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Abstract

A method is presented to extract the outline of the skull region in coronal Magnetic Resonance (MR) images from
the Visible Human Project. The starting point is the formulation of a Gradient Vector Flow (GVF) snake extended
to include statistical shape information. This method exploits the diffusion process used by the GVF snake and
improves its capacity to deal with occlusion problems by adding a shape term to the traditional scheme. The
results of the segmentation of the MR data are compared with the results of the segmentation of CT scans of the
same individual. For the MR data, the addition of a shape term improves on the results obtained by using a GVF

snake alone.

Categories and Subject Descriptors (according to ACM CCS): 1.4.6 [Image Processing and Computer Vision]: Edge
and feature detection 1.4.7 [Image Processing and Computer Vision]: Size and shape 1.3.3 [Computer Graphics]:

Boundary representations

1. Introduction

The process of skull segmentation in medical images is an
important step toward a complete segmentation of tissue in
the human head [RBH*99], but is difficult to automate using
current techniques. Our work aims to address this and thus
promote study of the relationship between the skull and the
face. In particular we are interested in the area of forensic fa-
cial reconstruction [KHS03, VVMNO00, Wil04]. Forensic fa-
cial reconstructions are usually carried out by using tables
of tissue depth measurements at discrete landmark points on
the human face [Wil04]. By using MRI data to extract the
complete skull-skin relationship, our aim is to improve upon
the use of such discrete data sets, and thus produce better
computer-based reconstructions.

In our approach, we extract the skull surface by bi-
dimensionally segmenting a set of images of an MR vol-
ume. The extracted contours are then assembled to create
a 3D skull model. At each slice, the skull region is seg-
mented as a single contour or as a combination of several
partial skull contours. The extracted contours are then as-
sembled to create a 3D skull model. The segmentation pro-
cess is made up of two components. The first component
is an active contour [KWT88, IT98] directed by image fea-
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Figure 1: The magnetic resonance male dataset from the
VHP project [Ack98, SASW96]. Left: a typical MR scan im-
age. Right: the structure of the volume.

tures which *blindly’ tries to enclose skull areas. The second
component is a shape term [CTWS02] which adds statistical
knowledge of the likely shape to find. The two components
are combined to make an active contour evolve towards a
minimum within the static potential field calculated from the
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gradient information in an image. To test our approach, we
use the Magnetic Resonance (MR) 3D dataset of the male
head from the Visible Human Project [Ack98, SASW96].
Figure 1 illustrates the multiple slice structure of this dataset.
A Computer Tomography (CT) volume of the same person is
also available. Figure 2 shows an example of two modalities
for the eye socket region, which is one of the most com-
plicated regions for skull segmentation in MR images due
to the high variability of pixel intensities of the bone compo-
nents [HHP*97]). To assess the performance of our proposed
algorithm, the results of the MR segmentation will be com-
pared with the results of segmenting the same bone area in a
CT image, which is relatively straightforward to segment.

In the field of medical imaging, there are several ap-
proaches available for dealing with segmentation issues.
Approaches such as region growing [HHP*97], level-sets
[HF04] and deformable models [KWT88, IT98] have been
successfully applied to segmentation of specific tissue types
in MRI images such as white matter, grey matter and cere-
brospinal fluid. However, MRI skull segmentation has re-
ceived little research in the last years [SHI*07]. The com-
plex topology of the skull, the high pixel intensity variations
present in some skull areas, and the existence of thin regions
of skull, which are difficult to detect with current MRI sam-
pling resolutions, are the principal issues that complicate this
task.

One of most important problems to solve to achieve a
complete MRI tissue classification is the partial volume ef-
fect, which is the situation where one voxel of the volume
may contain multiple tissue types. Most of the techniques
used for MRI tissue classification work under the assump-
tion that the tissue types of each voxel can be separated by
means of the statistical properties of their intensities. For ex-
ample, in the work of Laidlaw et. al. [LFB98] a Bayesian
partial volume classification is proposed with a number of
restrictions such as: discrete materials, sampling theorem
satisfied and linear mixtures between the tissues (all of them
difficult to guarantee in the case of the skull). Vandermeulen
et. al. [LMVS03] also propose a similar approach for deal-
ing with partial volume problems. Similarly, this work of-
fers good results for brain tissues present in MRI but is not
directly applicable to the skull.

