
Polygonization of implicit surfaces on Multi-Core
Architectures with SIMD instructions

P. Shirazian1, B. Wyvill1 and J-L. Duprat2

1University of Victoria, BC, Canada
2Intel Corporation.

Abstract
In this research we tackle the problem of rendering complex models which are created using implicit primitives,
blending operators, affine transformations and constructive solid geometry in a design environment that organizes
all these in a scene graph data structure called BlobTree. We propose a fast, scalable, parallel polygonization al-
gorithm for BlobTrees that takes advantage of multicore processors and SIMD optimization techniques available
on modern architectures. Efficiency is achieved through the usage of spatial data structures and SIMD optimiza-
tions for BlobTree traversals and the computation of mesh vertices and other attributes. Our solution delivers
interactive visualization for modeling systems based on BlobTree scene graph.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture—
Parallel processing I.3.6 [Computer Graphics]: Methodology and Techniques—Graphics data structures and data
types

1. Introduction

We present a parallel method for speeding up the genera-
tion of a polygon mesh from an implicit model. Although
the method is applicable to many types of implicit surfaces,
we focus on surfaces generated from fields surrounding
geometric primitives, known as skeletal implicit surfaces,
[BCB∗97]. The model data structure is a tree whose leaf
nodes are primitives, and internal nodes are operators; the
BlobTree, [WGG99]. Currently the BlobTree supports oper-
ations such as; arbitrary blends, boolean operations, warping
at a local and global level including contact deformations.
Geometric transformation matrices are also stored as nodes
in the tree so the data structure is also a scene graph.

A BlobTree is typically visualized by polygonization to
produce a triangle mesh to be rasterized by the graphics pro-
cessor. Direct ray tracing [BCB∗97] can also be used, to pro-
duce high quality images. Both methods require computa-
tion of the field value which can only be evaluated by travers-
ing the BlobTree structure. The field due to each operator
depends on its child nodes and the leaves are the primitives
which can be any implicitly defined function; e.g. distance
field due to geometric skeletal elements.

Implicit modeling using the BlobTree has several advan-
tages over other modeling methods. Various different blends

are simple to represent, as are free-form volume defor-
mations and constructive solid geometry operations (CSG)
[GVJ∗09]. Other operators such as detecting contact, and
warping surfaces accordingly (see [CGD97]), can easily be
represented as nodes in the BlobTree. The models created
with BlobTree are resolution independent and the definition
can be very compact, making the BlobTree a good candidate
to use for network based cooperative design.

An incremental, sketch based BlobTree system was built
by Schmidt et al. [SWSJ06], promoting flexibility and mod-
ular design for the creation of complex models, and most of
the earlier problems with the methodology have been over-
come [BBCW10]. Although direct manipulation is possi-
ble [SWSJ06], very complex models can only be visualized
interactively as coarse meshes. Hence the need for a faster
polygonizer. The BlobTree facilitates incremental modeling,
a strategy that promotes flexibility and modular design for
creating complex models.

The main contribution of our research is a high perfor-
mance polygonization algorithm that scales well with the
number of physical cores and SIMD vector width available
on modern processors.

As opposed to previous work that attempted to render im-
plicit surfaces defined by static algebraic surfaces or volu-

c© The Eurographics Association 2012.

Eurographics Symposium on Parallel Graphics and Visualization (2012)
H. Childs, T. Kuhlen, and F. Marton (Editors)

DOI: 10.2312/EGPGV/EGPGV12/089-098

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/EGPGV/EGPGV12/089-098

P. Shirazian & B. Wyvill & J-L. Duprat / Polygonization of implicit surfaces on Multi-Core Architectures with SIMD instructions

metric scanned data, our method is data-driven where the
definition of the surface can change over time. This feature
is particularly useful in collision detection applications such
as surgical simulations where the interaction of the surgical
tools and deformable tissues should be visualized in real-
time [LD07].

In addition we have improved the performance of the al-
gorithm that finds the intersection of a cube edge and the
surface, by making use of the SIMD architecture, to find the
intersection in a single run of a field evaluation kernel.

The paper is organized as follows; related work is re-
viewed in section 2, background information on implicit
surfaces, skeletal primitives and the polygonization process
is given in section 3. In sections 6 our algorithm is ex-
plained along with the improvements made to the distance-
field computation process. Our performance results and fu-
ture work are presented in sections 7 and 8, respectively.

2. Related Work

Several methods for polygonization of implicit surfaces have
been proposed which can be classified based on speed, accu-
racy of the output mesh or quality. Comparing these meth-
ods in terms of performance reveals that space partition-
ing methods are the fastest and the most popular. The pa-
per [WMW86] was the first to introduce a method for find-
ing iso-surfaces using uniform space subdivision into cubic
cells. A seed cell on the surface was found by starting at
a vertex close to each primitive and evaluating the field at
cell vertices along each of the three axes to find a surface
crossing. Vertices inside the volume were classified as ‘hot’
and ‘cold’ outside. A hash table was used to keep track of
processed cells to avoid redundant field evaluations and to
avoid storing any cells that did not contain part of the sur-
face. Only adjacent cells that share an intersecting edge with
their parent were processed, and a second cubic subdivision
served to reduce the number of primitives considered in each
field evaluation. Ambiguous cases were ameliorated by tak-
ing another sample from the centre of the face. A similar
method was later introduced as Marching Cubes in [LC87].
The main difference between the two algorithms was that
Lorenson et al. applied their method to discrete volume data
instead of sampling a continuous function and in Lorenson’s
method the space was completely partitioned into cubic vox-
els and all cubes were visited.

