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Abstract

Isosurface extraction is a common technique applied in scientific visualization. Increasing sizes of volumes over

which isosurfacing is to be applied combined with increasingly hierarchical parallel architectures present chal-

lenges for efficiently distributing isosurfacing work loads. We propose a technique that, with a modest amount of

preprocessing, efficiently distributes isosurfacing load to GPU compute resources within a cluster. Load unifor-

mity is maximized over a set of user-defined isovalues, enabling improved scalability over naive, non-data-centric,

work distribution approaches.

Categories and Subject Descriptors (according to ACM CCS): I.3.2 [Computer Graphics]: Distributed/network
graphics—Isosurface generation

1. Introduction

Isosurface extraction is a common technique applied in sci-
entific visualization. Isosurfaces are often rendered to show
structures indicated by surfaces over which a particular value
is uniform. Additionally, it is often of use to have the triangle
data of these surfaces available for the computation of quan-
tities such as surface area. In many cases, a user has an idea
of what isovalue ranges may be reasonable for the extraction
of features of interest, but may not know exactly what iso-
values should be used. Thus, providing fast isosurfacing of
a particular subset of potential isovalues can be of particular
utility.

As scientists have sought to increase simulation accuracy,
the quantity of data produced has increased commensurately.
Analysis tools, including those that provide isosurfacing,
must scale to support this increased volume of data.

Over recent years, a transition has been seen toward hi-
erarchical parallelism, both in terms of memory and pro-
cessors. Even single PCs often contain multiple CPUs and
GPUs, with each GPU containing multiple stream proces-
sors. Clusters add an additional level within the hierarchy.
Challenges are introduced not only by the hierarchical na-
ture of the compute resources, but also by the diversity of
interconnects between them.

Making the most of these compute resources requires de-
ciding the levels within the hierarchy at which subdivision of

work and data-dependent distribution of work is appropriate.
Several considerations must be made:

• Hardware constraints: Limits are often imposed on the lo-
cal memory available in different elements of the com-
pute resources, and there are often substantial disparities
between processor speed, available local memory, and in-
terconnect speed.

• Required result constraints: Results from an isosurfacing
algorithm should be in a format appropriate for how they
will be used. For example, triangles from an isosurfacing
algorithm should be stored in a buffer with an appropriate
format for rendering, if rendering is required.

• Preprocessing cost: The resources consumed, both in time
and space, by preprocessing must be warranted by the ex-
pected gains in usability as a result.

• Efficient scalability: Algorithms must scale well with in-
creased data size and compute resources, while also hav-
ing reasonable absolute speeds for the range of expected
target data sizes and systems.

We propose an approach, exhibited in figure 1, that evenly
distributes isosurfacing work to multiple GPUs in a clus-
ter, taking into consideration user-defined salient isovalue
ranges. The approach then applies our efficient parallel iso-
surfacing algorithm on each GPU. A modest amount of pre-
processing enables efficient distribution of work.

This paper is organized as follows. Section 2 describes re-
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Figure 1: Our approach preprocesses the volume data for

a range of salient isovalues to estimate the amount of work

required to perform isosurfacing for blocks of the input vol-

ume. The blocks are subsequently assigned to GPUs such

that the isosurfacing work is more evenly distributed.

lated work. Details of the isosurfacing cost heuristic are dis-
cussed in section 3.1. Then, details of the work distribution
and isosurfacing algorithms are discussed in sections 3 and
4 respectively. Finally, results and conclusions are discussed
in sections 5 and 6.

2. Related Work

A commonly applied tool in scientific visualization, isosur-
facing has been well explored in research literature. Two
broad groups of isosurfacing techniques exist: those that ex-
plicitly generate geometric primitives for the surfaces, and
those that provide for direct rendering of the surfaces with-
out necessarily generating geometric primitives for the entire
isosurface. The former has advantages in cases where the ge-
ometric primitives are necessary or when the same surface
is to be viewed from many different views. The latter has
advantages in situations where the surface geometry is not
needed or there are a limited number of views of interest and
there is significant occlusion exhibited in those views. Our
technique is among those in the former category, explicitly
generating geometric primitives for isosurfaces.

Among techniques in the former category, the marching
cubes technique, introduced by Lorensen, et al. [LC87], has
become the ubiquitous solution. Further improvements on
the core technique have been proposed by Nielson, et al.
[Nie04]. An in-depth discussion is made on potential im-
provements on the marching cubes algorithm by Lopes, et
al. [LB03].

