
EG UK Theory and Practice of Computer Graphics (2006)
M. McDerby, L. Lever (Editors)

Collision Detection for Deformable Objects using Octrees

1F. A. Madera,2A. M. Day and3S. D. Laycock

University of East Anglia, School of Computing Sciences
Norwich NR4 7TJ, UK

1f.madera@uea.ac.uk,2amd@cmp.uea.ac.uk,3sdl@cmp.uea.ac.uk

Abstract
We present an algorithm for collision detection between multiple deformable objects translating in a large envi-
ronment. We use Spatial Partitioning to subdivide the scene and a Bounding Volume Hierarchy to decompose the
objects, using octrees in both cases. The algorithm is divided in two parts, the Broad and Narrow Phases, with
objects that can be rigid or deformable. In the Broad Phase, an octree is used to partition the scene and cull away
the object’s Bounding Volumes that are distant. In the Narrow Phase, a hierarchical decomposition of Axis Aligned
Bounding Boxes or spheres is employed to reduce the number of primitives in the pairwise comparisons. In sum-
mary this work is a general-purpose collision detection technique for performing real time collision detection of
deformable bodies in interactive 3D applications.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

1. Introduction

To deal with objects in a dynamic environment, it is neces-
sary to define the type of interactions that address the simu-
lation. Common applications that require collision detection
are computer games, surgical simulation, cloth modelling,
motion planning, and CAD. These applications often require
both rigid and deformable objects.

Interaction among components in computer graphics pro-
grams requires efficient and robust collision detection algo-
rithms that enable the program to reach its objectives in an
easy and flexible way. In dynamic environments for animat-
ing objects, the movements of the objects make the com-
putation expensive due to the fact that the algorithm must
check the collision process at every time step. Efficient and
fast algorithms are needed in real time systems, such as sur-
gical training and virtual sculpting, where users interactively
modify deformable objects (DO).

Most of the current collision detection algorithms have
focused on a particular approach to get the exact require-
ments. The algorithm proposed here is made as general as
possible, without assuming a specific physical simulation
or interaction among components. The main tool is the

octree, a spatial data structure used to subdivide the scene
in the Broad Phase and to decompose the object in the pre-
computation stage to be used in the following Narrow Phase.

The program runs withn rigid or deformable objects
that are able to move randomly, bounded by Axis Aligned
Bounding Boxes (AABB) or spheres, in a 3D scene. The
algorithm has two phases, the Broad Phase that uses an
octree to partition the scene. Its function is to cull away
objects until a pair is close together, then determine the
collision between the Bounding Volumes (BV). The Narrow
Phase starts when two or more of the BVs collide, making
comparisons between the octrees that represent an object’s
hierarchical decomposition.

Distance computation and interaction among BVs are
not made until the octree is subdivided in small regions
which means that objects are in close proximity. Our appli-
cation is similar to Smith et. al. [SKTK95] because we deal
with multiple moving objects in a 3D environment using
bounding box and spatial subdivision techniques. However
[SKTK95] does not consider deformable objects as we
do. The remainder of the paper is organised as follows:
previous work is described in the next section, in section 3

c© The Eurographics Association 2006.

http://www.eg.org
http://diglib.eg.org

F. Madera & A. Day & S. Laycock / Collision Detection for Deformable Objects using Octrees

an overview of the algorithm is presented. Then follows a
description of the three main modules of the program, the
Physical Simulation of motion, the Broad Phase, and the
Narrow Phase. Section 7 describes some experiments used
to test our algorithm, and finally some possible future work
and conclusions are described.

2. Previous Work

Surveys about collision detection are found in [LG98,
TKH∗05, JTT01], where it is stated that the most common
methods used in collision detection for DO are Bounding
Volume Hierarchies (BVH), Stochastic Methods, Distance
Fields, Spatial Subdivision and Image-Space Techniques.

In this work we focus on Spatial Partitioning and Bound-
ing Volume methods. Spatial Partitioning is used to divide
the objects or the scene into small parts, or cells to simplify
future computation among all the objects involved in the in-
teraction. The idea is to have more control over the location
of the object’s primitives and consider the ones valid for col-
lision. Ganovelli [GDO00] used a ’BucketTree’ based on
octrees to partition the scene and bounding boxes when deal-
ing with objects. Another approach is shown in [GLGT98]
in which the cells are decomposed in regular grids, and
Teschner et. al. [THM∗03] used a hash function to handle
regions in a regular spatial grid.