Bloomenthal showed that the ambiguous cases can be
dealt with by subdividing cells into tetrahedra [Blo94], and
also that a six tetrahedron subdivision was superior to subdi-
viding into five [GH95]. The fact that tetrahedral simplices
have 4 vertices reduces the total number of configurations
to 16 (or 3 by symmetry), however, the number of redun-
dantly generated triangles as a result of this decomposition
increases significantly. We will refer to marching cubes and
tetrahedra, with MC and MT respectively throughout this pa-
per.

There have been many enhancements proposed for both
MC and MT. Some gain advantage by classifying cubes ac-
cording to different criteria and surface edge intersection cal-
culation and number of field function evaluations. For ex-
ample, Dietrich et al. [DSC∗09], did a statistical analysis
of cube configurations in MC that are responsible for most
of the degenerate triangles in the output mesh. Their algo-
rithm avoids those cube configurations by inserting an extra
vertex into the cell when generating triangles as was done
in [WMW86] where an extra sample was taken. This reduces
the statistical occurrence of the problem.

Triquet et al. [TGMC03] enhanced MT by applying
time-stamps on calculated values and using hash tables for
retrieving them. They also pre-computed surface vertices
along crossing edges which are shared with adjacent vox-
els and referenced previously calculated values to avoid re-
evaluating them. This latter enhancement was also done in
Bloomenthal’s polygonizer [Blo94] and was a fairly com-
mon feature of implicit surface polygonizer’s of the 1990s.

Beside enhancing serial algorithms some attempts were
made to increase the performance of MC by dividing the
workload between multiple CPUs or on a network grid of
computers. Mackerras proposed an MIMD implementation
of MC algorithm [Mac92]. The bounding volume is divided
into uniform blocks and each processor runs a serial imple-
mentation of MC on one or more blocks. They reported that
because of efficient usage of cache their method showed a
speed-up greater than the total number of physical proces-
sors involved. Hansen and Hinker presented a parallel im-
plementation of MC [HH92]. They labeled each cube with a
virtual processor identifier to avoid complexities in commu-
nicating between processors, then each cube is processed in-
dependently. They reported linear speed-up by increasing the
number of physical processors. Their method spends con-
stant time on each processor regardless of the number of
polygons in a cubic cell.

The advent of shader programs and GPGPU computing
interested some to port serially computationally intensive
programs to the GPU. Space partitioning methods like MC
and MT are good candidates for these devices since each
cell (either tetrahedra or cube) can represent an independent
volume to be processed on a separate SIMD core.

Kipfer and Westermann proposed a GPU-accelerated
Marching Tetrahedra algorithm that stores the topology of
the surface on the GPU [KW05]. They used a span-space
interval tree to cull tetrahedral elements that don’t intersect
with the surface. Caching edge-surface intersections helped
them to avoid redundant calculations. For computing edge-
surface intersections they used linear interpolation for find-
ing roots along each edge which is less accurate and de-
grades the quality of the output mesh.

Johansson et al. accelerated iso-surface extraction using
graphics hardware [JC06]. They stored MC cases on the

c© The Eurographics Association 2012.

90

P. Shirazian & B. Wyvill & J-L. Duprat / Polygonization of implicit surfaces on Multi-Core Architectures with SIMD instructions

GPU and used a vertex program to compute surface inter-
section points. They used a span-space data-structure sim-
ilar to [CMM∗97] to enhance the cell classification phase
in MC. Their method shows a speedup order of 13 over the
naive algorithm.

Tatarchuk et al. presented an iso-surface extraction al-
gorithm implemented using DirectX [TSD08]. They used
graphics hardware to visualize medical data. They maxi-
mized utilization of SIMD units on the GPU by separating
their polygonization (which is a hybrid of marching cubes
and marching tetrahedra) into two phases: Fast cube tetrahe-
dralization and a marching tetrahedra pass. Each input voxel
position is dynamically computed in the vertex shader, then
they used the geometry shader and stream-out features of
DirectX 10 to tessellate voxels into six tetrahedra spanning
the voxel cube. However their method is limited to medical
volume datasets.

An adaptive parallel polygonization method is proposed
by Yang et al. [YCP10]. They enhanced the Araujo’s method
[RA05] by dividing the bounding box of the model into eight
parts and then processing them in parallel. For each part,
their method find a seed point on the surface and increas-
ingly expand it to form a local mesh for the part by using
the surface tracking approach. Using local curvature of the
implicit surface, their method produces triangles of varying
sizes. However, their method is not scalable since it can not
guarantee finding a seed point per each sub box in case the
number of sub boxes increases. They reported very slow ren-
dering times even for the simple models that they have tested
their system with.