In the original marching cubes algorithm, even cells with-
out an isosurface in them are scanned. One approach used
in avoidance of this is the use of hierarchical spatial data
structures. Wilhelms, et al. [WVG92] propose using octrees,
Livnat, et al. [LSJ96] propose a kd-tree-based method, and
Dyken, et al. [DZTS08] extends the concept to a hierarchy of
histograms to assist in efficient isosurface extraction. Itoh, et
al. [IYK01] propose another method using contour trees to
accelerate isosurfacing for unstructured volumes, skipping
empty cells. Shen, et al. [SJ95] apply an algorithm utiliz-

ing the minimum and maximum values for groups of cells,
in the context of unstructured data, to reduce unnecessary
empty cell scanning. Another approach is a technique intro-
duced by Gallagher [Gal91] in which values are bucketized
to facilitate faster searching.

Several techniques have been developed to explicitly gen-
erate isosurface geometry using GPUs. Tatarchuk, et al.
[TSD07] describe a technique using GPU geometry shaders
to generate triangle geometry for tetrahedral volumes and
tetrahedralized hexahedral volumes. Dyken, et al. [DZTS08]
apply histopyramids [ZTTS06] to accelerating marching
cubes isosurfacing on GPUs. Marching cubes are imple-
mented directly in vertex shaders by Goetz, et al. [GJD05]
and further enhanced with span-space acceleration tech-
niques by Johansson, et al. [JC06]. Pascucci [Pas04] and
Klein, et al. [KSE04] propose implementations of the march-
ing tetrahedra algorithm on GPUs.

Many techniques have been developed that do not explic-
itly generate isosurface geometry. One of the simplest meth-
ods is to perform volume rendering with a transfer function
that exposes the isovalues. Further refinements upon that are
applying volume ray casting where the intersections with the
surfaces in the interpolated cells are computed, then illumi-
nated using common illumination models such as Phong’s
illumination model [Pho75]. One such example of a tech-
nique using ray tracing to render isosurfaces is proposed
by Parker, et al. [PSL∗98]. Point splatting based techniques
such as those proposed by Co, et al. [CHJ03] and Livnat et
al. [LT04] can also be applied. Röottger, et al. [RKE00] de-
scribe how cell projection, a technique often used for volume
rendering, can be applied to isosurfacing. Another common
approach is to generate view-dependent geometry that does
not necessarily include the entire isosurface, taking into ac-
count occlusion. Gao, et al. [GS03] proposes one such tech-
nique where triangular geometry is directly generated in ar-
eas that pass a GPU-accelerated occlusion test.

While the fundamental marching cubes algorithms can
easily map to data-parallel architectures under limited cir-
cumstances, a naive mapping can be very inefficient if the
distribution of the isosurfaces throughout the volume is
nonuniform. Additionally, many of the above techniques in-
troduce acceleration data structures which add an additional
degree of complexity to parallelization of the isosurfacing
algorithms. Due to these concerns, and the ever increasing
sizes of datasets to be analyzed, parallel isosurface extrac-
tion has been widely explored.

Gao, et al. [GS01] propose a parallel view-dependent
isosurfacing algorithm using occlusion culling, combining
hierarchical data structures with image space partitioning.
Hansen, et al. [HH92] propose an algorithm that assigns in-
dividual cells in the volume to Connection Machine virtual
processors – a concept that exists in a similar sense in the
context of OpenCL-capable GPUs. Shen, et al. [SHLJ96]
extend the span space isosurfacing acceleration algorithm
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to a MIMD system by using a lattice-based search struc-
ture distributed to different processing elements. Zhang, et
al. [ZBB01] and Chiang, et al. [CFSW01] both seek to pro-
vide an infrastructure for out-of-core rendering of isosur-
faces on clusters. Gerstner, et al. [GR00] provides a strategy
for distributing work for their hierarchical tetrahedral grid
isosurfacing technique to processors in a SMP system.

Zhang, et al. [ZN03] uses a similar cost heuristic, in the
context of out-of-core isosurfacing, to what is applied in our
technique. However their technique considers active cells
rather than triangle counts, and their technique uses hard-
coded coefficients while ours profiles the target system and
uses linear regression to estimate the coefficients. Isosurface
statistics, as discussed by Scheidegger et al. [SSD∗08], could
be applied in the computation of a cost heuristic. However,
we found a sampling of triangle counts to provide sufficient
information for cost determination in our application while
being substantially less complex.