Recently, Bounding Volumes have been used to approxi-
mate the surface of the objects and make the computations
less expensive using these basic primitives. For rigid bodies,
binary trees are used, and for DO it has been shown that 4-
ary trees or 8-ary trees give better performance [LAM01].
Common Bounding Volumes are spheres [Hub95, BO04],
Axis Aligned Bounding Boxes [vdB97], Oriented Bounding
Boxes [GLM96], K-Discrete Oriented Polytopes [Klo98]
and Convex Hulls [PLM95].

James and Pai [JP04] worked with spheres to wrap the
objects being dealt with which were reduced deformable
models and Alexa et. al. [KZ05] focused on skeletally de-
formable models. Also Kimmerle et. al. [KNF04] worked
with stochastic collision detection and a Bounding Volume
Hierarchy (BVH).

Hardware has been very useful to increase the processing
speed, GPUs are valuable tools to work with image space
techniques [HTG03,HTG04] and other hardware methods
have also been used [GRL03,SOM04].

3. The Algorithm

Initially we haven objects{O1, ...,On} placed in an envi-
ronment that is divided using an octree, which recursively
partitions the regions into octants. Objecti hasVi vertices,
Ei edges, andFi faces. The octree holds the object’s BV.

The algorithm handles solid models that deform while in

translation. We decided to use AABBs and spheres because
they are cheap to store and fast for intersection tests. Spatial
partitioning recursively partitions the scene containing the
objects, whereas a BVH is based on a recursive partitioning
of an object. A similar procedure is applied in the Narrow
Phase to check BV collisions using octrees. Also, the mo-
tivation to explore the behaviour of DO in motion around
the scene and their interactions as detected by our algorithm
made us decide to combine the space partition and object
decomposition methods.

In Figure 1 the main modules of the program are shown.
They consist of the Pre-computation stage, Physical Simula-
tion, Broad Phase, and Narrow Phase, and are described in
the next sections. We do not assume a particular simulation
method and we do not consider the contact determination
phase for accurate approaches.

Figure 1: Modules of the Collision Detection Program.

4. The motion

To make the objects deformable, we apply a deforming pro-
cess using the mass spring model. The physical body is rep-
resented by a set of mass-points connected by springs ex-
erting forces on neighbouring points as a mass is displaced
from its rest position. The physical simulation module in-
volves two sub-modules, to apply spring forces and to move
masses using an integration scheme. Meshes are considered
as mass springs to which forces are applied. To prevent ex-
cessive deformations the area of each triangle is preserved.
The spring forces are linear and the equation of motion used
for this process is:

mẍ+ kdẋ+ fs = fext , (1)

where the coordinatesx are functions of time, ˙x and ẍ are
their first and second time derivatives,m is the mass matrix
andkd is the damping factor. In the spring force, we handle
some parameters that can be modified; spring length, spring
constant force, air friction. Hooke’s law with the damping
term is given by

fs = −(ks(|d|− s)+ kdḋ ∗
d
|d|

)
d
|d|

, (2)

c© The Eurographics Association 2006.

F. Madera & A. Day & S. Laycock / Collision Detection for Deformable Objects using Octrees

where d is the elongation distance,ḋ its first derivative, and
s the original length of the spring. The force on the mass
is given byF = −kx, whereF is the force,ks the spring
constant and|d|− s the length of the spring.

Objects are deformed in an arbitrary way but the shape of
the surface is constrained within pre-defined limits. The BV
should be updated every time frame to catch the exact size
of the object. Normally, an elastic object is elongated and its
shape restored but this does not happen in other objects, such
as plastic.

Since F = ma, whereF is the force,m the mass, and
a the acceleration, thena = − k

m x. Now, given the accel-
eration, initial velocity and position, we can find the posi-
tion at any later time, integrating the acceleration directly
[VB04,ES04].