In a similar work Knoll et al. [KHH∗07] proposed inter-
active raytracing of arbitrary implicits with SIMD interval
arithmatic. They used SSE instructions for fast computation
of interval arithmatic and ray traversal algorithm. However,
their method is restricted to static implicit functions and al-
gebraic surfaces.

None of the proposed methods above used a modeling
framework to define their input data in a hierarchical struc-
ture similar to the BlobTree. Their method is either limited
to volume data or an algebraic implicit function to represent
the underlying volume. In a closely related work, Schmidt
et al. [SWG05] used a field caching mechanism inside the
BlobTree to perform fast potential field reconstruction with-
out traversing the entire tree. They used a trilinear recon-
struction filter for field value and a triquaratic filter for gra-
dient interpolation. They evaluated cache efficiency by poly-
gonizing a BlobTree model once using cache nodes and the
other time without. They reported upto 16 times speedup for
polygonizing a model with different resolutions. However,
their method is not scalable since the cache nodes cannot
be updated from different processing threads without using
locking mechanisms or a data race condition can occur.

3. Background

Implicit surfaces can be defined based on discrete data,
radial basis functions, offset surfaces, algebraic surfaces,
level sets or distance fields to skeletal geometric primitives
[BCB∗97]. Independently of its origin, an implicit surface
can be defined as a level-set function F : R3 → R where
the surface can be defined for instance as the set of points{

M(x,y,z) ∈ R3|F(x,y,x) = c
}

. c is a constant and is called
the iso-value which is set to 0.5 in our system. For each point
in space if the field is greater than c the point is considered
inside the model otherwise outside.

Skeletal implicit models are constructed from combina-
tions of geometric skeletal elements. An implicit model A
is generated by summing the influences of NA skeletal el-
ements: FA(x,y,z) = ∑

i=NA
i=1 Fi(x,y,z) The field value due to

an skeletal element at a point in 3D space is computed as
filtered distance to its skeleton where the filter function (i.e.
falloff function) is defined as follows [WGG99]:

gwyvill(x) =


1 if x≤ 0

(1− x2)3 if 0 < x < 1
0 if x≥ 1

(1)

Normals can be derived from gradients which are com-
puted by evaluating 4 field values and performing a numeri-
cal approximation:

∇F(x,y,z) =


F(x+δ,y,z)− f
F(x,y+δ,z)− f
F(x,y,z+δ)− f

(2)

Where f = F(x,y,z) is the field at point (x,y,z).

Each skeletal primitive has a bounded region of influence
in space. For each node in the tree an axis-aligned bounding
box is computed which is used to trivially reject those field
queries that are outside the box. The bounding box of the
entire model is computed as the union of all primitive nodes
bounding boxes.

For evaluating the field at a point P in a BlobTree model
such as the one shown in figure (1), the tree structure should
be traversed from root to leaves recursively. Each operator
combines the values of its children according to its type. For
example, for a simple blend the values are summed. A leaf
node represents a primitive, and returns the value by apply-
ing equation 1 to the distance of P from the primitive.

For visualization purposes the BlobTree is queried numer-
ous times to evaluate the field. As suggested in [SWG05]
accelerating field computation will have a large impact on
the overall surface extraction process.

c© The Eurographics Association 2012.

91

P. Shirazian & B. Wyvill & J-L. Duprat / Polygonization of implicit surfaces on Multi-Core Architectures with SIMD instructions

Figure 1: BlobTree structure of a coffee mug created with
CSG and skeletal implicit primitives.

4. Architecture Constraints

In this section we define some processor architecture con-
straints, i.e. minimum requirements from the hardware side
to implement our algorithm as efficiently as possible. The
algorithm scales with the number of physical cores and the
SIMD vector width available on the processor. See results
section 7.

Our current implementation leverages both Intel SSE with
4 float wide and Intel AVX with 8 float wide SIMD instruc-
tion sets. Using a cache-aware technique our algorithm is de-
signed to minimize the movement of cache lines in and out
of the processor’s on-chip memory. To this end the technique
requires at least 256 kilobytes of last level cache memory per
each processor core. The input data structures take about 192
kilobytes of memory in our implementation.

Although our test environment was Intel based, our algo-
rithm should be implementable on any multicore machine
with SIMD instructions and sufficient cache.

5. Naming Conventions

The polygonization method used, is a space partioning al-
gorithm based on [WMW86], which uses a uniform grid of
a user defined cell size (cellsize). In order to leverage the
SIMD parallel computation capabilities of the processor, the
bounding box of the model is divided into axis-aligned grids
of 8x8x8 vertices where each grid is called model partition-
ing unit (MPU).

An MPU is 7 ∗ cellsize as shown in figure 2. Each MPU
contains 7*7*7 or 343 cubic cells. An MPU is called empty
if it does not intersect with the iso-surface of the model. The
list of all MPUs is called the MPUSET and a half open in-
terval [a,b) over MPUSET is called an MPURANGE which
contains consecutive MPUs from a to b−1.

Side <=1

Ra
diu
s=
1

1 2 3 4 5 6 7

CellSize

AVXSSE

Figure 2: The MPU is our unit of computation per each
core illustrated as a 2D cross section here. Field-values due
to every 4 or 8 points are computed in parallel with SSE or
AVX instructions, respectively. When the field at a vertex is
zero no iso-surface will pass in the neighbourhood of a unit
circle (sphere in 3D) centred at that vertex.