Our technique directly generates triangular geometry for
isosurfaces using marching cubes. With clusters having mul-
tiple nodes, each with multiple GPUs, with each GPU having
multiple stream processors, we operate on two levels of par-
allelism: node-level and GPU-level. A data-parallel model
is used for work distribution. To distribute load at the node
level we use a cost heuristic based on profiling information
to assign large blocks of cells from the volume to GPUs.
To distribute load at the GPU level we apply data-parallel
algorithms to each block [HSJ86], subdividing the block
into rows. Our algorithm combines the simplicity of march-
ing cubes with data-parallel algorithms to enable balanced
fine-grained parallelism at the GPU level. Simultaneously,
coarse-grained parallelism is applied at the node level using
heuristics to provide for effective load balancing with mini-
mal overhead.

3. Block Distribution Algorithm

The input data is treated as an array of cuboid blocks of cells,
and it is assumed that the input data is too large to be fit en-
tirely on any one node in the cluster. The goal of a block
distribution algorithm is to assign these blocks to different
GPUs in the cluster such that the load will be balanced for
subsequent isosurfacing operations. The blocks need to be
assigned to GPUs, without having to load the blocks explic-
itly on every node.

The block distribution algorithm consists of three phases:
preprocessing, profiling, and assignment. The preprocessing
phase collects data-centric information needed to compute
the cost heuristic such as the triangle counts for different
isovalues in different blocks. The profiling phase collects
machine-centric information needed to compute the cost
heuristic for the target machine. The assignment phase as-
signs blocks to GPUs across the cluster, given a user-defined
range of salient isovalues and the cost heuristic.

3.1. Isosurfacing Cost Heuristic

An isosurfacing cost heuristic is required to estimate the
amount of time it will take to compute isosurfaces for a block
of cells in the volume. Some critical design requirements for
such a heuristic are:

• It must enable estimation of the amount of time a block
will take to compute. Even blocks with very few triangles
may take substantial time.

• Not all of the data can be loaded every time we want to
evaluate the heuristic. Instead, the heuristic must be com-
putable with a value extracted from a simple, compact
metadata representation produced by preprocessing.

• The heuristic should reflect the hardware platforms be-
ing used. The relationship of the overhead associated with
starting the isosurfacing of a block to the actual isosurfac-
ing work for a block may vary from platform to platform.

• It must be well-conditioned. We cannot have heuristic that
will produce unreasonably large changes in its estimates
for relatively small changes in the input metadata.

In our experiments we found a linear correlation between
triangle count and isosurfacing time as exhibited in figure 2.
Preprocessing can easily be performed to estimate triangle
counts for different isovalues in different blocks of an input
volume, which can then be subsequently stored as metadata.
Requiring only the generated metadata rather than the entire
volume, this enables fast and accurate estimation of a cost
heuristic for isosurfacing a given block for a given isovalue.
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Figure 2: The time required for isosurfacing a single block

of a volume varies approximately linearly with the triangle

count in the isosurface. The constant factor in the fit line is

reduced by applying the optimizations discussed in section

4.3

3.2. Preprocessing

Preprocessing is performed once per data set, in a standalone
cluster-aware program. The preprocessing phase determines
the triangle count for a range of isovalues for each block of
cells. The probe isovalues used for determining the triangle
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counts should be chosen so that they evenly cover the his-
togram of data values. This provides a representative sam-
pling of potential isovalues. Our approach is to uniformly
distribute the blocks across the cluster, with one process per
CPU. For each block, the data values in the block are sorted
in ascending order. To find M different probe isovalues for
N sample values, we choose an isovalue to be the value at
every N/(M−1)’th value in the sorted list.

For each of these probe isovalues we iterate through the
data cells, on the CPU, to find the number of triangles that
would be returned from the marching cubes algorithm. This
is accomplished by classifying the cells into different march-
ing cubes cases then using those classifications, per cell, to
lookup triangle counts from a table. It is not necessary to
explicitly compute the isosurfaces as the triangle counts are
sufficient. The resulting mapping of isovalues to isosurface
triangle counts is aggregated then written to a file, with a set
of M entries for each block.

3.3. Profiling

The goal of the profiling phase is to determine the unknowns
in the linear function mapping triangle count to the cost. The
approach to do this needs to be reasonably inexpensive, but
at the same time able to come up with reasonably confident
estimates for the heuristic. Additionally, the approach must
be appropriate for the block sizes used when subdividing the
data for distribution to GPUs.

