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Abstract
We demonstrate that Field Programable Gate Arrays (FPGAs) can be used to accelerate shading of surfaces for
production quality rendering (a task standard interactive graphics hardware is generally ill-suited to) by allowing
circuits to be dynamically created at run-time on standard commercial logic boards. By compiling shaders to
hardware descriptions, they can be executed on FPGA with the performance of hardware without sacrificing
the flexibility of software implementations. The resulting circuits are fully pipelined, and for circuits within the
capacity of the FPGA can shade MicroPolygons at a fixed rate independent of shader complexity.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Graphics Processors

1. Introduction

When rendering high quality images for film and video pro-
duction, the process of shading (the calculation of surface
colour, for specific lighting and observer) is still a significant
bottleneck. Though realtime rendering systems have adopted
hardware acceleration to implement similar techniques at in-
teractive frame-rates, the limitations introduced by this hard-
ware make it unsuitable for use in animation production.

By retargeting a RenderMan SL compiler [HL90] to pro-
duce FPGA circuits, we create a hardware accelerated shad-
ing engine, which dynamically rebuilds its hardware at ren-
der time, to create acceleration circuits for each surface
type required. This allows complex programmable shaders
[AG00] to be executed at performance levels approaching
hard-wired shaders.

2. Background

In modern renderings systems the calculation of
light/surface interactions is performed by programmable
modules known as shaders. These are typically written in
a custom programming language such as the RenderMan
Shading Language (SL) [HL90]. Figure 1 shows a simple
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surface plastic (
float Ka = 1;
float Kd = .5;
float Ks = .5;
float roughness = .1;
color speccolor = 1;
)

{
normal Nf;
vector V;
Nf = faceforward (normalize(N),I);
V = -normalize(I);
Oi = Os;
Ci = Cs*(Ka*ambient()+Kd*diffuse(Nf))+
speccolor*Ks*specular(Nf,V,roughness);
Ci*=Oi;

}

Figure 1: A Plastic Shader in RenderMan SL

shader. Surfaces are diced into MicroPolygons (MPs) the
size of a single pixel and the shader is executed on each
of them, making shading one of the most costly part of
the rendering process [Ele04]. As such it is a candidate for
hardware acceleration.

Early attempts at accelerating programmable shading,
such as PixelFlow [OL98], The Pixel Machine [AS93], and
Pixar’s RM-1 were based around custom hardware. Despite
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the power of these systems, the high cost of developing hard-
ware made them impractical to develop beyond initial proto-
types.

In contrast to these systems, early hardware accelerators
for interactive rendering were much more primitive, and pro-
vided only fixed shading models. However, driven by the
games market they became progressively cheaper and more
powerful. It was then demonstrated [POAU00] that procedu-
ral shading is possible on this hardware.

The demand for increased realism from the gaming com-
munity led to support for programmable shaders in interac-
tive rendering hardware and these were rapidly developed to
appear more like RenderMan SL [PMTH01, MGAK03].

However, despite the apparent similarities between real
time shading languages and their off-line equivalents, the
hardware accelerated shading provided by current graphics
cards is still a poor fit for production rendering. While good
results are possible [WGER05] the fixed graphics pipeline in
interactive graphics cards is still very different to that found
in high quality rendering [CCC87] where the distinction be-
tween vertexes and fragments is not made. Features which
are essential in production rendering are often difficult or
impossible to implement within these fixed pipelines, where
trade-offs have been made between speed, flexibility and im-
age quality in order to reach interactive frame rates.

The Sony Playstation architecture(s) [Son01] and Intel’s
Larrabee [SCS∗08] offer some escape from this [Ste03], pro-
viding “soft” hardware acceleration, in the form of multiple
flexible vector processors, but in doing so give up the abso-
lute performance available in true hardware solutions.

3. Field Programmable Gate Arrays

FPGAs are “soft” hardware — a required circuit is described
in the programming language HDL (Hardware Description
Language), and compiled. This compiled circuit description
can then be downloaded into an FPGA board installed in a
standard computer. Once downloaded, the circuit operates
as if it had been fabricated by traditional means. This ap-
proach has been used [HL02,Knu05,Zem02] to develop cus-
tom graphics hardware at practical cost. Using an FPGA we
can design and implement hardware required for production
rendering and fabricate it on a development board costing no
more than a standard graphics accelerator.