6. Algorithm

The input to our algorithm is a BlobTree data structure, rep-
resenting an implicit model whose iso-surface we wish to
find. Output is a triangle mesh. The model bounding box
and the cellsize parameter supplied by the user to control the
resolution of the final mesh. The BlobTree structure is first
converted into a compact, linear structure required for SIMD
optimization techniques, then the model bounding box is di-
vided into the MPUSET with respect to the cellsize param-
eter. The MPUSET is processed in parallel using multiple
cores; with a fast empty MPU rejection method and SIMD
surface extraction algorithm the mesh contained within in-
tersecting MPUs is extracted. The algorithm has no synchro-
nization points except after all MPUs are processed and the
triangle mesh is sent to the GPU for rasterization. The fol-
lowing sections describe this whole process in detail.

We start by describing the initialization phase and con-
tinue with the surface extraction details in the next section.
The algorithm starts by computing the size of an MPU side
(7 cells) and dividing the bounding box of the model into
a 3D grid of MPUs, where each MPU is assigned a unique
global identifier. The main idea of our algorithm is parallel

c© The Eurographics Association 2012.

92

P. Shirazian & B. Wyvill & J-L. Duprat / Polygonization of implicit surfaces on Multi-Core Architectures with SIMD instructions

processing of the set of all MPUs (MPUSET) using multi-
core and SIMD processing techniques.

Our algorithm recursively splits MPUSET into disjoint
MPURANGEs where each MPURANGE is assigned to an
idle core on the processor. The granularity of the divisions
can be determined by the average amount of machine cycles
spent to process an MPU, however, in our implementation
we resort to the solution provided by Intel Threading Build-
ing Blocks (TBB) [Rei07], which provides a non-preemptive
task scheduling system to take care of the differences in task
loads by monitoring processors and starting new tasks on
idle cores automatically (work-stealing) [Rei07].

6.1. BlobTree Linearization

The first step in our algorithm is the BlobTree reduction and
pruning as suggested by Fox et al. [FGW01]. In the sec-
ond step, using the same linearization algorithm proposed
for quadtrees [LS00]; the BlobTree is converted into a point-
erless representation to achieve cache-memory efficiency
by keeping all input data structures at aligned memory ad-
dresses and fitting the entire BlobTree model into the last
level cache memory of the processor. The final linearized
BlobTree is in the format cache-line aligned structure of
arrays. With this format several computations can be opti-
mized with SIMD instructions, e.g. applying a transforma-
tion matrix on a vector of 4 or 8 vertices as opposed to scalar
computation. The output mesh is also in the format of cache-
line aligned structure of arrays which is the key to compute
colors and normals in SIMD fashion.

6.2. Surface Extraction

In our algorithm we assign field values for every vertex of
every MPU that is not trivially rejected with the method ex-
plained in the following, and compute the triangular mesh
representing the iso-surface. This approach combines ele-
ments of several algorithms ([WMW86, LC87, Blo94]).

We extended the method proposed by Zhang et al.
[ZWW06] to trivially reject all empty MPUs. The observa-
tion made is that according to equation 1, if the field value
at a given vertex is zero then the shortest distance from that
vertex to the iso-surface is greater than or equal to one (See
figure 2). Using this fact empty MPUs can be identified very
fast by evaluating the fields at the 8 vertices of each MPU
and rejecting it of all 8 fields are zero. However, this test is
only applicable when the cellsize parameter is smaller than
or equal to 1/7 or 0.1428. For larger cellsizes the iso-surface
may still intersect with the MPU while the fields at vertices
of the MPU are zero. For a discussion on cellsize versus per-
formance see section 7.

For larger cellsizes we shoot 8 rays from the centre of the
MPU to its eight vertices, using the technique of Zhang et al.
per each step we march 0.866c (0.866 is half of the diagonal

of an MPU with side one and c being the cellsize parameter)
along each ray. At each step we compute the fields for the
8 vertices along the rays; if a non-zero field is found then
the MPU is further processed, otherwise we march along the
rays until we reach the vertices of the MPU.

If an MPU is not rejected then it is further processed for
surface extraction. A local copy of the linearized BlobTree is
provided per each core in order to avoid false-sharing among
cores [BS93]. Using SIMD processing techniques field val-
ues for all 512 vertices of MPU are computed. With SSE or
AVX instructions this step requires 128 or 64 field evaluation
kernel runs, respectively (figure 2).

All the fields are stored in a memory aligned array of 512
floating points. This technique avoids reevaluating field val-
ues while processing cells in the next step. Storing field val-
ues from a SIMD register into memory aligned address can
be accomplished with a SIMD instruction in parallel. After
this step all 343 cells of the MPU are processed. Per each
cell, the 8 vertex field values are gathered in SIMD fashion.
Each vertex with a field greater than or equal to iso-value
is labeled one otherwise zero. The configuration index of
the cell is computed using the SIMD method shown in al-
gorithm 1. A configuration index is computed to access the
table as in [LC87]. We used the modified marching cubes
table proposed by Dietrich et al. that eliminates many of
the degenerate triangles produced in the original MC algo-
rithm [DSC∗09]. For the ambiguous cases we take another
sample from the center of the cell [WMW86, DSC∗09].