Some attempts have been made to apply the above tech-
niques to the problem of skull segmentation in MRI images.
Dogdas et. al. [DSL02] propose a method in which the seg-
mentation of the skull is done by using mathematical mor-
phology operations in the spatial domain of the image. This
work is a good example for illustrating that even having clas-
sified most of the tissues in a human head that are not bone,
detecting the skull is still a problem. The work of Rifai et.
al. [RBH™99] is one of the first attempts to include shape in-
formation in the skull segmentation, combining region grow-
ing and level-set techniques. Heinoen et. al. [HHP*97] pro-
pose some statistical models for tissue classification applied

to the problem of detecting bone pixels and using thresh-
olding and region growing algorithms. In [SHJ*07] a reg-
istration method is employed in which a set of skull models
generated from CT segmentations is used for registering new
data in MRI modalities. There is room for improvement in
the results produced by these methods.

(b)

Figure 2: A portion of a slice of a human head (from the
VHP dataset) showing the same anatomical region, approx-
imately at the level of the right eye with a view from above
the head. (a) The CT scan version and (b) the MR version.

In the field of deformable models, several approaches
have been proposed to combine image features with shape
information. For instance, Abram et. al. [AS99] include a
statistical form of a shape in an active contour, which is mod-
eled with a vector representation based on the centroid and
orientation of a shape. Gunn [GN94] uses a dual active con-
tour to define a region of convergence between an external
and an internal active contour. Simple objects can be seg-
mented with this combination under high quantities of noise.
Fang et. al. [FCO06] include the shape in a geodesic active
contour in the form of PCAs of previously trained shapes.
Cremers et. al. [CTWSO02] propose a diffusion snake with
the inclusion of a shape term and a dynamic potential field,
which has to be calculated at each iteration of the snake evo-
lution. Tejos et. al. [THCBO6] have tested a diffusion active
contour proposed by [CTWS02] to segment articular carti-
lage in MRI images.

The originality of our approach is the use of a deformable
model using a static potential force defined as a gradient vec-
torial flow (GVF) in all the image domain. This combina-
tion is presented as an alternative to tackle some of the main
problems in skull detection in MR images. We will demon-
strate that this works where other techniques based on gradi-
ent (e.g. [XP97]) have difficulties. The proposed integration
can offer the following advantages over other methods:

e The static potential can be calculated just once at the be-
ginning of the process in contrast to other techniques that
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use a dynamic approach (e.g. [PTT02]). This computation
can also be parallelized.

e Gradient information can be exploited in regions where
the contour is clearly defined by the gradient profile and
shape information is used to contribute in areas where it
is not possible to establish a clear border (e.g. in regions
where the MR values fail to distinguish between skull and
air).

e The gradient vector flow potential increases the range of
capture (which is the region of influence of an object’s
edge on the active contour) and allows the evolution of
the active contour through concave regions (in which two
edges of the object contour are relatively near to each
other and can counteract the contour evolution process),
which is a problem with other gradient based approaches.

The rest of this document is organized as follows. Sec-
tion 2 introduces active contour terminology, and the gradi-
ent vector flow (GVF) snake and its potential field. Section
3 describes the inclusion of statistical shape knowledge to
the active contour formulation. Section 4 presents the exper-
imental results and, finally, section 5 states the conclusions.

2. Gradient vector flow active contours

A traditional formulation for an active contour, or snake
[CKS97, TWKS88, KWTS88, IT98], is a curve x(s) =
[x(s),y(s)], s € [0, 1] that moves through the spatial domain
Q of an image in order to minimize: :

1
Ei= [ G@ G +B () + Ealals)ds (D
0

where x’(s) and x”/(s) stand for the first and second deriva-
tive of the curve x with respect to s, and o and 3 are weight-
ing parameters that control the active contour tension and
rigidity [KWT88]. The external energy E.y is obtained from
the image and reaches its lower values at interest features
such as boundaries.

Gradient vector flow (GVF) active contours are curves un-
der the influence of a potential force called gradient vector
flow [XP97]. The gradient vector flow is an external force
computed as a diffusion of the gradient vectors of the image.
This force is used to attract the snake towards the edges in
the image. The evolution of a GVF snake can be formulated
by solving equation (1) by minimizing the following Euler
equation:

o (s) + Bx"" (s) = VEewu =0 ()
To find a solution to equation (2) the snake is made dy-
namic by treating x as a function of time ¢ as well as the

spline parameter s. i.e. x(s,7). Then a partial derivative of x
with respect to ¢ can be formulated as:

xe(s,8) = o’ (s,2) + Bx"" (5,¢) — VEen 3)

(© The Eurographics Association 2008.

