a node
persists, until the Reliefboard is received.
The dynamic handling of the value of c has the disadvantage
of not being able to ensure a maximal contention as with the
original protocol, but guaranties the handling of all requests,

prevents the protocol from dead-locks and allows asynchro-
nous communication.

Figure 7: Circles symbol requests and hexagons symbol
handled requests. The data items are distributed redundantly
and randomly among the different nodes

7. Evaluation

In this section we present empirical results showing the prac-
ticability and the main characteristics of our methods.

7.1. Evaluation system

We implemented the presented techniques using the pro-
gramming language C++ (GCC-3.4.0), OpenGL for rende-
ring and MPI (ScaliMPI-3.12.0-1) for the communication
between the nodes.
The PC-cluster we used for the evaluation is the Paderborn
Center of Parallel Computing’s (PC2) Arminius cluster. The
visualization-node provides a NVidia Geforce 9800GX2
graphics-adapter with 512 MiB memory (Nvidia OpenGL
driver 1.90), PCI-e 1.0, two AMD Opteron 250 processors
and 4 GiB RAM (The installed 64-bit OS is Fedora-Linux
9). The screen’s resolution is set to 1024�768 pixels.
The 32 backend-nodes each provide a NVidia Quadro
NVS280 graphics-adapter with 64 MiB memory (Nvidia
OpenGL driver 1.77), PCI-e 1.0 (single lane), two Intel Xe-
on 3.2 GHz processors and 4 GiB RAM (The installed 64-bit
OS is Red Hat Enterprise Linux AS release 4). The connec-
tion between all nodes is established via Infiniband adapters.

7.2. Scenes and parameters

We used two different test scenes: A forest composed of ma-
ny (not instantiated) models of the Stanford bunny and dif-
ferent kinds of trees (� 25 mio. triangles in overall 250 ob-
jects see Figure 3) and the well known power plant model

c
 The Eurographics Association 2010.

48



T. Süß & C. Jähn & M. Fischer / Reliefboard Computation

(� 12.4 mio. triangles). As the forest scene consists of rela-
tively compact objects with almost uniform complexity only,
it is possible to use these objects directly without any clus-
tering. The power plant’s original objects are very complex
and lack locality (e.g. long pipes). Hence, to allow the pro-
per application of Reliefboards, we defined 150 new objects
by clustering the scene (see section 4) .
The camera path used for the power plant is shown in Figure
8. The wood scene is circled by the camera in 6000 steps.
In our first tests we started an update when an angle-error of
ε = 11:5� was exceeded or when the projected side length of
the Reliefboard differed more than 30% from the original.
The original geometry was rendered when the angle-error
exceeded E = 45�. The value for tnz is set to 3.5 mio. tri-
angles.
The number of replicas for the objects placed on the
backend-nodes was set to three, as a compromise between
a sufficient distribution of the requests over the nodes and
the increased demand for memory for additional copies.

7.3. Scalability

In the first test we evaluate the influence of the number of
used backend-nodes on the request’s average response time.
This is the average time that passes from the initiation of
a request until the corresponding Reliefboard has been re-
ceived by the visualization-node. This includes the time for
completing all prior requests on a node, rendering the origi-
nal geometry, reading the framebuffer in the desired resoluti-
on several times (see section 5.1) and finally composing and
sending the created Reliefboard to the visualization-node.
Our experiments show that an increased number of nodes
decreases this response time, as the average congestion (the
average size of the queue of open requests) on every node
decreases (see Figure 9).
If many backend-nodes are available, the response time con-
verges to the time needed for the construction of a single Re-

Figure 8: Camera-path in the power plant scene. The path
is traversed in 6000 steps at a uniform speed.

liefboard. So that in dependency of the scene and the amount
of requests (implied by the speed of the observer’s move-
ment), an increased number of nodes does not pay off from
some point.
The time needed for updating all Reliefboards in the sce-
ne (e.g. when the observer turns around very quickly) is not
much higher than the average time needed for a single re-
quest, due to the parallel execution. For the power plant sce-
ne, the time for a complete update is nearly the same as the
average response time; for the forest scene, the time is about
twice the average response time.

Figure 9: Average response times for requested Relief-
boards: The more nodes, the faster is the response – to the
point where all requests can be processed immediately.