Algorithm 1 SIMD computation of cell configuration.
Pseudo code provided for AVX SIMD computation. Simi-
lar code can be written in SSE.

1: Gather the 8 vertex field values of the cell
2: simd index = cmp_ge8(f ields,simd(0.5))
3: index = and8(index,simd(1.0))
4: index = mul8(index,maskPower)
5: index = hadd8(index, index)

In algorithm 1 fields is an array of 8 vertex field values,
line 2 performs a parallel comparison between iso-value and
fields. In line 4 maskpower shifts the field values into the ap-
propriate slot in the SIMD array and finally line 5 performs
a horizontal add operation on the values to compute the con-
figuration index.

For each intersecting edge there is one inside and one out-
side vertex. Using a root finding method the point of inter-
section of the iso-surface is computed and stored in a hash
table to be reused by the neighbouring cells that share that
vertex.

For the root finding methods that do not require gradient
information such as regula falsi or bisection method, the field
value should be evaluated multiple times along the edge,
which will degrade the performance of the system. Other

c© The Eurographics Association 2012.

93

P. Shirazian & B. Wyvill & J-L. Duprat / Polygonization of implicit surfaces on Multi-Core Architectures with SIMD instructions

methods such as Newthon-Raphson require gradient infor-
mation, and as mentioned in section 3 each gradient compu-
tation involves 4 extra field evaluations. We describe a root
finding technique based on SIMD instructions that computes
the root with only one extra field evaluation in AVX (two
with SSE) with adequate precision. By subdividing the in-
tersecting edge into 8 vertices and evaluating the field val-
ues, the exact interval containing the final root can be iden-
tified. Performing linear interpolation in that interval will
produce the final root (figure 3), it is trivial to show when
the number of intervals increases the interpolation error de-
creases [Mat87].

0.22 0.25 0.30 0.36 0.40 0.550.20 0.60

Intersection Point

CellSize

C H

Figure 3: Top: A cell edge is intersected with part of the sur-
face shown in blue. By performing one field evaluation using
AVX or two with SSE instructions the interval containing the
intersection point can be identified. The final root is com-
puted using linear interpolation within the interval marked
with bold line segment.

Algorithm 2 summarizes the process of surface extraction
which is run per each MPU. Lines 1 through 25 are related
to the MPU discard method explained earlier in this section.
Lines 26 through 42 shows the cell processing technique
which is optimized using SIMD cell configuration compu-
tation and our root finding method. Since color and normal
attributes should only be computed for final mesh vertices,
this step is performed last to fully leverage SIMD optimiza-
tions by performing every 4 or 8 attribute computations in
one SIMD call which greatly enhances the throughput of the
system and minimizes BlobTree traversals.

7. Results

We have implemented our algorithm using Intel threading
building blocks in C++ on a Linux platform. We used two
systems with different configurations. On the first system
which has Intel i7-3960X processor with Sandy Bridge ar-
chitecture, there are 6 physical cores given that each core
runs in hyperthreaded mode; up to 12 threads can run in par-
allel on this machine. This processor supports both SSE and

Algorithm 2 Algorithm for surface extraction of an MPU
using AVX SIMD instructions, Similar code can be written
for SSE instruction set. Input is linearized BlobTree T , lower
vertex of MPU and the cellsize parameter. Output is the local
mesh contained in the MPU

1: side← cellsize∗7
2: simd v←Compute MPU vertices
3: if side≤ 1 then
4: simd f ← T.compute_ f ield8(v)
5: if f == 0 then
6: return;
7: end if
8: else
9: f lag← true

10: incr = 0.866∗ cellsize
11: d = incr
12: while d < side * 0.866 do
13: Shoot rays from center of MPU to its 8 vertices
14: simd v←Travel along the rays for distance d
15: simd f ← T.compute_ f ield8(v)
16: if f ! = 0 then
17: f lag← f alse
18: break;
19: end if
20: d = d + incr;
21: end while
22: if f lag == true then
23: return;
24: end if
25: end if
26: float fieldCache[512];
27: for all simd vertex in mpu vertices do
28: simd f ← T.compute_ f ield8(vertex)
29: Store f in appropriate location in f ieldCache
30: end for
31: for all cell in mpu do
32: f ← gather8(cell, f ieldCache)
33: edges←Compute cell config from f to access table
34: for i = 1→count of edges do
35: if root for ith edge is not stored in edge table then
36: Compute root associated with ith edge
37: Store the root in the edge table
38: Add root to mesh vertices
39: end if
40: end for
41: Add cell triangles to mesh
42: end for
43: for all simd vertex in mesh vertices do
44: simd n← T.compute_normal8(vertex)
45: simd c← T.compute_color8(vertex)
46: Add n to mesh normals
47: Add c to mesh colors
48: end for

c© The Eurographics Association 2012.

94

P. Shirazian & B. Wyvill & J-L. Duprat / Polygonization of implicit surfaces on Multi-Core Architectures with SIMD instructions

AVX instructions and there is a last level cache memory of
15 megabytes which is shared between all cores.