In the motion simulation, two integration schemes were
used, the Euler Backward integration, and the Verlet inte-
gration suggested by Teschner et. al. [THMG04]. We ob-
served more stable and realistic deformations with the Ver-
let scheme. Velocity is not constant, due the acceleration ap-
plied in the springs, as well as the random velocity transla-
tion applied in objects.

Initially objects are just deformed, preserving their posi-
tion in the environment, so that no collisions occur. We then
apply a force to get interaction. We create a random vec-
tor for each object to determine the direction, this is made
in the integration scheme after deformation. Therefore, for
each mass, we apply the random velocity vector, maintaining
the borders of the environment. For each mass,vi = vi + vd ,
wherevd is the random vector to translate the object.

Initially objects start moving in any direction and deform-
ing randomly; users can introduce their own physical simu-
lation at this time before the collision process starts.

5. The Broad Phase

This module begins with the creation of the octree for the
global scene. The initial region is a cube that represents the
root node in a tree and can be expanded in the next level with
eight children. Subroutines are divided in two types, for the
scene and for the objects, having sections for creating and
removing nodes. In the Broad Phase, the brute force method
takesO(n2), and the sweep and prune algorithm [Bar92] re-
quires pre-sorting along each coordinate axis, indicating that
the computational complexity isO(nlogn), wheren is the
number of BVs considered. For a scene S, we have a region
in the octreeRk

h(S) in level k, where h is the number of the
node ordered top to bottom, left to right, being the root of the
hierarchyR0

0(S). When expanding, eight nodes are created,
from R1

1(S) to R1
8(S) in level 1, that are the root’s children.

If R1
1(S) is expanded, then nodes fromR2

9(S) to R2
16(S) are

created, and so on. Two basic operations are considered, ex-
pansion/reduction and work for a group of eight nodes, in

such a way that we will have a balanced tree in levels 0 and
1, but not necessarily in the other levels.

A region can be seen as an AABB of eight vertices, six
faces, and twelve edges, beingRk

h(S).v j the vertexj. For an
Object Oi, we have an octree defined in the same way as
above, and it can be AABB,Ak

h(Oi).v j, or sphere,Sk
h(Oi).v j.

The main octree works by partitioning the scene into eight
regular regions. If two or more objects are inside a region,
then this region is partitioned into eight regular parts as well
(its children). The same object can be placed in one, two
or four regions at the same time, so these regions need to
be considered for future partitions. The extra problem with
deformable objects is that we need to check all vertices in
order to refit the boundary. The general algorithm is shown
in Figure 2.

Broad −Phase (O1,O2, ...,On)
1. ∀Rk

h(S) that is a leaf
2. if A0

p(Oi) inside in more than one region
3. if k = level − allowed then check− collision− in− pairs()
4. else expand node k

Figure 2: The Broad Phase pseudocode.

The aim is to cull away objects that are not in close prox-
imity, i.e. that are not placed in the same region of the tree,
otherwise, the region is divided into eight new children. We
exploit the fact that it prunes out unnecessary collision tests
by localizing potentially colliding regions. In line 1, we visit
all the nodes of S that are leaves. Obviously, this is from
level 1 and forwards. In line two, we compute the number of
objects in each region. Nodes in S are bigger than nodes in
objects,Oi can be totally inside nodeh, or partially, meaning
that its other parts are occupying other nodesh.

In the case that the number is greater than or equal to the
value oflevel−allowed, line 3 asks for the level of the node
in S. This value refers to the depth of the tree in the BVH,
for instance,level − allowed = 2 when there are 64 leaves,
4 when there are 512 leaves, and so on. Clearly regions in S
should be bigger than those in the BVs in order to contain
them, otherwise, we would need to check if they overlap, the
process made incheck− collision− in− pairs().

5.1. The region-BV intersection test

To check that objects are inside a regionRk
h(S), we should

compute the overlapping test between the region and the ob-
ject’s BV, that can be a AABB or a sphere. In the case of
AABB, the problem is an intersection between two AABBs,
that is the minimum and maximum axis interval; for x-axis,
Rk

h(S).v0 and Rk
h(S).v1; for y-axis, Rk

h(S).v0 and Rk
h(S).v4;

and for the z-axis,Rk
h(S).v0 andRk

h(S).v3.