7.4. Rendering time

One property of our method is, that the frame rate is mainly
determined by the computational power of the visualization-
node and the properties of the scene (i.e. the number of
objects in the viewing frustum, the complexity of the
unsuitable objects and the resolution of the Reliefboards).
The number of backend-nodes does only slightly influence
the rendering time, because of an overreaching latency,
resulting in a high error, an original object is rendered
instead of a Reliefboard. Figure 10 shows that the rendering
time using Reliefboards can be reduced substantially if
many objects are in the viewing frustum. The average
rendering time along the chosen camera path using only
frustum culling and the original objects is 43 ms, whereas
the average rendering time with applied Reliefboards is only
about 16 ms, nearly independent from the number of used
backend nodes (the observed difference is below the error
threshold of the measurements). Thus the frame rate for a
given scene can be influenced by the hardware configuration
of only a single PC, which can be improved by relatively
cheap updates without modifying any other node of the
cluster.

c
 The Eurographics Association 2010.

49



T. Süß & C. Jähn & M. Fischer / Reliefboard Computation

Figure 10: Acceleration through Reliefboards in the power
plant scene: The speedup is nearly independent from the
number of nodes. The upper line shows the rendering time
whithout Reliefboards.

7.5. Scene sizes

The complexity of the scene for which the presented method
is suitable is determined by several parameters:

The overall amount of available memory on the backend
nodes needs to be big enough so that the scene can be sto-
red redundantly with the chosen number of replicas. In our
experimental setting, this was far from becoming a problem.

The computational power of the graphics adapter of the
visualization-node mainly determines the achieved rende-
ring time, which is composed of the time needed for ren-
dering the original geometry and for the Reliefboards. If the
number of objects in the scene gets too large, the frame rate
may decrease because of too many Reliefboards that need to
be rendered. Then the amount of rendered original geometry
can be adjusted by lowering the parameter tnz. This reduces
the quality but leaves additional capacity for the rendering
of Reliefboards.
In our prototypical implementation, the size of the scene
is also limited by the amount of available memory of the
visualization-nodes’ graphics adapters. One should be able
to lift this restriction by adding a simple memory manage-
ment, which keeps the objects, that are located near the ob-
server’s position, and which are likely to get into the near
zone within a few frame, in graphics memory.

Using another hardware setup consisting of nine desktop
PCs (Visualization-node: Intel Quad Core 2.8 Ghz, 8 GiB
RAM, NVidia 260GTX Hardware with 896 MiB graphics
memory; various standard office PCs as backend nodes), we
could render another forest scene with about 60 mio. tri-
angles with 18 fps by applying Reliefboards (tnz = 3.5 mio,
550 objects displayed as Reliefboard). When solely rende-
ring the original scene on the visualization-node we only
achieve about 2 fps.

7.6. Visual quality

Although the frame rate is nearly independent of the number
of backend-nodes, the visual quality is heavily influenced by
the response time and therefore by the number of nodes. The
less the response time is, the less is the visual error, which
can be caused by an outdated Reliefboard. Figure 11 shows
the average distribution of the angle-error for the power plant
scene. The difference in the projected size is not considered
as the influence is insignificant due to the chosen camera
path. As expected, more nodes decrease the occurrence of
errors. For the chosen setting, not more than 28 nodes seem
to be sufficient to achieve a mean error of only 16 degree
(compare to Figure 1). Additional nodes are not necessary
as almost each request can be processed immediately.

Figure 11: Accumulated angle error in the power plant sce-
ne (with min, max, quartiles and avg values): The visual
quality scales with the number of available nodes.

8. Conclusions and future work

In this paper we presented a method that allows to use
wide range of PC-clusters with only limited graphic ca-
pabilities for parallel rendering, so that only one powerful
visualization-node is needed. The techniques accelerate the
rendering process by utilizing weaker backend-nodes to ge-
nerate approximations of parts of the scene on-the-fly. The
presented approach uses an asynchronous communication
scheme and distributes the load to the different rendering-
nodes mostly evenly. If the number of render-nodes is in-
creased, this rendering method scales in the quality of the
rendered picture instead in rendering speed.
In the future, we plan to combine Reliefboards with other
techniques to further reduce the popping effects on upda-
ted Reliefboards (e.g. by using blending [MH99]). The pre-
sented PC-cluster configuration consists of two different ty-
pes of nodes only. We also plan to extend the protocol used
for the distribution of the requests to support backend-nodes
with different graphic capabilities.

c
 The Eurographics Association 2010.

50



T. Süß & C. Jähn & M. Fischer / Reliefboard Computation

Figure 12: The upper detail pictures show a part of the
power plant rendered with original geometry. In the lower
detail pictures Reliefboards are utilized.