The second system is a server with 4 Intel X7560 proces-
sor with Nehalem architecture. Each processor has 8 physi-
cal cores or 16 in hyperthreaded mode and has 24 megabytes
of last level cache memory and it does not support AVX in-
structions. Together these 4 processors provide us with as
many as 32 physical cores (64 when hyperthreaded) on this
server. We refer to these two systems with SNB and NHM
respectively.

On the first experiment our goal was to prove the scalibil-
ity of our algorithm. Figures 4, 5 show the average running
time of the algorithm when rendering towers model (figure
8) on SNB and NHM systems, respectively. The BlobTree
of the towers model has 7360 operators and 7296 primi-
tives and a depth of 64 levels. In this test the cellsize pa-
rameter kept as a constant value of 0.14 which we found it
to be a balance between number of triangles produced and
the quality of the output mesh. In order to show the effect
of SIMD optimizations we have tested our algorithm with
scalar, 4-wide SSE and 8-wide AVX instructions. SSE be-
ing on average 4.58x faster than scalar and AVX being on
average 7.35x faster than scalar run. As illustrated in figure
4 when the number of threads increases past 6, two threads
run on every core; sharing hardware resources on the hy-
perthreaded cores. The slope is reduced because each thread
gets less resources than it would if it ran alone on the core.
Past 12 threads, we schedule multiple threads per core, and
they start to thrash the cache; making the algorithm memory
bound.

Figure 5 shows the performance of our algorithm when
running on the NHM system. Doubling number of threads,
doubled the performance of the algorithm on this machine
up to 33rd thread. The same behaviour is shown and hy-
perthreaded cores start to compete for memory access when
having more than 32 threads running on this machine.

1

4

16

64

256

1024

4096

16384

65536

262144

1 2 4 8 16 32 64

Ti
m
e
in
m
ill
is
ec
on
ds

Threads

Scalar SSE(4FloatsSIMD) AVX(8FloatsSIMD)

Figure 4: Average polygonization time of the towers model
when running on SNB processor. Horizontal axis is the num-
ber of threads. Vertical axis is time measured in millisec-
onds.

1

4

16

64

256

1024

4096

16384

65536

262144

1048576

1 2 4 8 16 32 64 128

Ti
m
e
in
m
ill
is
ec
on
ds

Threads

Scalar SSE(4FloatsSIMD)

Figure 5: Average polygonization time of the towers model
when running on NHM processor. Horizontal axis is the
number of threads. Vertical axis is time measured in millisec-
onds.

Table 1: Comparison of speedups and field value evalu-
ations per triangle (FVEPT) for polygonization of Tower
model with different SIMD instruction sets. Note that FVEPT
was 17 before adding SIMD optimizations.

Processor SIMD Method Speedup FVEPT
SNB SSE 4.58x 4
SNB AVX 7.35x 2
NHM SSE 4.25x 4

Table 1 shows the effect of using SIMD optimizations in
our algorithm. With SSE and AVX the theoretical speedups
are 4 and 8 times, respectively. Due to memory alignment
techniques and proper caching mechanisms the speedup with
4-wide SSE is greater than 4. The AVX speedup can be
improved more once scatter/gather instructions are imple-
mented on the SNB processors which will improve the per-
formance of surface extraction algorithm. Number of field
evaluations per triangle shows the average amount of times
the field evaluation kernel called to compute a single vertex
in the output mesh.

In another experiment we studied the effect of our early
discard method when the side of each MPU is less than one
(figure 6). Starting from a large cellsize, we reduced the cell-
size in uniform steps and measured the polygonization time.
The red curve shows the polygonization time when the dis-
card method described in section 6.2 is not being used and
the blue curve is the timing when that method is in effect.
Note that with the blue curve as soon as the MPU side is
less than one; (cellsize = 0.14) empty MPUs started to get
discarded efficiently thus the constant part of the time value
is reduced at that point.

Figure 7 shows the polygonization time breakdown when
rendering the towers model on SNB processor. Horizontal
axis is the core number for a total of 12 cores on that system.
As can be seen from the top of this chart; the idle time is
very short and the cores are active almost all the time. This

c© The Eurographics Association 2012.

95

P. Shirazian & B. Wyvill & J-L. Duprat / Polygonization of implicit surfaces on Multi-Core Architectures with SIMD instructions

0

5000

10000

15000

20000

25000

30000

35000

0
.3

0

0
.2

9

0
.2

8

0
.2

7

0
.2

6

0
.2

5

0
.2

4

0
.2

3

0
.2

2

0
.2

1

0
.2

0

0
.1

9

0
.1

8

0
.1

7

0
.1

6

0
.1

5

0
.1

4

0
.1

3

0
.1

2

0
.1

1

0
.1

0

P
o

ly
go

n
iz

at
io

n
 t

im
e

 in
 m

ill
is

e
co

n
d

s

Cell size

Without discard method With discard method

Figure 6: Reducing cellsize parameter results in more MPU
generation and increase in polygonization time. However,
at a certain cellsize our early discard method stops poly-
gonization time increase by rejecting all empty MPUs more
efficiently.

shows that the work stealing algorithm scales well. 190463
MPUs are processed and 116723 of them are intersected
with the iso-surface (40 percent were empty). 40 percent of
the MPUSET has been processed in less than 10 percent of
the total polygonization time.