In the case of the AABBs objects, the process involves

c© The Eurographics Association 2006.

F. Madera & A. Day & S. Laycock / Collision Detection for Deformable Objects using Octrees

updating the size due to the change of the position of a vertex
at every step, so it can be expanded or reduced in any axis.
To do that, we need to check in every time step the vertices
that have been modified, to get the minimum and maximum
values of the axis in order to refit the root’s octree. This takes
O(Vi) for objecti.

Alternatively, we can use spheres as a bounding volume.
One way to construct the volume, is to consider the AABB
values previously obtained. LetSk

p(Oi) be the sphere bound-
ing objecti in level k, labelled p, its center is computed get-
ting the minimum values of the AABB:

S0
1(Oi).c = (xmin+

L
2

,ymin+
L
2

, zmin+
L
2

), (3)

where L is the major length among the three axes of its
corresponding AABB, and the root’s level is k=0. The radius
is

S0
1(Oi).r =

L
2

. (4)

These values are compatible with the AABB, but the
sphere is too large for the object. One remedy is as follows:

S0
1(Oi).c =

xmin+ xmax
2

,
ymin+ ymax

2
,

zmin+ zmax
2

. (5)

The radius is computed by comparing the distances
among all the vertices to this centre. The disadvantage of
this scheme is that we need to update the radius every time
step, reading all the vertices of the object, but it is more ac-
curate, so that we have chosen to do it. We also considered
working with a global octree of spheres for the scene, but
there is less accuracy with them so we decided to keep with
the cube regions.

As seen from the case of the AABBs we should compute
if the sphere is inside the regions of the global octree. A
method suggested by Arvo [Arv90] finds the point on the
AABB that is closest to the center of the sphere; if its squared
distance is less than the sphere’s squared radius, they inter-
sect; otherwise, they do not. We propose another way of do-
ing this, taking in mind that it is easier to compute if a point,
the centre of the sphere, is in the box. If so, we have a mis-
take because part of the sphere would be inside the box. To
correct this, we increase the size of the cube, in each axis by
the length of the radius for maximum values and decrease
the length of the radius for the minimum values. Hereafter
we just compute if the centre is inside this new box. Figure
3 shows a snapshot of the octree working in the Broad Phase
using spheres as a BV.

5.2. The pairwises intersection test

In thecheck− collisions− in− pairs() routine, we store the
pairwise parts that are colliding, this is the output in the
Broad Phase and the input for the Narrow Phase. A data
structure is used to store the new pair while in collision, it

Figure 3: The Octree in the Broad Phase with Spheres as a
Bounding Volume.

can be released when the pair is separated again. This pair
will be useful in the Narrow Phase for checking the colli-
sions among primitives.

In the AABB-AABB overlapping test, the process is the
same as the region-AABB intersection. For spheres the in-
tersection test is to compute the distance of the two centers
and compare it with the sum of both radii.

Comparing the actual costs of sphere test and AABB test,
using squared distance spheres requires 4 multiplications,
6 additions, and 1 comparison, where AABB are handled
with only 12 comparisons and 3 logical tests. Thus, spheres
are generally more expensive when considering just a single
pairwise test.

Before finishing this section, we need to consider the
translation movement in every time step, so that having the
new AABB size, we add a translation ofd, taken from the
velocity and time employed(v = d/t). This is a quick pro-
cess that is applied to each vertex of the AABB, or the centre
in the case of the sphere. The last process to consider is the
border of the scene, trying to keep objects inside the global
region, this is just an overlap comparison with the global
AABB. In the case where the object reaches the threshold of
the global cube, we apply a change of direction in velocity
to continue the translation movement.

We take advantage of the physical simulation process to
add these routines rather than use more loops for updating
the AABBs. In the case of the translation motion we follow
the route defined by the direction of the object, and add this
displacement every time step.

6. The Narrow Phase

With DO, the problem is to constantly update the BV, so we
need to find out a method to reduce this process. We tried
to handle the neighbours of a vertex in a region, avoiding
a check of all vertices in the objects, but this is a problem
because the changeable motion can make parts of the surface
that are distant in one time step be close in the next time

c© The Eurographics Association 2006.