References
[AR05] ALLARD J., RAFFIN B.: A shader-based parallel rende-

ring framework. In IEEE Visualization Conference (Minneapolis,
USA, October 2005). 3

[Coo84] COOK R. L.: Shade trees. SIGGRAPH Comput. Graph.
18, 3 (1984), 223–231. 3

[DadH93] DIETZFELBINGER M., AUF DER HEIDE F. M.: Sim-
ple, efficient shared memory simulations. In SPAA ’93: Proc.
Symposium on Parallel algorithms and architectures (New York,
NY, USA, 1993), ACM, pp. 110–119. 6

[DE84] DAY W., EDELSBRUNNER H.: Efficient algorithms for
agglomerative hierarchical clustering methods. Journal of Clas-
sification 1, 1 (December 1984), 7–24. 4

[DH00] DOGGETT M., HIRCHE J.: Adaptive view dependent tes-
sellation of displacement maps. In HWWS ’00: Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics
hardware (New York, NY, USA, 2000), ACM, pp. 59–66. 3

[DY08] DOMINICK S., YANG R.: Anywhere pixel router. In
PROCAMS ’08: Proceedings of the 5th ACM/IEEE International
Workshop on Projector camera systems (New York, NY, USA,
2008), ACM, pp. 1–2. 3

[EP08] EILEMANN S., PAJAROLA R.: Direct send compositing
for parallel sort-last rendering. In SIGGRAPH Asia ’08: ACM
SIGGRAPH ASIA 2008 courses (New York, NY, USA, 2008),
ACM, pp. 1–8. 3

[GH99] GUMHOLD S., HÜTTNER T.: Multiresolution rende-
ring with displacement mapping. In HWWS ’99: Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics
hardware (New York, NY, USA, 1999), ACM, pp. 55–66. 3

[HDD�93] HOPPE H., DEROSE T., DUCHAMP T., MCDONALD
J., STUETZLE W.: Mesh optimization. In SIGGRAPH ’93:
Proc. Conference on Computer graphics and interactive techni-
ques (New York, NY, USA, 1993), ACM, pp. 19–26. 3

[HHN�02] HUMPHREYS G., HOUSTON M., NG Y., FRANK R.,
AHERN S., KIRCHNER P., KLOSOWSKI J.: Chromium: A
stream processing framework for interactive graphics on clusters,
2002. 3

[Hop96] HOPPE H.: Progressive meshes. In SIGGRAPH ’96:
Proc. Conference on Computer graphics and interactive techni-
ques (New York, NY, USA, 1996), ACM, pp. 99–108. 3

[lMPHK94] LIU MA K., PAINTER J. S., HANSEN C. D., KRO-
GH M. F.: Parallel volume rendering using binary-swap image

composition. IEEE Computer Graphics and Applications 14
(1994), 59–68. 3

[MCEF94] MOLNAR S., COX M., ELLSWORTH D., FUCHS H.:
A Sorting Classification of Parallel Rendering. Tech. Rep. TR94-
023, 8, 1994. 1, 3

[MH99] MÖLLER T., HAINES E.: Real-time rendering. A. K.
Peters, Ltd., Natick, MA, USA, 1999. 1, 8

[MOM�01] MURAKI S., OGATA M., MA K.-L., KOSHIZUKA
K., KAJIHARA K., LIU X., NAGANO Y., SHIMOKAWA K.:
Next-generation visual supercomputing using pc clusters with
volume graphics hardware devices. In Supercomputing ’01: Proc.
Conference on Supercomputing (New York, NY, USA, 2001),
ACM, pp. 51–51. 3

[SEP�01] STOLL G., ELDRIDGE M., PATTERSON D., WEBB
A., BERMAN S., LEVY R., CAYWOOD C., TAVEIRA M., HUNT
S., HANRAHAN P.: Lightning-2: A high-performance display
subsystem for PC clusters. In SIGGRAPH 2001, Proc. Confe-
rence on Computer graphics and interactive techniques (2001),
pp. 141–148. 3

[SFL01] SAMANTA R., FUNKHOUSER T., LI K.: Parallel rende-
ring with k-way replication, 2001. 1, 3

[SFLS00] SAMANTA R., FUNKHOUSER T., LI K., SINGH J.:
Hybrid sortfirst and sort-last parallel rendering with a cluster of
pcs, 2000. 1, 3

[SLS�96] SHADE J., LISCHINSKI D., SALESIN D. H., DERO-
SE T., SNYDER J.: Hierarchical image caching for accelera-
ted walkthroughs of complex environments. In SIGGRAPH ’96:
Proc. Conference on Computer graphics and interactive techni-
ques (New York, NY, USA, 1996), ACM, pp. 75–82. 3

[WWT�03] WANG L., WANG X., TONG X., LIN S., HU S.,
GUO B., SHUM H.-Y.: View-dependent displacement mapping.
ACM Trans. Graph. 22, 3 (2003), 334–339. 3

c
 The Eurographics Association 2010.

51