When the solution x(s,7) stabilizes, the term x;(s,?) grad-
ually disappears and we achieve a solution for equation (2).
The GVF active contour used in this work uses the following
potential force influencing the curve evolution:

VEeu(x,y) = —|VI(x,y)P “

where I(x,y) is the image intensity of pixel (x,y). The vector
field v(x,y) = (u(x,y),v(x,y)) associated with this potential
force is obtained by minimizing the energy functional:

£ = /p(u§+u§+v§+v§) + VP V=V dxdy (5)

where u is a regularization parameter controlling the com-
promise between the first and second terms of the integral,
and f(x,y) = —Eex(x,y) is an edgemap defined in the do-
main of the image. This functional has the effect of keeping
v nearly equal to the gradient of the edge maps when V f is
the most important component and varying in a smooth way
in regular regions. Expressing the components of this vector
field in terms of the time parameter ¢ gives:

ut(x7yut) = :uvzu(xvyvt) - (M(X,y,t) _fX(x7y))

(feley)® + f(x,0)7) 6)
vi(xy,t) = uVv(en) — () — f(x,y)
(feley)® + f(x,0)7) %

A stable finite difference implementation for solving the
steady-state of these equations is given in detail in [XP96].
The calculated field v, after the minimization process, re-
places the potential force VE.y in equation (3). Figure 3(a)
shows a CT image of an area around the right eye socket
and in 3(b) its potential forces derived from the edges of the
object (image features). Figure 4 shows the GVF of an MRI
thresholded version of the same area shown in figure 3. Note
that the skull region is partially defined and it will not be
possible to segment if additional shape information is not
included.

3. Including shape knowledge in the segmentation
process

The shape term we use in this work is an adaptation of the
one proposed by Cremers et al. [CTWSO02]. For a contour
C = x(s) we consider the following extended energy :

E =E;+ VE:(C) (8)

where the term E; is the energy contribution of a GVF active
contour, E. benefits contours with similar shapes to the one
acquired in a shape training process, and 7y is a factor to
regulate the amount of influence of the shape term.

In general terms, the training process consists of collect-
ing a set of similar shaped objects. We adopt the concept of
shape defined by Dryden [DM98], who defines the shape
of an object as all the geometric features of the object that
are unchanged when it is translated, rescaled and rotated in
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Figure 3: A portion of the skull around the right eye socket
(area presented in figure 2(a)). (a) Original gray level CT
image. (b) GVF field of the image and the rectangular
marked area enlarged (c). The black line in (c) represents
a portion of the object boundary and the blue arrows the
direction of the GVF potential forces.

@ (b)

Figure 4: The GVF of the MRI image presented in figure
2(b). (b)Detail of the GVF at the rectangular marked area
enlarged.

an arbitrary coordinate system. In this work, the set of geo-
metric features corresponds to a set of points placed along
the object contour. The labelling of the control points can be
done manually or automatically and the main objective is to
create a reference set of control points to model the statistical
shape variation.

The effect of combining E; and E. is twofold. First, it
augments the capture range of potential field forces (which
leads to less sensitivity to initialization). Second, it improves

the capacity of the snake to deal with occlusion problems by
adding knowledge of the shape of the object to segment.

The following subsections describe the derivation of the
Ec term of equation (8) which accounts for pre-established
shape information.

3.1. Incorporating statistical shape information

In our work, the active contour C is represented with a
quadratic B-spline curve:

C:[0,1] - Q, C(s) = ipiB,-(s) )
i=1

where s is the parameter of the spline, p; is the set of control
points, and B;(s) are the quadratic periodic B-spline basis
functions [Far97, BI98]. A 2D object shape z is represented
by a set of n pairs of control points defining the curve. The
shape z can be referred to as a unidimensional vector with
the following structure:

2= (X1, V15 ees X V) (10)

For the shape formulation, we assume that each trained
shape has the same number of related control points n and
that the spatial position of each control point i can be mod-
elled with a Gaussian distribution. Figure 5 shows an exam-
ple of this configuration for a four-shape training set. From
this configuration we can obtain some parameters for the
family of shapes as the mean shape u and the covariance
Y of the set.

W Centroid of the cluster

@ Control paint

Figure 5: The figure shows control points i=1,20,30,40,60
of four trained shapes and their related centroids. Each of
the shapes is defined by 80 sampled points. The lines in blue
show each shape trained after alignment.

