EG UK Theory and Practice of Computer Graphics (2008)
Ik Soo Lim, Wen Tang (Editors)

Generation and Tessellation of Tree Stems

Jo Skjermo f

Norwegian University of Science and Technology. Department of Computer And Information Science.

Abstract

When visualizing tree stems and branches for use in interactive applications, the polygon models resolution are
usually as low as possible to achieve a high frame rate. Also, to ease animation and mesh generation, each branch
of a tree model is often considered as a distinct mesh. However, by using a single watertight mesh for a tree,
together with (GPU-based) tessellation, both the resolution and appearance of a tree can be greatly improved
while maintaining a high frame rate. This paper presents concepts, ideas and early work on generating watertight
polygon meshes of animated trees stems suitable for refinement and tessellation of such meshes.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Line and Curve Genera-
tion [.3.7 [Computer Graphics]: Three Dimensional Graphics and Realism

1. Introduction

As of today, a complete tree is often rendered by using dis-
tinct branches, where a child branch is drawn as starting in-
side its parent branch. However, this approach gives a vi-
sual error where the polygons of a child branch penetrate
the polygons of the parent branch. This is especially notice-
able when animating a tree. To reduce this problem, one can
generate a single mesh for the whole tree (only the main
branches of a tree is considered, as texture fronds can eas-
ily be used to flush out a tree with details). The generated
mesh can then be tessellated for improved appearance.

1.1. Overall Approach

The work presented here considers two approaches, depend-
ing on the method used for animating the trees. In the first
approach a structure of rigid bodies and joints is constructed.
Then a low resolution mesh is generated at each time step,
which is used for tessellation.

In the other approach, a low resolution polygon mesh is
generated directly from the trees description. The vertices
of this mesh are considered to be mass points, while the
edges are considered to be length constraints. After each

1 Jo.Skjermo@idi.ntnu.no

(© The Eurographics Association 2008.

time step the mesh is tessellated. For all physic simulations,
the AGEIA PhysX physics engine [Phy] is used.

2. Tree Generation

For the generation of the polygon mesh of a tree model, a
tree is considered to be a set of connected segments which
has a start and end point, with a given length and radius.
In addition, at an end-point of a segment with more than a
single attach segment, the attached segment with the largest
radius is considered to be the direct continuation of the seg-
ment with the end-point (the branching points). In other
words, the child segment with the largest radius is consid-
ered to be continuation of the present branch, while any other
segments are considered new branches.

2.1. Branching Rules

It is assumed that the radii, and the angles of branching at
the branching points follow the rules for branching of vas-
cular transportation systems as set forth by DaVinci, and re-
fined by Murray (see [SE05]). The first rule states that the
area just before branching is equal to the sum of the areas
after a branching. The second rule describe the angles that
the child branches are rotated away from the parent. If the
branches follow these rules, the mesh generation approach
will mostly generate a well-behaved low polygon mesh, al-

delivered by

www.eg.org

-G EUROGRAPHICS
: DIGITAL LIBRARY

http://www.eg.org
http://diglib.eg.org

164 Jo Skjermo / EG Generation and Tessellation of Tree Stems

though no throughout verification has been done to the va-
lidity of this assumption yet.

2.2. Rigid Body Tree

In the case of a tree consisting of a set of rigid bodies, a
branch consists of a set of capsules (a swept sphere) attached
to each other in succession. At branching points, the parent
capsule is shortened by an amount equal its radius, and a
capsule of height zero is added (a sphere). This approach
can be seen to the left in Figure 1.

Figure 1: Left: Capsules, Right: partly generated mesh

Joints with springs can be used to connect segments at
any point. However, note that if one does not add a joint be-
tween two capsules, these are considered to be part of the
same rigid body. In this context, the rigid body generation
can be seen as similar of the approach presented in [Zio08].
If several capsules are used as part of the same rigid body,
one has to take special care when handling destruction; by
finding what segments to remove from the body. These seg-
ments can then be added to a new rigid body for further an-
imation. This approach enables full collision detection and
destructible trees, but is computational costly, so it should
be considered only when required.

2.3. Mesh Generation

The generation of the low polygon mesh is in concept sim-
ilar to the approach presented in [SEO5] (recommended for
clarification). For a capsule/segment four quads is generated,
by using the direction, the start points, the end point and the
radii (basically, a matrix skinning). A mesh of a branch is
generated by following the capsules for that branch, starting
at its root.

However, if a capsule has more then one attached (child)
capsule, the first child capsule is added by generating a new
slice at a length equal the segments radius. For the spheri-
cal capsule, only the sides that have no additional child seg-
ments in its direction are closed, as seen in Figure 1. For any
child capsules, a start slice for the segment is found by trans-
lating along its direction by a distance equal its radius. This
slice and the open part of the spherical capsule can then be
closed with quads.