Our system generates a test volume of a size similar to that
of a block. In our test cases a block size of 1283 was used, but
others could be used subject to the compromise discussed in
§5.1.3. This synthetic test volume is sufficient so long as it
provides for a diversity of triangle counts for different iso-
values. The volume samples are generated by superimposing
sinusoidal waves with random frequencies, directions, and
amplitudes. This results in a reasonably complex volume for
isosurfacing. We then compute the isosurfaces for isovalues
ranging from the minimum to the maximum value in this
generated field, estimating the time it takes for each. A lin-
ear least squares fitting is used to fit a linear function to these
results, mapping triangle counts to expected times.

The resulting expected time from this equation, when
evaluated for a particular triangle count, is the cost heuris-
tic value for that triangle count. For clusters with more than
one kind of GPU, the cost heuristic can be computed inde-
pendently on the different kinds of GPUs. This provides a
consistent basis for comparison of potential costs for isosur-
facing across the different GPUs.

3.4. Assignment

Blocks are assigned to GPUs when the isosurfacing program
is started, or when the user changes the set of salient isovalue
ranges. From the preprocessing stage we have a table, one

for each block, mapping a set of sample isovalues to triangle
counts. From the profiling stage we have an equation map-
ping triangle counts to a cost heuristic. Using these tables,
blocks need to be assigned to GPUs such that the variance
is minimized between the sums of the cost heuristics of the
blocks assigned to each GPU.

For every block, the cost heuristic is estimated using the
set of salient isovalue ranges defined by the user. Because
these ranges will not, in general, match the exact sample
isovalues from the preprocessing stage, linear interpolation
is applied between sample isovalues as necessary. The mean
of the triangle count within the ranges specified by the user
is computed to find the expected triangle count for a given
block. With this triangle count, the cost heuristic can be
evaluated, resulting in a single cost heuristic value for each
block.

The blocks are then sorted in order of descending cost
heuristic value. With this list, the blocks are then assigned to
GPUs in a round-robin fashion. This results in an assignment
of blocks to GPUs that is not necessarily optimal, but still is
a good starting point.

To further refine the block assignments, they are randomly
exchanged between GPUs, subject to the constraint that all
exchanges must decrease the variance of the sums of the cost
heuristic values assigned to each GPU. This is accomplished
in a three step iterative process:

1. Pick a random pair of block assignments, with each ele-
ment of the pair on a different GPU. This pair defines a
potential exchange of block assignments.

2. If the variance is decreased by performing this exchange,
the exchange is said to be successful. If the exchange is
successful then we apply the exchange and return to step
1. Otherwise, we continue through this process.

3. If the number of unsuccessful exchanges since the last
successful exchange exceeds a limit or the variance de-
creases below a threshold, break from this process, else
return to step 1.

After this process is complete, each GPU has a list of
blocks assigned to it. The block isosurfacing algorithm can
then be applied independently on each GPU, where each
GPU is responsible for processing the blocks assigned to it.

4. Block Isosurfacing Algorithm

When the block isosurfacing algorithm is applied, each GPU
will have been assigned a set of blocks of the volume and the
user will have selected a particular isovalue that they would
like to visualize. The block isosurfacing algorithm needs
to generate triangles for the isosurfaces, populating vertex
buffers on the GPU. An algorithm for this needs to produce
packed triangle buffers without wasted space in a format
amenable to GPU rendering. Because the number of trian-
gles produced for isosurfaces will vary substantially within
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and between blocks, pre-allocating buffers to store triangles
may be unacceptably wasteful in terms of memory consump-
tion. Additionally, because GPUs are fundamentally parallel,
such an algorithm needs to map well to the GPU parallel pro-
gramming model.

One CPU thread controls each GPU, keeping each GPU
busy processing the blocks assigned to it, resulting in one tri-
angle buffer per block. We perform a marching cubes algo-
rithm in two passes. The first pass counts the number of tri-
angles and the offsets of the triangles into the vertex buffers.
It does not directly compute the spatial positions of the tri-
angles. The second pass creates the triangles, writing their
spatial positions and normals into the vertex buffers accord-
ing to the vertex buffer offsets found in the first pass. Figure
3 exhibits this process.
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Figure 3: The triangle counting and creation process com-

putes vertex buffer offsets for rows of the block of cells be-

ing isosurfaced then applies marching cubes to fill the vertex

buffer.

4.1. Triangle Counting

The triangle counting phase takes a block of cells as input,
and generates two outputs: a count of the total number of

triangles in the isosurface in the block, and the offset of tri-
angles within the vertex buffer for each X row of cells in
the input volume. The triangle counting algorithm is local to
each GPU, with one GPU operating on one block at a time.