These results demonstrate the scalibility of our algorithm
both in the number of SIMD vector lines and the number of
cores available on each processor.

Finally, we compare our method against Schmidt et al. ’s
[SWG05] using the Medusa model provided by them which
has 2920 primitives and 11 operators and the tree structure
has a depth of 6 (figure 9). In this experiment, we divided
polygonization timings reported in [SWG05] by 8 as the best
AVX optimized version of Schmidt’s method. Then we ran
our polygonization algorithm optimized with AVX instruc-
tions on a single core for Medusa model (See table 2).

The results shows that our algorithm outperforms that of
Schmidt et al. by a factor of 6 when running on a single core
in lower resolutions.

8. Conclusions and future Work

We have presented a new parallel polygonization algorithm
using SIMD processing techniques that takes advantage of
a multi-core machine. Our main contribution is a scalable
algorithm both in terms of the number of cores available

Discard

Surface
Extraction

Field
Evaluation

Idle
(WAIT)

0%

100%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Figure 7: Towers model per-core time breakdowns. Each
bar represents a logical core on the processor for a total
of 12 cores. Vertical axis is the total polygonization time.
190463 MPUs processed with 12 cores in 9283 milliseconds.
This chart shows the portion of time spent in each step of
the algorithm when rendering the towers model on the SNB
processor with 8-wide AVX instructions.

Figure 8: Towers model created with skeletal primitives and
binary operators in our incremental designing system. The
model is a grid of 8 by 8 towers for a total of 7360 operators
and 7296 primitives.

on multicore architectures and the number of SIMD vector
width as shown in the results section. We also presented a
SIMD technique for finding the intersection of an iso-surface
and a cube edge.

For future work we are interested in improving the perfor-

c© The Eurographics Association 2012.

96

P. Shirazian & B. Wyvill & J-L. Duprat / Polygonization of implicit surfaces on Multi-Core Architectures with SIMD instructions

Figure 9: Medusa model courtesy of Schmidt et al.
[SWG05].

Table 2: Comparison of our polygonization method against
Schmidt et al. ’s [SWG05] when rendering Medusa model at
5 different resolutions on one single core with AVX instruc-
tions. All timings are in milliseconds.

CellSize Our method Schmidt’s method Speedup
0.01 5220 6228 1.19x
0.03 3441 3653 1.06x
0.05 1071 2175 2.03x
0.10 264 1292 4.89x
0.14 108 721 6.67x

mance of our system on Many Integrated Cores architecture
(MIC) such as the one shown in Larrabee [SCS∗08]. We are
also interested in testing our algorithm for precise contact
modeling, where the BlobTree model is deformed over time
while a collision detection algorithm is being evaluated. Fi-
nally, we are also interested in improving the visualization
of a haptics enabled simulator [LD07], based on an implicit
surface.

9. Acknowledgement

We would like to thank Intel Corporation for their support
and providing us with their cutting-edge server and proces-
sors. This work is partly supported by the GRAND NCE
foundation of Canada, and the Natural Sciences and Engi-
neering Research Council of Canada.

References
[BBCW10] BERNHARDT A., BARTHE L., CANI M.-P.,

WYVILL B.: Implicit Blending Revisited. Computer Graphics
Forum 29, 2 (June 2010), 367–375. 1

[BCB∗97] BLOOMENTHAL J., CHANDRAJIT B., BLINN

J., CANI-GASCUEL M.-P., ROCKWOOD A., WYVILL B.,
WYVILL G.: Introduction to implicit surfaces. Morgan
Kaufmann (1997). 1, 3

[Blo94] BLOOMENTHAL J.: An implicit surface polygonizer.
Graphics gems IV 1 (1994), 324–349. 2, 5

[BS93] BOLOSKY W., SCOTT M.: False sharing and its ef-
fect on shared memory performance. In USENIX Systems
on USENIX Experiences with Distributed and Multiprocessor
Systems-Volume 4 (1993), vol. 1801, USENIX Association,
pp. 3–3. 5

[CGD97] CANI-GASCUEL M.-P., DESBRUN M.: Animation of
Deformable Models Using Implicit Surfaces. IEEE Transactions
on Visualization and Computer Graphics 3 (1997), 39–50. 1

[CMM∗97] CIGNONI P., MARINO P., MONTANI C., PUPPO E.,
SCOPIGNO R.: Speeding up isosurface extraction using interval
trees. IEEE Transactions on Visualization and Computer Graph-
ics 3, 2 (1997), 158–170. 3

[DSC∗09] DIETRICH C. A., SCHEIDEGGER C. E., COMBA
J. A. L., NEDEL L. P., SILVA C. T.: Marching Cubes with-
out Skinny Triangles. Computing in Science & Engineering 11,
2 (Mar. 2009), 82–87. 2, 5

[FGW01] FOX M., GALBRAITH C., WYVILL B.: Efficient use
of the BlobTree for rendering purposes. In Proceedings of the
International Conference on Shape Modelling \& Applications
(2001). 5

[GH95] GUÉZIEC A., HUMMEL R.: Exploiting triangulated sur-
face extraction using tetrahedral decomposition. IEEE Transac-
tions on Visualization and Computer Graphics 1, 4 (1995), 342.
2