F. Madera & A. Day & S. Laycock / Collision Detection for Deformable Objects using Octrees

step. Another approach is to use the global octree; we tried
to use the scene’s octree detecting the regions that intersect
both objects, but it requires a check of all the vertices of the
objects, which is too expensive.

Our third trial was to work with the common region (CR)
between the two BVs. Having this CR, it is important to
know its place in each BV, and we would have three bound-
ing boxes to deal with, trying to get their intersection and
later to check for the vertices involved. This process also re-
quires more computation.

Finally, we decided to work with a hierarchy because the
number of vertices to be checked is less, subdividing the ob-
ject with an octree. This is because objects move and deform
over time and we can use the trees comparison to decide
which part to expand. We decomposed each object into sub-
objects, using AABBs or spheres. The subdivision process is
made in a preprocessing stage using a regular octree to store
the vertices of all the objects. This process takesO(nlogn)
time,n being the number of vertices of the object and log is
in base 8. Remembering that the BV should be updated ev-
ery time step, in the Narrow Phase we can reduce the number
of vertices to deal with, using only the parts colliding.

Now, we are ready to start the Narrow Phase. The input is
the pair collided that the Broad Phase reports. Using spheres
the basic idea in pseudocode is presented in Figure 4.

Narrow−Phase(Sh
k(Oi), Sh

k (O j))
1. For each child of Sh

k (Oi)inlevelh+1
2. If collision with Sh

k(O j)
3. For each child colliding
4. Compare with children of Sh

k(O j)
5. If collision happens
6. store pair (Sh+1

k (Oi), Sh+1
k (O j))

Figure 4: The Narrow Phase pseudocode.

The procedure is between two nodes in the same levelk,
starting with comparisons between children of node 1 from
Oi and node 2 fromO j (lines 1 and 2); if a collision occurs,
then we compare this result with children of node 2 (line 4)
to obtain the final result, pairs colliding in levelk + 1 (line
6). The complexity isO(4lognlogn) and the routine is called
several times, depending on which nodes are colliding. The
maximum number of children colliding when comparison
takes place is 4∗ 4 = 16. Observe that in binary trees, the
maximum number of nodes colliding is 1, and with the 4-
ary trees, the maximum number of nodes colliding is 2.

In pairwise collisions we could update the colliding region
on objectOi, but problems can arise when other objects are
closer and collide with that object. Object decompositions
are different, so that we can have several levels that compli-
cate the tracing process. Of course an object can be in two
or more pairwise collisions reported by the Broad Phase be-
cause it has collided with several objects at the same time.

The maximum number of collisions per object equalsn−1,
wheren is the number of objects. A snapshot of the Narrow
Phase using AABBs is shown in Figure 5.

As we saw in the pre-computation stage, the only differ-
ence when dealing with spheres and AABBs is the question
of collision. The process finishes whenlevel − allowed is
reached, and the output of the Narrow Phase is a set of ver-
tices colliding between two nodes. We have not made the
next phase, the contact determination which computes the
collision among primitives,V , E, or F .

Figure 5: A collision in the Narrow Phase using AABBs.

7. Experiments

The time complexity for computing the collision depends
on the number of vertices of the objects, and the number of
objects. Also, the smaller the size of the scene, the larger
the number of collisions among objects. Experiments were
focused in the comparison of the two BVs, AABBs and
spheres, with three, six and nine objects. The models used
were a pawn with 154 vertices and 304 faces, a fish with
216 vertices and 338 faces, and a rabbit with 453 vertices
and 902 faces. For instance, handling three objects with
spheres, we ran five times with a 10 minute execution time.
In each one we recorded the number of collisions in the
Broad and Narrow Phases. Results for the Broad Phase were
18,35,32,17,21, as Table 1 shows. Note that AABB allows
more collisions than spheres, so it proves that the overlap-
ping test is less expensive than the test for spheres.