The covariance matrix X defines a probability measure
for the shape space. If the covariance matrix is full rank, its
inverse £~ ! exists and the Gaussian probability distribution
of the shape zis :

1 —1
P(Z)mexp(—i(z—u)TZ (z—u)) (11
Here o denotes direct proportionality between the left and
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right expressions and u is the average shape of the train-
ing set. The requirement for X to be full rank is only ac-
complished by having at least 2n different training shapes.
In practical terms, this can be a strong limitation. To solve
this problem, a technique of covariance regularization must
be applied in order deal with a number of training shapes
less than 2n. We follow the ideas proposed in Cremers et al.
[CTWS02] to accomplish this task using 6 | = % . Finally, it
is important to note that the Gaussian probability in equation
(11) corresponds to the quadratic energy [CTWS02]:

Ec(z) =log(p(z)) + const = —%@—Nz;l (z—p) (12)

with const = —log(k).

3.2. Incorporating invariance in the shape term

So far, the term E. in equation (8) is not invariant with re-
spect to similarity transformations of the shape z. For an in-
variant scheme, the shape of the active contour z is first cen-
tered and then aligned with respect to the regularised shapes
of the training process. The term representing the centered
shape version z. can be obtained with :

te=(hy— 1)z (3)

where I, denotes the identity matrix of size 2n, n is the num-
ber of control points and the 2n x 2n matrix I' is given by:

—_ O =
S = O
—_ O =
O = O

(14)

The aligned shape vector Z is obtained by means of the fol-
lowing expression:

MZL'
Z= 15
M| (15)
with:
T T
M Zc - XZc
M=I,® 16
" (#TXZc ' ze ) (10

where I, is the identity matrix with n rows and the ® is the
Kroenecker product. For more details of how to obtain these
equations see [DM98] and [CTWS02].

4. Results

To test our algorithm, we have designed two groups of ex-
periments: experiments with synthetic images and experi-
ments with real images. The first group uses designed bi-
nary images which are synthetic images created with sim-
ple geometric objects. This design facilitates comparisons
between the expected results and the outcomes of our seg-
mentation approach. For the second category, the experi-
ments were carried out with MR images from the VHP male
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dataset [Ack98, SASW96]. These MR images were selected
from areas of the head with different levels of difficulty in
segmenting the skull. The training shape procedure is sim-
ilar for both groups of experiments and is described in the
following subsection.

4.1. Training set creation

In all the experiments, the training set consists of six ob-
ject shapes, which are in turn made up of a fixed number of
sampled points taken along the object’s perimeter at equal
distances from each other. This number of control points is
40 for synthetic images and 80 for real images.

The trained shapes were acquired with a manual labelling
process. The user is presented with an image containing an
outline of one object. As the initial step, the user selects
with the mouse a number of points on the object contour.
The shape of the object is reconstructed from these points
by means of a quadratic B-spline interpolation. The result-
ing curve is resampled and the control points are stored in
the same order and number for each shape. This process is
repeated six times for each object. For the expermient with
synthetic images, the object outlines labelled were one el-
lipse and one rectangle. For the real images, the training pro-
cess consists of manually labelling the skull area in the CT
image. Even though it seems like a lot of work for the im-
ages, the manual segmentation is useful to simulate the vari-
ation of the shape distribution. For real images there may be
tens or hundreds of images to segment having similar shaped
regions, and labelling just six is worthwhile if it gives better
results for the rest of the images. Better yet, the results for
the rest can then be fed back into the statistical model to im-
prove it.

4.2. Synthetic images

Figure 6 presents the synthetic image designed for the ex-
periment and figure 7 shows some results of our algorithm
applied to this image. Each row in figure 7 represents the
outcomes of the algorithm for different y values. The pa-
rameter combination is presented in table 1. As expected,
setting Y = O results in the whole contour of the composed
object being detected (illustrated in the first row). The sec-
ond row shows a contour ‘trapped’ between the forces of the
GVF potential and the shape potential. In this case, the con-
tour converges to a bad solution with just some portion of
the rectangular shape detected. In the third row, the shape
term of the snake is high enough to deform the active con-
tour towards the borders of the rectangular contour. Finally,
the last two rows show an acceptable approximation to the
objects of interest (a rectangle and an ellipse respectively).

4.3. Real images

The next experiment consists of segmenting the bone area
shown in figure 2(b). Figure 4 shows its GVF potential cal-
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Figure 6: Synthetic image created with an ellipse and a rect-
angle overlapped to simulate occlusion (a) The object is rep-
resented with a region of zero pixel intensities. (b) The edge
map of the image

Row | Shape Tension Trained

# term Rigidity shape

1 Yy=0 a=B=pu=0.5 | Rectangle
2 vy=10 oa=B=wu=0.5 | Rectangle
3 v=380 a=P=wu=0.5 | Rectangle
4 y=100 | a=pB=wu=0.5 | Rectangle
5 y=100 | a=B=u=0.5 | Ellipse

Table 1: Parameters for segmenting the image in figure 6(b)
using a rectangular trained shape.

culated from a pre-processed thresholded version of this im-
age. Figure 8 displays some results for different y values.
Usually, in the case of a simple active contour after a number
of iterations, and depending on the forces directing its evo-
lution, there are two possibilities: it can collapse to a single
point or can expand endlessly. In the case of our algorithm,
the active contour will always converge to an object silhou-
ette similar in proportions to the trained shape, as illustrated
in figure 8(d). In this case the resulting contour is directed
by the shape configuration rather than the image features.