[GVJ∗09] GOMES A. J. P., VOICULESCU I., JORGE J., WYVILL
B., GALBRAITH C.: Implicit Curves and Surfaces: Mathematics,
Data Structures, and Algorithms. Springer Verlag, 2009. 1

[HH92] HANSEN C., HINKER P.: Massively parallel isosurface
extraction. In Proceedings of the 3rd conference on Visualiza-
tion’92 (1992), IEEE Computer Society Press, IEEE Computer
Society Press, pp. 77–83. 2

[JC06] JOHANSSON G., CARR H.: Accelerating marching cubes
with graphics hardware. Proceedings of the 2006 conference
of the Center for Advanced Studies on Collaborative research -
CASCON ’06 (2006), 39. 2

[KHH∗07] KNOLL A., HIJAZI Y., HANSEN C., WALD I., HA-
GEN H.: Interactive Ray Tracing of Arbitrary Implicits with
SIMD Interval Arithmetic. 2007 IEEE Symposium on Interac-
tive Ray Tracing (Sept. 2007), 11–18. 3

[KW05] KIPFER P., WESTERMANN R.: GPU construction and
transparent rendering of iso-surfaces. In Proceedings Vision,
Modeling and Visualization (2005), vol. 5. 2

[LC87] LORENSEN W., CLINE H.: Marching cubes: A high res-
olution 3D surface construction algorithm. In Proceedings of the
14th annual conference on Computer graphics and interactive
techniques (1987), vol. 87, ACM, p. 169. 2, 5

[LD07] LAYCOCK S., DAY A.: A Survey of Haptic Rendering
Techniques. Computer Graphics Forum 26, 1 (Mar. 2007), 50–
65. 2, 9

[LS00] LEE M., SAMET H.: Navigating through triangle meshes
implemented as linear quadtrees. ACM Transactions on Graphics
19, 2 (Apr. 2000), 79–121. 5

[Mac92] MACKERRAS P.: A fast parallel marching-cubes imple-
mentation on the Fujitsu AP1000. Computer Science Technical
Report TR-CS-92-10, The Australian National University (1992).
2

c© The Eurographics Association 2012.

97

P. Shirazian & B. Wyvill & J-L. Duprat / Polygonization of implicit surfaces on Multi-Core Architectures with SIMD instructions

[Mat87] MATTHEWS J.: Numerical Methods for Computer Sci-
ence, Engineering and Mathematics. 6

[RA05] RODRIGUESDEARAUJO B., ARMANDOPIRESJORGE J.:
Adaptive polygonization of implicit surfaces. Computers &
Graphics 29, 5 (2005), 686–696. 3

[Rei07] REINDERS J.: Intel threading building blocks: outfitting
C++ for multi-core processor parallelism, vol. 23. O’Reilly Me-
dia, Inc., 2007. 5

[SCS∗08] SEILER L., CARMEAN D., SPRANGLE E., FORSYTH
T., ABRASH M., DUBEY P., JUNKINS S., LAKE A., SUGER-
MAN J., CAVIN R., OTHERS: Larrabee: a many-core x86 archi-
tecture for visual computing. In ACM SIGGRAPH 2008 papers
(2008), ACM, p. 18. 9

[SWG05] SCHMIDT R., WYVILL B., GALIN E.: Interactive im-
plicit modeling with hierarchical spatial caching. International
Conference on Shape Modeling and Applications 2005 (SMI’ 05)
(2005), 104–113. 3, 8, 9

[SWSJ06] SCHMIDT R., WYVILL B., SOUSA M., JORGE J.:
Shapeshop: Sketch-based solid modeling with blobtrees. In ACM
SIGGRAPH 2006 Courses (2006), ACM, p. 14. 1

[TGMC03] TRIQUET F., GRISONI L., MESEURE P., CHAIL-
LOU C.: Realtime visualization of implicit objects with con-
tact control. Proceedings of the 1st international conference on
Computer graphics and interactive techniques in Austalasia and
South East Asia - GRAPHITE ’03 1, 212 (2003), 189. 2

[TSD08] TATARCHUK N., SHOPF J., DECORO C.: Advanced
interactive medical visualization on the GPU. Journal of Parallel
and Distributed Computing 68, 10 (2008), 1319–1328. 3

[WGG99] WYVILL B., GUY A., GALIN E.: Extending the CSG
Tree - Warping, Blending and Boolean Operations in an Implicit
Surface Modeling System. In Computer Graphics Forum (1999),
vol. 18, pp. 149–158. 1, 3

[WMW86] WYVILL G., MCPHEETERS C., WYVILL B.: Data
structure for soft objects. The visual computer 2, 4 (1986), 227–
234. 2, 4, 5

[YCP10] YANG B., CHEN G.-L., PANG M.-Y.: Parallel Poly-
gonization of Implicit Surfaces. 2010 International Symposium
on Intelligence Information Processing and Trusted Computing
(Oct. 2010), 220–223. 3

[ZWW06] ZHANG Y., WANG X., WU X.: Fast Visualization Al-
gorithm for Implicit Surfaces. Cell (2006), 0–5. 5

c© The Eurographics Association 2012.

98