According to the theory, the Narrow Phase takes more
time to be computed and explains the smaller number of col-
lisions reported. In the Broad Phase a tree is traversed, but
in the Narrow Phase two trees are traversed so there is more
computation. Experiments have shown that the average num-
ber of collisions in Broad Phase, using spheres, with 3 ob-
jects is 12.4, giving a collision every 48.38 seconds. This is
lower when compared with the use of the AABB under the
same condition which took 24.39 seconds. In the Narrow
Phase we have a collision every 96.77 seconds using spheres
and 41.09 seconds with AABBs.

This relationship is reduced when dealing with 6 objects;

c© The Eurographics Association 2006.

F. Madera & A. Day & S. Laycock / Collision Detection for Deformable Objects using Octrees

in the Broad Phase using spheres we had a collision every
12.34 seconds and every 10.16 seconds using AABBs. In
the Narrow Phase we have 21.27 seconds per collision with
spheres and 15.70 seconds with AABBs.

With 9 objects in the Broad Phase, with spheres, we had
a collision every 7.89 seconds and every 7.20 seconds with
AABBs, (very similar). In the Narrow Phase we got 17.24
seconds with spheres and every 12.29 seconds with AABBs.

Using our results to study the behaviour of the octree, we
can see that less collisions have been detected when using
spheres, but this number is almost the same as that in the
Broad Phase for 10 or more objects. In the case of the Nar-
row Phase the number of collisions is smaller but it has the
same pattern of behaviour. In other words it will not be sim-
ilar in both BVs until we get 20 or more objects.

Object Collisions in BP Collisions in NP

3 AABB=18,35,32,17,21 14,22,18,10,9
3 Spheres=12,18,10,15,7 7,8,7,4,5
6 AABB=85,69,53,43,45 51,45,37,29,29
6 Spheres=46,53,53,49,42 31,29,32,30,19
9 AABB=109,78,72,66,91 64,42,51,45,42
9 Spheres=61,84,85,86,64 24,37,45,44,24

Table 1: Number of collisisons detected.

To use more complex objects in the octree, we conducted
another experiment with two more models, each one was
used three times in the scene. Three objects of the first
model, a human model with 1250 vertices and 2500 faces,
gave the same behaviour with both BV as shown in table un-
der the same conditions; the difference was that with more
primitives, the physical motion reduces its speed. The other
model, also with three in the scene, a bike with 9543 vertices
and 18238 faces, reduced the difference between the number
of collisions in both phases, about one or two collisions more
with AABBs than with spheres. That means that with more
complex objects we could get a similar number of collisions
in the two BV.

The increase in the number of primitives does not mean a
large depth in the BVH, assuming they are of the same size.
Smaller primitives imply more depth in the octree because
regions can bound tighter primitives, or using other meth-
ods for the BVH. There are two basic methods to wrap a
surface: top-down and bottom-up. In this work we use a top-
down approach starting to bound the whole object in the first
step, and subdivide in octants the surface in the second step,
and so on. The process stops when a triangle is bounded; if
we continue the algorithm, then this triangle would be sub-
divided into eight regions, that is incorrect because we do
not have more vertices in there. Surfaces with the same tri-
angle sizes have the same number of subdivisions and sur-
faces with smaller triangle sizes will have more subdivisions.
This is important in the Narrow Phase because the algorithm

finishes when thelevel − allowed is reached, a value that
should be specified in the BVH.

The main routines in the algorithm are the Broad Phase
and the Narrow Phase. The Broad Phase involves two pro-
cesses, the region-BV intersection test and the overlapping
intersection test in pairs. The first process takesO(nlogn)
time because in each level of the region we must check the
number of vertices inside a region of the octree. The sec-
ond process is a pairwise collision detection technique, that
in the case of the AABBs takes O(12) and O(11) for the
spheres. This phase can be changed using k-ary trees to ob-
serve the performance, so that the complexity would change
in the logkn. Our Broad Phase method is better than the
brute force Broad Phase, and comparable with the sweep and
prune method.