Our approach applies exclusive prefix sums to compute
the exact indices within the output vertex buffer for output
triangles associated with each row of cells, resulting in a
packed vertex buffer. The prefix sums could be implemented
in parallel using techniques similar to those introduced by
Harris [HSO07]. However, because we are computing prefix
sums over many small distinct lists of numbers rather than
one large list of numbers, it is more efficient to simply per-
form the many independent serial prefix sums in parallel.
This maps well to GPUs because the individual sums are of
nearly uniform length.

4.2. Triangle Creation

With the buffers resulting from the triangle counting pass,
we now have the information needed to know where to store
the triangles created by the marching cubes algorithm. The
triangle creation phase computes these triangles and their
normals.

Each X row of cells is assigned to a GPU thread. Each
GPU thread then computes the isosurface triangles for its as-
signed row of cells. The resulting triangles for each row are
placed into the target vertex buffer using the offsets com-
puted in the triangle counting phase. This results in a packed
vertex buffer on each GPU.

The packed vertex buffer contains positions of the ver-
tices of the triangles. With these positions the normals for
each vertex of the triangles can be computed by using finite
differences to compute the gradient at each vertex. To obtain
consistent normals, ghost cells are required around blocks.
We found that using texture hardware and finite differences
was substantially more efficient than attempting to compute
normals directly using triangle connectivity and triangle ge-
ometry.

4.3. Optimizations

Some elements of the computation within the triangle count-
ing and triangle creation phases is redundant. With a naive
implementation, the blocks of cells will be sampled twice.
Optimizations can be made to reduce the amount of redun-
dant work. We apply two such optimizations: a minimum-
maximum table for empty space skipping, and an isosurface
crossing table to cache results from the triangle counting
phase for use in the triangle creation phase.

4.3.1. Minimum-Maximum Table

Minimum and maximum values of the set of values within
X rows of cells are computed at load time. Each row is sub-
divided into contiguous spans, with the minimum and maxi-
mum values being computed and stored for each span. This
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data lets the triangle counting and triangle creation phases
skip spans of cells that do not contain the isovalue, thus po-
tentially reducing the number of required memory reads.

Trade-offs are present in terms of how large the spans in
the minimum-maximum table should be. If the spans are too
large, then it may be that fewer opportunities will be encoun-
tered to skip spans that do not contain isovalues. If spans are
too small, then too much memory may be required to store
the tables. Additionally, the minimum-maximum table needs
to be read once per span to determine if the span contains the
isovalue. This implies that, in addition to high memory con-
sumption, span lengths that are too small may also result in
excessive memory reads. We found span lengths in the range
of 10 to 20 cells to be reasonable for the test datasets.

4.3.2. Isosurface Crossing Table

When we perform triangle counting, we are identifying the
active cells. Rather than scanning all cells a second time in
the triangle creation phase, we can record the indices of ac-
tive cells within each X row in an isosurface crossing table.
Then, when we perform the triangle creation we can iterate
through this table instead of data values to apply marching
cubes only to the cells that are active.

As with the minimum-maximum table, a compromise
is present between performance and memory consumption.
Large tables supporting a large number of isosurface cross-
ings per X row can permit greater performance in cases
where a large number of isosurface crossings per X row
occur. Also, because only one of these tables needs to be
stored per-GPU, rather than per-block with the minimum-
maximum table, memory limitations are less restrictive. We
implement this table as a byte per cell, at the full resolution
of a block, because our block sizes are reasonably small.

5. Results

The test platform was a cluster of 12 Linux nodes. Each node
had 16GiB of memory, two NVIDIA Quadro FX5600s each
with 1.5GiB of memory, two quad core AMD Opteron 2350
CPUs at 2GHz, and an Infiniband interface. The algorithm
was implemented using OpenCL for the GPU elements, MPI
for inter-node communication, and Intel Threading Build-
ing Blocks [Rei07] for CPU multithreading. An important
aspect of this configuration is the hierarchical nature of the
parallelism – load must be balanced between nodes, amongst
CPUs, and amongst GPUs.

We conducted four experiments on our test platform to
explore:

• the relationship between isosurface triangle counts and
isosurfacing time

• strong scalability: speedup in terms of a varying number
of GPUs for a fixed data size

• volume size scalability: performance in terms of varying
data size for a fixed number of GPUs

Figure 4: The blue (dark) surface is isovalue -1.0 within the

test volume used for the subsequent graphs and the yellow

(light) surface is isovalue +3.0 within the same volume. At a

volume resolution of 384x256x256 the gold surface contains

298858 triangles and the blue surface contains 916337 tri-

angles.

• the relationship between salient isovalue ranges, isoval-
ues, and speedup

It was found that our cost heuristic yielded substantial per-
formance improvements over a naive round robin distribu-
tion of blocks without a cost heuristic.