As in the case of synthetic images, if the y value is in-
creased, the shape information influences the outcome, re-
sulting in a scheme directed by the shape. This will com-
pensate for the missing information of bone components of
high intensity in the MR image. A very high value of y will
conduct the resulting segmentation to a shape configuration
within the distribution of the trained shapes. As can be seen
in this figure the result of setting a low shape term gives a
poor segmentation of the expected object because of the high
variability of pixel intensities in bone regions.

For this region, the average error between the correct seg-
mentation and the final active contour obtained from the MR
segmentation is € = 1.97 pixels (or 0.8mm in real values)
with a variance 6% = 0.93 pixels2 0.15 mmz). This error rate
is calculated by averaging the distances between the 80 con-
trol points from the CT segmentation and the control points
from the resulting MR segmentation and assuming that the
CT segmentation represents the correct shape at the correct
position.

0,

)

N

Figure 7: Extracting one object from the image in figure
6(b). Table 1 gives the parameters used for each row. The
first column displays the active contour evolution at each it-
eration (red lines) overlaid on the feature map (gray pixels).
The central column shows a comparison between the final
state of the snake and the feature map (gray line). The right-
most column of this figure displays the resulting detected
contour.

Figure 9 shows the result of assembling, by means of
a 3D interpolation with Radial Basis Functions [CBC*01],
the points of several contours extracted with the algorithm.
The image illustrates the results for the upper half of the
head for two situations: without shape included and with
the shape term included. Figure 10 shows a comparison be-
tween the resulting models and a reference CT-segmented
model, with the colour-coding based on geometric distance
[dSO7,RFTO04]. In the case of the region presented in figure
10, and for the pure image driven approach (left), the aver-
age error is € = 1.46 mm with 6% = 1.25 mm?. For the shape
included approach (right), the error rate is € = 1.07 mm with
6% = 0.47 mm?.

5. Conclusions

We have presented a new, integrated segmentation method
that combines an active contour with a shape term, which
introduces prior anatomical knowledge to constrain the evo-
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(d}

Figure 8: Results of the MR segmentation for different shape
parameters. (a) Initialization. Result for: (b) y=1 X 107 (c)
v=2x10" and (d)y=5x 10’

Figure 9: Results of segmenting the shape without shape
term included (left) and with a shape term included (right).

lution of the snake. The shape term make use of a GVF static
potential in contrast to approaches that use a dynamic poten-
tial. We have demonstrated the application of the method to
the skull segmentation problem for MRI data in a known,
difficult to segment region [HHP*97]. Our method has ad-
vantages over other approaches in that it can deal with prob-
lems such as sub-sampling, occlusion, evolution toward con-
vex areas and incomplete information.

The result of the experiments suggest that if an approx-
imation to the anatomical shape is known, and a good ini-
tialisation step is given, then our technique gives acceptable
results. In our current work, these two conditions are subject
to human intervention. Also, the user currently tunes the pa-
rameters to control the shape term in the approach. We are
working on automatic techniques to estimate all of these ac-
cording to the image properties and the spatial location of the
object contour to segment. For example, in regular smooth
areas of the skull (as in the area above the eye cavities) the
shape parameter can be lower than in more complex areas

(© The Eurographics Association 2008.

Figure 10: Colored models representing the geometric dis-
tance (mm) between the MR segmented models without (left)
and with (right) the shape term included, and a skull model
segmented from CT scans. Lateral (top) and frontal(bottom)
views of the area around the eye cavities.

(such as the eye socket region presented as an example in
this paper).

The current approach works with 2D contours. We are
currently working on a 3D implementation to segment the
whole skull as a 3D entity. This 3D implementation will be
based on a skull-skin atlas, where the template skull layer
will be used to initialise a 3D deformation model by means
of a registration process between face layers (since the face
layer is easy to extract from MRI data). Statistical knowl-
edge of skull dimensions will also be included in the model
to constrain the evolution of the deformable template at each
step of the segmentation.

M.S. acknowledges CONACyT-México for the scholar-
ship support, and also thanks Dr. D. Cremers for his valuable
comments about diffusion snake implementation.
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