The second big routine is the Narrow Phase that uses the
BVH to compare the two trees of the objects, making the
traversal process in a top down approach. Basically, it is a
tracing process considering the two object’s octrees. In the
first step the eight children nodes ofOi are compared with
the parent node ofO j. The result that can not be more than
4 children nodes ofOi, is compared with the eight children
nodes ofO j, getting a maximum number of steps equals 8
+ 4(8) = 8(4+1) that means 4k8(5)logn, being the result no
more than 4 pair nodes, i.e. four nodes inOi and four nodes
in O j. This is for one level, but it is an increasing process,
thus we haveO(4lognlogn) complexity time. The advantage
is that we deal with a smaller number of vertices, because
when we are moving down along the tree, we take the ver-
tices bounded with smaller boxes or spheres, and then we
spend less computation time.

8. Conclusions

We have presented a fast method that uses octrees in two
phases (the Broad Phase and the Narrow Phase), to main-
tain uniform processing in order to reduce computation in
deformable objects. The algorithm is particularly useful for
interactive simulation in large 3D environments. Algorithms
based on spatial partitioning are independent of the model
used for the deformation calculation of objects and we have
shown that it can be used in the Broad Phase and with BVH
in the Narrow Phase.

Collision detection is based on the comparison between
the objects involved and it can be done using trees in Nar-
row Phase and Broad Phase, taking advantage of the spatial
coherence in the primitives. An object can be represented
in several ways, and sometimes we could examine the be-
haviour between its motion and deformation to know at in-
teractive rates the location of the primitives. However, our
program is independent of this relationship, and the user can
insert his own deformation routine. Using octrees the proce-
dure can be done in an easy and flexible way to adjust to the
application.

c© The Eurographics Association 2006.

F. Madera & A. Day & S. Laycock / Collision Detection for Deformable Objects using Octrees

Given an environment composed of triangulated objects,
our algorithm computes the overlap between regions and
BVs, as well as between BVs. The complexity of the al-
gorithm in the Broad Phase is less thanO(n2), and in the
Narrow Phase isO(4lognlogn). We implemented the algo-
rithm on a PC with a 3 Ghz processor and 1Gb of memory.
The tests involved 3,6, and 9 moving DO in an octree region.
The algorithm is easy to implement and makes no assump-
tion about the physical model, and motion. It is able to com-
pute all the contacts among multiple objects at interactive
rates.

There are some improvements to be done in the future
such as the pre-computation stage making tighter nodes, us-
ing a method similar to [BO04]. Also, it would be inter-
esting to apply the bottom up method, and study the use of
other BVs, such as the OBB. In addition to the contact deter-
mination phase, the use of a more complex DO, and a larger
number of objects to be dealt with are further topics to ex-
amine in detail.

References

[Arv90] A RVO J.: A simple method for box-sphere inter-
section testing. Andrew Glassner, editor, Graphics Gems,
Academic Press, New York, 1990.

[Bar92] BARAFF D.: Dynamic simulation of non penetrat-
ing rigid bodies. PhD thesis, Cornell University, Com-
puter Science Department, 1992.

[BO04] BRADSHAW G., O’SULLIVAN C.: Adaptive
medial axis approximation for sphere-tree construction.
ACM Transactions on Graphics 23, 1 (2004), 1–26.

[ES04] EBERLY D., SHOEMALE K.: Game Physics. Mor-
gan Kauffmann Publishers, San Francisco, 2004.

[GDO00] GANOVELLI F., DINGLIANA J., O’SULLIVAN

C.: Buckettree: Improving collision detection between
deformable objects. InProceedings of Eurographics
(2000).

[GLGT98] GREGORY A., L IN M., GOTTSCHALK S.,
TAYLOR R.: H-COLLIDE: A framework for fast and ac-
curate collision detection for haptic interaction. Tech.
Rep. TR98-032, University of North Caroline, Chapell
Hill, 1998.

[GLM96] GOTTSCHALK S., LIN M., MANOCHA D.:
Obb-tree: A hierarchical structure for rapid interference
detection. InProceedings on SIGGRAPH 96 (New York,
1996), ACM, pp. 171–180.

[GRL03] GOVINDARAJU N. K., REDON S., LIN M. C.:
Cullide: Interactive collision detection between complex
models in large environments using graphics hardware. In
EUROGRAPHICS 03 (Germany, 2003), EG.

[HTG03] HEIDELBERGER B., TESCHNER M., GROSS

M.: Volumetric collision detection for deformable ob-
jects. InProc. VMV 03 (2003), pp. 461– 468.