The test dataset was constructed from a sum of sine waves
with random amplitude, frequency, and phase. The isosur-
faces for isovalues -1.00 and 3.00 are exhibited in figure 4.
This dataset was chosen because it offers sufficient com-
plexity and variation to be interesting, and is easy to re-
produce at any resolution. The base dataset size we use is
1536x1024x1024 resulting in 6 gigabytes of IEEE754 single
precision floating point samples. To maintain consistency,
the dataset was downscaled from this base size as necessary
for the different experiments.

5.1. Triangle Counts versus Isosurfacing Time

The time required to isosurface each block of cells within a
volume was recorded, along with the number of triangles in
the blocks, resulting in a mapping of triangle counts to times
as in figure 2. This experiment directly examines the perfor-
mance of the block isosurfacing algorithm from section 4.
For a fixed block size, a linear relationship was found be-
tween the isosurfacing time for a single block, and the num-
ber of triangles within the isosurface in the block. Different
elements contribute to the constant and linear factors.

5.1.1. Constant factor

Several elements contribute to the constant term in the lin-
ear relationship. Fundamentally, they are of two types: those
that are related to the size of the block being isosurfaced and
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those that are not. In our algorithm, GPU kernel execution
startup times and OpenCL API overhead are independent of
the size of the volume blocks being considered. Addition-
ally, the GPU to CPU and CPU to GPU transfer times from
within the triangle counting algorithm are dominated by the
startup cost of the transfers rather than the size of the trans-
fers because the transfer sizes are intentionally small, on the
order of 128 bytes for a 643 block and 512 bytes for a 1283

block.

However, other elements of the triangle counting algo-
rithm that contribute to the constant factor do exhibit de-
pendence on the size of the block. Time is required to per-
form the exclusive prefix sums on the tables for the block
as seen in section 4.1. Additionally, time is required to per-
form marching cubes table lookups and volume lookups to
count the number of triangles in each cell. The minimum-
maximum table optimization from section 4.3 seeks to re-
duce these contributors to the constant factor by reducing
the number of cells whose triangle counts must be checked,
at the cost of requiring some additional table lookups.

Typical constant time factors seen on our test platform
for a 1283 block on a single GPU were around 1.2ms.
This time is dominated by the API and kernel startup time
overhead. Further exploration may be worth consideration
when NVIDIA Fermi-class GPUs become available, which
may reduce kernel context switching time. Additionally, the
drivers for OpenCL are still relatively new, so additional
optimizations should be expected in the future to reduce
API-related overhead. Such hardware and software improve-
ments would further increase the benefits seen from our al-
gorithm by reducing this constant factor.

5.1.2. Linear factor

The linear term in the triangle count to time relationship also
has multiple contributing factors. Marching cubes triangle
construction requires interpolations and table lookups, per
triangle, with up to five triangles per cell. For the vertices
of each triangle, finite differencing using the GPU textur-
ing hardware is used to compute gradients that are normal-
ized to form triangle vertex normals. This requires 18 texture
lookups per triangle for central differencing, hence its con-
tribution to the linear factor. While the isosurface crossing
table from section 4.3 can reduce the constant factor sub-
stantially by eliminating the need for a second scan of the
volume cells for triangles in the triangle creation phase, it
does introduce a linear factor because it requires a write for
each non-empty cell in the triangle counting phase (§4.1)
and a read for each non-empty cell in the triangle creation
phase (§4.2). The write is of lesser consequence from a per-
formance standpoint because there are no read-after-write
hazards associated with it in the triangle counting phase.

Typical times seen on our test platform for the linear fac-
tor were around 40ns per triangle, on a single GPU. Faster
GPU memory and better GPU caches would reduce this fac-

tor substantially, so it is expected that with new NVIDIA
GPUs such as Fermi this linear factor may see a substantial
improvement, though not to the same extent that would be
expected of the constant factor.

5.1.3. Block size compromise

With some of the constant factor contributors depending on
the number of cells in the block, and some not depending
on the number of cells in the block, it is clear that choos-
ing an appropriate block size is a trade-off. As the block size
is made smaller, the overall performance for isosurfacing in
terms of single blocks will decrease because the net over-
head for isosurfacing will be higher, but the load balancing
between different GPUs may be more accurate because of
decreased load balancing data granularity. We found block
sizes of around 1283 to be a good compromise, with larger
blocks offering insufficient flexibility for load balancing thus
reducing multi-GPU speedup, and smaller blocks having too
much overhead.