Special care has to be taken when generating normal

vectors, as the normal vectors are used to generate control
points for tessellation. Generating normal vectors using all
the quads sharing a vertex will result in a deformation of the
parent branch around branching points. However, this is eas-
ily fixed by ignoring any quads not part of the present branch
when generating the normal vectors for a branch, and assum-
ing that all directions are closed off at branching points. That
is, only the vertices considered to be part of the same branch
are used when generating the normal vectors.

2.4. Tree Mesh as Cloth

In this approach a low resolution polygon mesh of a tree
is generated directly from the tree description. The vertices
are considered mass points, while the edges are considered
to be length constraints. One approach for animating such
structures could be to use Verlet integration as described in
[Jak03], or even animate on the GPU as described in [Nvia].
However, as the PhysX physics engine is used, the tree
meshes are handled as cloths, as described in [MHHRO06].

Using this approach one can also in theory have destruc-
table trees, as the physics engine supports tearing of cloth
along defined seams. However, only the vertices are consid-
ered during collision detection so it is best suited for effect
physics like wind animation.

3. Tessellation

To get a better quality when rendering, the low polygon
mesh is tessellated on the GPU. Tessellation also gives natu-
ral scalability (level of detail.) The original mesh generation
approach made meshes targeted for Catmul-Clark subdivi-
sion. Catmul-Clark subdivision can be done on the GPU, for
instance as seen in [ASKO08], However, GPU-based subdivi-
sion approaches usually requires several passes, one for each
level of subdivision. Therefore, in this work a local tessella-
tion approach is considered.

3.1. PN-Triangles and PN-Quads

The approach used for the mesh generation produces a mesh
consisting of quads, however, the PhysX cloth animation
step works on a triangulated mesh. For tessellation one can
use triangles or quads, depending on the approach selected.

For triangles, curved PN-Triangles as described in
[VPBMO1] can be used. For a PN-Triangle, the original ver-
tices are used directly as control points, as seen in Figure
2 a). Six new edge control points are also generated using
the vertices and normal vectors for that edge, as seen in 2
b). To calculate an edge control point, the points and normal
vectors of that edge are used. For instance, in Equation 1,
the calculation of by is shown. Finally, an internal control
point is generated as the weighted average of the edge and
vertices control points.

(© The Eurographics Association 2008.

Jo Skjermo / EG Generation and Tessellation of Tree Stems 165

ba1o = (2P + P2 —w12N1) /3, where : wij = (P; — Pi) - N;
(1)

Figure 2: From [VPBMOI], a) PN-Triangle, b) Edge control
point

For quads, PN-Quads as described in [Lan03] can be used.
For PN-Quads the given vertices are used directly as control
points. The same approach as for PN-Triangles is used to
generate new edge control points. However, eight new edge
control point is generated instead of six. Four internal control
points are generated by addition of line segments, found by
using a corner point and the two closest new edge control
points.

When generating edge control points, 1/3 of the length
between P; and P; is normally used to produce a control
point, as seen in Figure 3. However, by using 1/2, the gen-
erated surface will be more rounded, as seen in figure 3. An
example of a tessellated PN-Quad mesh with different tes-
sellation levels can be seen in Figure 4.

Figure 3: Left: normal (PN-Quad) approach, Right:
Rounded (PN-Quad) approach

To do the tessellation of the PN-Quads on the GPU, a
(OpenGL) vertex shader is used. First, control points (the
vertices of the tree mesh) and indices are sent to the GPU
as bindable uniform buffers. For all quads (or triangles)
with the same tessellation level, a tessellation pattern of the

(© The Eurographics Association 2008.

required resolution is drawn once for each polygon using
instancing, giving u and v parameter values to the vertex
shader. In the vertex shader program, the control points are
read from the buffers using the instance id of the drawn
quad, into the instance buffer. The control points are then
used to calculate a point on the surface for the given u and
v value, using PN-Triangles or PN-Quads depending on the
input polygons type.

For PN-Quads, the vertex shader first calculates the con-
trol points. Then it uses the approach of the tessellation
shader in Nvidia’s GPU SDK version 10 [Nvib], to find the
position on the Bezier surface for the given u and v posi-
tion in the tessellation pattern. For PN-Triangles, a vertex
shader as proposed in [BS05] is used. Hopefully, both of
these approaches will easily map to future tessellation ca-
pable GPU’s, as described in [Tat08].

Figure 4: a) Low Resolution Mesh, b) Same as a); but
shaded, c) Low resolution mesh tessellated by 20 levels, d)
Same as c), but shaded

4. Results, Present focus and Future Work

The overall approach presented here has only been partially
tested and verified. Future integration and testing is needed
to fully verify the approach. However, some preliminary re-
sults can be seen in Figure 5 and Figure 6.