[HTG04] HEIDELBERGER B., TESCHNER M., GROSS

M.: Detection of collisions and self collisions using im-
age space techniques. InProc. VMV 04 (2004), pp. 145–
152.

[Hub95] HUBBARD P.: Collision detection for interactive
graphics applications.IEEE Transactions on Visualiza-
tion and Computer Graphics 1, 3 (1995), 218–230.

[JP04] JAMES D., PAI D.: Bd-tree: Output-sensitive col-
lision detection for reduced deformable models.ACM
Transactions on Graphics (SIGGRAPH 2004) 23, 3
(2004).

[JTT01] JIM ÉNEZ, THOMAS F., TORRASC.: 3d collision
detection: A survey.Computer and Graphics 25, 2 (2001),
269–285.

[Klo98] K LOSOWSKI J.: Efficient collision detection us-
ing bounding volume hierarchies of k-dops.IEEE Trans
on Vis and Computer Graphics 4, 1 (1998), 21– 36.

[KNF04] KIMMERLE S., NESME M., FAURE F.: Hierar-
chy accelerated stochastic collision detection. InVision,
Modeling, and Visualization (Stanford, California, 2004).

[KZ05] K AVAN L., ZARA J.: Fast collision detection for
skeletally deformable models.Computer Graphics Forum
24, 3 (2005), 363–372.

[LAM01] L ARSSONT., AKENINE-M öLLER T.: Collision
detection for continuously deforming bodies. InEuro-
graphics 2001, Short Presentations (Manchester, Septem-
ber 2001), Eurographics Association, pp. 325–333.

[LG98] L IN M. C., GOTTSCHALK S.: Collision detec-
tion between geometric models: a survey. InProc. IMA
Conference on Mathematics of Surfaces, 1998 (1998).

[PLM95] PONAMGI M., L ING M., MANOCHA D.: Incre-
mental collision detection for polygonal models. InPro-
ceedings of the eleventh annual symposium on Compu-
tational geometry (Vancouver, British Columbia, Canada,
1995), pp. 445– 446.

[SKTK95] SMITH A., KITAMURA Y., TAKEMURA H.,
KISHINO F.: A simple and efficient method for accurate
collision detection among deformable polyhedral objects
in arbitrary motion. InProceedings of the Virtual Real-
ity Annual International Symposium (VRAIS’95) (1995),
pp. 136–145.

[SOM04] SUD A., OTADUY M., MANOCHA D.: Difi:
Fast 3d distance field computation using graphics hard-
ware. InEUROGRAPHICS 04 (Germany, 2004), vol. 3,
EG.

[THM∗03] TESCHNER M., HEIDELBERGER B.,
MÜ LLER M., POMERANETSD., GROSSM.: Optimized
spatial hashing for collision detection of deformable
objects. InProc. Vision, Modeling, Visualization VMV’03
(2003), pp. 47– 54.

[THMG04] TESHNERM., HEIDELBERGERB., MÜ LLER

c© The Eurographics Association 2006.

F. Madera & A. Day & S. Laycock / Collision Detection for Deformable Objects using Octrees

M., GROSS M.: A versatile and robust model for ge-
ometrically complex deformable solids. InProceedings
of Computer Graphics International 2004 (USA, June
2004), IEEE, pp. 312–319.

[TKH∗05] TESCHNER M., KIMMERLE S., HEIDEL-
BERGER B., ZACHMANN G., RAGHUPATHI L.,
FUHRMANN A., CANI M., FAURE F., MAGNENAT-
THALMANN N., STRASSERW., VOLINO P.: Collision
detection for deformable objects.Computer Graphics
Forum 24, 1 (2005), 61– 81.

[VB04] V ERTH J. M. V., BISHOPL. M.: Essential Math-
ematics for Games and Interactive Applications. Morgan
Kauffmann Publishers, 2004.

[vdB97] VAN DEN BERGEN G.: Efficient collision de-
tection of complex deformable models using aabb trees.
Journal of Grpahics Tools 2, 4 (1997), 1– 14.

c© The Eurographics Association 2006.