In our algorithm the triangle counting phase (§4.1) con-
tributes primarily to the constant factor while the triangle
creation phase (§4.2) contributes primarily to the linear fac-
tor. As architectures change, the algorithm can be adapted
by moving complexity from one phase to the other.

The linear relationship between single block isosurfacing
time and the number of triangles enables the transformation
of predicted triangle counts into a cost heuristic as discussed
in section 3.1.
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Figure 5: The salient isovalue ranges substantially affect the

performance. In this figure it can be seen that the speedup

is improved over ranges of isovalues that are specified as

salient. When no cost heuristic is used, the distribution of

performance over the isovalue range is not well defined be-

cause the effective cost value of the work for each block is

equal. Each line has 1100 sample isovalues, computed over

a 1536x1024x1024 test volume on 24 GPUs.
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5.2. Effects of salient isovalue ranges on speedup

This experiment was conducted to explore how the user se-
lected salient isovalue range and the isovalue being isosur-
faced affect the speedup. Fixed size (1536x1024x1024) data
was broken into roughly uniformly sized 1283 cell blocks,
with some variation at the edges of the volume. Blocks were
distributed to the different GPUs using the algorithm dis-
cussed in section 3. Isosurfaces were then computed using
the algorithm in section 4.

Three different runs were performed, each sweeping 2000
isovalues from -3.00 to 7.00, with the 1100 isovalues ranging
from -1.50 to 4.00 exhibited in figure 5 with a different line
for each run:

• red line (line L1): uses our cost heuristic in distributing
the blocks, with a salient isovalue range of -1.25 to -0.75
selected.

• green line (line L2): uses our cost heuristic in distributing
the blocks, with a salient isovalue range of 2.75 to 3.25
selected.

• blue line (line L3): uses no cost heuristic, distributing the
blocks in an arbitrary order.

Speedup varies based on how evenly isosurfacing work is
distributed across the nodes. The uniformity of isosurfacing
work distribution at the node level is a function of both the
isovalue and the dataset, because the work is linearly pro-
portional to the number of triangles in the isosurface. Our
algorithm assigns blocks to nodes to minimize the variance
between the sums of the work assigned to each node, anal-
ogous to the variance of the sums of the cost heuristic val-
ues of the blocks assigned to each node. The salient isovalue
range determines the range of isovalues that are considered
when computing the cost heuristic.

The green line (line L2) in figure 5 exhibits a strong peak
in the range of 2.75 to 3.25 because that is the salient iso-
value range that was selected for that run, which implies
that the work was assigned to nodes to maximize work uni-
formity only for those ranges of isovalues. However, other
peaks are visible in locations like 1.5 because there is likely
a similar spatial distribution of the isosurfaces for values
around 1.5 as there is for isovalues around 3.0, in this data.
Similarly to the green line, the red line (line L1) exhibits
the same phenomenon for a different salient range, -0.75 to
-1.25, with different similar regions for the same reason.

The blue line (line L3) is drawn for the naive no-cost-
heuristic method. It shows varied performance because the
arbitrary block assignments can create different work distri-
bution uniformities, and thus different speedups, for differ-
ent isovalues. Both the red line and the green line demon-
strate substantially improved speedup over the naive method
in their salient ranges.

The results of this exhibit that selecting salient isovalue
ranges does offer the potential for improved speedup within
those regions. At the same time, isovalues outside of those

ranges do not suffer unacceptable penalties in speedup,
sometimes even receiving improved speedup.
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Figure 6: The performance advantage of using our cost

heuristic over using no cost heuristic is maintained over the

range of loadable volume sizes on a cluster of 24 GPUs. The

salient isovalue range used for the cost heuristic is 2.75 to

3.25, resulting in a mean isosurfacing performance on the

order of 250 million triangles per second over that range

of isovalues. Using no cost heuristic over that same range

yields performance on the order of 175 million triangles per

second.

5.3. Volume size scalability

This experiment examined volume size scalability of our al-
gorithm; that is, it ran trials for varying data sizes, with a
fixed number of processing elements. The data was scaled
from 1536x1024x1024 down to the appropriate sizes. Data
was divided into roughly uniformly sized 1283 cell blocks.
32 blocks were assigned per GPU for the largest resolution
and 2 blocks were assigned per GPU for the smallest resolu-
tion.

Two different runs were performed, one with our pro-
posed cost heuristic, with a salient isovalue range of 2.75
to 3.25, the other with no cost heuristic and arbitrary block
assignments. From each of those runs, data was collected for
two different ranges of isovalues:

• 100 isovalues in 2.75 to 3.25, the salient range
• 2000 isovalues in -3.00 to 7.00, the entire range

Mean and maximum times were recorded per isovalue,
yielding the four lines in figure 6.