Figure 5: Left: Trees (PN-Quad) tessellated 5 levels, Right:
Shaded

4.1. Present focus

As seen in figure 3, using PN-Quads (and PN-Triangles) for
the tessellation of a mesh that is as coarse as the ones gen-
erated, do introduce some degeneration, as a result of limi-
tations in PN-Triangles and PN-Quads approach. A possible

166 Jo Skjermo / EG Generation and Tessellation of Tree Stems

Figure 6: A low resolution mesh animated as cloth with stiff
length constraints

solution is to do a single level of subdivision on the gener-
ated mesh before tessellation, instead of handling the nor-
mals per branch separately as descibed in section 2.3. For
quads, Catmull-Clark subdivision can be used. For triangles,
Loop subdivision can be used. One level of subdivision can
be done on the CPU, or on the GPU as a separate pass before
PN-Quad/PN-Triangle tessellation.

For Catmull-Clark subdivision, the geometry shader pro-
posed in [ASKO08] could be used. For triangle meshes, a sim-
ilar approach for a one level Loop subdivision on the GPU,
has been implemented for further testing. For the Loop ge-
ometry shader, the triangles are drawn using the Triangles
with Adjacency primitive, with index and valence as per ver-
tex data. The vertex positions and normals for the tree mesh
together with indices into the vertices buffer for any addi-
tional edge endpoint (that is not already part of the adja-
cency data) is attached as bindable uniform buffers. A sin-
gle level of Loop subdivision can then be done and output
into the GPU memory for use as input to the tessellation
step (using Nvidia’s NV_transform_feedback extension to
OpenGL). Present focus is on problems with this extended
approach (such as limited valence at vertices, and limited
size of bindable uniform buffers on present hardware).

4.2. Future work

When tessellating a mesh, height-mapping or procedural dis-
placement could be used to add additional detail. This could
be used to add more details to a tree, than details typically
added by texture methods like parallax mapping. For in-
stance large ridged, bulges and some types of fungi could
be considered. Texturing has only loosely been looked into.
Cylindrical texture mapping along the length of branches,
with texture layer blending at branching points (calculating

continuous texture space for each branch) looks promising,
however some work still remains.

Adaptive tessellation is when one uses different tessella-
tion level for each edge of the given polygon (quad or tri-
angle). This gives the opportunity to tessellate differently by
for instance curvature, area, distance or a mixture of these.
A closer look at approaches for (GPU-based) adaptive tes-
sellation could be considered.

References

[ASKO8] ANTAL G., SZIRMAY-KALOS L.: Fast evalua-
tion of subdivision surfaces on direct3d 10 graphics hard-
ware. In ShaderX6 (2008), Engel W., (Ed.).

[BSO5] BOUBEKEUR T., SCHLICK C.: Generic
mesh refinement on gpu. In ACM SIG-
GRAPH/Eurographics Graphics Hardware (2005).
http://www.labri.fr/publications/is/2005/BS05.

[Jak03] JAKOBSEN T.: Advanced character physics, 2003.
Online Article., http://www.gamasutra.com.

[Lan03] LANDER J. (Ed.): Graphics Programming Meth-
ods. Charles River Media, 2003.

[MHHR06] MULLER M., HEIDELBERGER B., HENNIX
M., RATCLIFF J.: Position based dynamics. In Proceed-
ings of Virtual Reality Interactions and Physical Simula-
tions (VRIPhys) (2006), pp. 71-80.

[Nvia] NVIDIA: Cloth Simulation. Di-
rect3D SDG samples, WP-03018-001 vOl.,
http://developer.nvidia.com/object/sdk_home.html.

[Nvib] NVIDIA: Tessellation. OpenGL SDK Samples, v.
10., http://developer.nvidia.com/object/sdk_home.html.

[Phy] Ageia physx engine sdk. Physic Engine and Soft-
ware Developer Kit. http://www.ageia.com/developers/.

[SEO5] SKIJERMOJ., EIDHEIM O. C.: Polygon mesh gen-
eration of branching structures. In SCIA, Image Analysis,
14th Scandinavian Conference, SCIA 2005, Joensuu, Fin-
land, June 19-22, 2005, Proceedings (2005), Kélvidinen
H., Parkkinen J., Kaarna A., (Eds.), vol. 3540 of Lecture
Notes in Computer Science, Springer.

[TatO8] TATARINOV A.: Instanced tessellation in di-
rectx10, feb 2008. At Game Developer Conference
2008., http://developer.download.nvidia.com/ presenta-
tions/2008/GDC/Inst_Tess_Compatible.pdf.

[VPBMO1] VLACHOS A., PETERS J., Boyp C.,
MITCHELL J. L.: Curved pn triangles. In SI3D (2001),
pp- 159-166.

[Zio08] ZI1oMA R.: Gpu-generated procedural wind an-
imation for trees. In GPU Gems 3 (2008), Nguyen H.,
(Ed.), Addison-Wesley, pp. 105-123.

(© The Eurographics Association 2008.