Small scale variation occurs within the lines of figure 6
primarily because there is a small degree of noise present
in the isosurfacing times and in the cost heuristic accuracy,
thus, that noise can manifest itself in the results. In the case
of the run done with no cost herustic there is a second source
of variation. With no cost heuristic, the block assignments
are arbitrary, thus changing the data size completely rear-
ranges the block assignments which results in substantial
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Figure 7: Using our proposed cost heuristic improves scal-

ability, especially when the isovalues for which isosurfaces

are being computed are within the salient range. In this fig-

ure, the salient range of isovalues used for the computa-

tion of the cost heuristic is 2.75 to 3.25 and the volume is

768x512x512 samples.

variation in the resulting times. In the case of our cost heuris-
tic based algorithms, such variation does not occur to the
same extent because block assignment is done based upon
the cost heuristic.

The red line (the top line in the key) shows the per-
formance of our method when the salient range matches
the range being isosurfaced. It substantially outperforms the
other test cases, with triangle rates on the order of 250 mil-
lion per second. Comparing the other lines it can be seen that
the performance can still be better than using no heuristic at
all even when the isosurfacing is done in ranges outside of
the salient isovalue range.

All four lines exhibit good volume size scalability, with
the performance not substantially decreasing for an increas-
ing data size on the same set of processing elements. In
the next section it will be shown that the algorithm delivers
strong scalability as well.

5.4. Strong scalability

This experiment was conducted on a fixed size 768x512x512
test data set, breaking the data into blocks of approximately
1283 cells. The experiment was run on 4, 6, 8, 12, 16, and
24 GPUs to examine strong scalability; that is performance
scaling for a fixed data size and varying numbers of pro-
cessing elements. The time to isosurface every block was
recorded, and the results for every block were stored, in-
cluding triangles with normal data. Two different runs were
performed for each GPU count:

• using our cost heuristic, with a salient isovalue range of
2.75 to 3.25 selected.

• using no cost heuristic

From each of those runs, we took the mean and maximum
times for isosurfacing two ranges of isovalues, 2.75 to 3.25
(the salient range), and -3.00 to 7.00 (the entire range.) For
the former range 100 isovalues were sampled and for the
latter range 2000 isovalues were sampled. This resulted in
the 4 lines in figure 7.

The dependence on triangle counts for isosurfacing on the
GPUs means that load may be distributed unevenly between
nodes depending on the isovalue and the data. Our block dis-
tribution technique seeks to reduce this disparity, and the re-
sults in figure 7 exhibit its success in achieving this.

Over the salient isovalue range of 2.75 to 3.25, our tech-
nique has substantially better speedup (21x on 24 GPUs)
versus the naive technique with no cost heuristic over the
same range (13x on 24 GPUs). Even over the entire range of
values, -3.00 to 7.00, a modest benefit in speedup was seen
versus the naive technique. When scaled to a larger number
of GPUs, with appropriately larger data, we expect that scal-
ability would continue similar trends.

If the block size could be made smaller, then we could
possibly further improve the performance. However, this
would be unlikely to increase performance because decreas-
ing the block size would decrease the absolute performance
per GPU. If interconnect, bus, and/or disk speeds were
higher relative to the speed of the GPUs an attempt could be
made to dynamically load blocks on demand. However, we
already attain 86% efficiency over the salient range of iso-
values with 24 GPUs, so it is unlikely that such an approach
could yield further performance improvement.

6. Conclusion

We have presented an efficient, load-balanced multi-node,
multi-CPU, multi-GPU method for computing triangular
isosurfaces on volume data. A preprocessing stage com-
putes metadata, permitting the efficient computation of a
cost heuristic. The cost heuristic is computed for blocks us-
ing the preprocessed data and user-specified hints on isosur-
face saliency, then blocks are distributed to GPUs to maxi-
mize work uniformity. An efficient parallel isosurfacing al-
gorithm is then applied on each GPU with the assistance of
the CPUs to produce triangles in packed arrays that may sub-
sequently be used for rendering or other computations.

Our implementation is able to deliver isosurfacing per-
formance in excess of 250 million triangles per second on
24 GPUs. Strong scalability is exhibited with 90% utiliza-
tion with 8 GPUs and 86% utilization with 24 GPUs. Our
algorithm enables the leveraging of contemporary hybrid-
architecture clusters with CPU and GPU resources for more
efficient exploration of large scale volume data.
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