However as FPGAs are also re-programmable, new circuit
descriptions can be download into them at run time. This al-
lows the hardware to be tuned, not just for the generic task
of rendering, but on a per scene, or per surface basis. This
was noted in [SB94] which implemented a number of sim-
ple graphics routines in FPGA, but the application is lim-
ited by the problems of developing HDL descriptions of each
graphics task. [SL00] and [CGT∗05] propose flexible archi-
tectures, that can be more easily tuned to specific problems,
but only on a per application level.
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Figure 2: The FPGA Shader Architecture

By compiling RenderMan shaders from SL into HDL, we
can create a hardware implementation of a specific shader.
These can be loaded as required into the FPGA at render-
time, allowing fully programmable shaders to be genuinely
hardware accelerated rather than simply run on an array of
dedicated processors. As SL is already a standard tool used
in animation production, such a system would allow end
users to reconfigure the system without knowledge of the
hardware implementation.

4. Implementation

Generation of hardware descriptions is handled in multiple
passes. Shaders are first compiled from high level SL into
a custom assembly language, which describes the shader
as a set of pipelined modules. An assembler then converts
this description into HDL, combining standard modules with
customised control hardware. Finally the HDL compiler
turns this description into a circuit layout that can be loaded
onto the FPGA board.

4.1. Hardware Architecture

Figure 2 shows an overview of the shading architecture.
Shaders are constructed as a series of computation nodes
connected together along a backbone of RAM and control
circuitry. To describe the desired shader in HDL, the net-
works of these computation nodes or “shade-ops” are gen-
erated by the assembler along with a package file that cus-
tomises a generic HDL backbone.
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Figure 3: Each BRAM within a region (row) holds a single
SL variable for multiple MPs and acts as a circular buffer,
looping the shade-ops over the parameter data. Regions can
be connected together by allowing each BRAM to supply
data to the one above it when a point has completed exe-
cution and space in the following becomes available.

Providing a foundation upon which all shaders can be con-
structed, the backbone is composed of Block Ram (BRAM)
FPGA primitives. Each BRAM stores a different Render-
Man shader parameter or local variable for multiple MPs.
The parameters and constants of the shader for each MP are
written into these BRAMs through memory-mapped regis-
ters on the PCI bus. Therefore, one MP resides in a sin-
gle memory address, with its parameters distributed between
several BRAMs.

Each BRAM acts as a circular buffer. This enables the
shade-ops connected to them to loop over each point’s pa-
rameters. As new points are passed in they could be placed
at any memory address within the BRAM. Therefore an at-
tribute (called a label) is also held with each MP to ensure
that the shade-ops operate on it in a correct order. Labels are
also used to instigate a method of control flow. Once a MP
has finished its execution it is transferred back over the PCI
bus.

4.2. Regions

Depending on its size and complexity, a shader may require
larger BRAM resources than those available in a single block

on the target FPGA. In this case, the shader is divided into
sequential “regions” that each feed data into the next as il-
lustrated in Figure 3, where each column represents a sin-
gle variable. Points that have completed executing on all the
shade-ops in one region are shifted to the next when space
is made available. This allows the pipeline to extend beyond
the length of a single BRAM.

This maps extremely well to current FPGA layouts that
provide distributed BRAM resources arranged in rows, such
as Xilinx’s Spartan3 or Virtex families, leading to faster de-
sign synthesis and better system performance. Allowing the
shader to be separated in such a way makes the architecture
very scalable by permitting different regions to be spread
over multiple FPGAs.

In addition to providing scalability, spreading the shader
over several BRAMs improves performance by reducing the
number of nodes accessing each BRAM. The performance
of iterative structures may also be improved, as each region
is an independent circular buffer. By ensuring that each loop
resides in its own region, multiple loops can be implemented
without additional performance loss.

4.3. Control Flow

Control flow within the system is elegantly implemented
through the use of “labels”: an attribute assigned to each
point as it enters into the pipeline, used to represent its level
of completion. As a point progresses through the pipeline
the shade-ops check its label and only operate upon it if it
has a corresponding number. Once a shade-op has affected
a change upon a point, it increments the point’s label to the
proceeding label, progressing it through the pipeline.

Through the introduction of a conditional node that can
set a point’s label depending on the result of a data com-
parison, selective constructs can be created to bypass whole
branches of unwanted shade-ops. In addition, as each point
remains within a circular buffer until it has completed all
required operations within that region and has a valid label
to progress, iterative structures can be created by forcing a
point to loop until a particular condition is met. Figure 4
illustrates how these control flow structures can be created
using the label system.

After finishing all of the required operations in a region,
points remain circulating within the buffer until they can be
moved to the next region, or in the case of the final region,
retrieved through the PCI interface. Removing a point clears
space for another to enter that region of the pipeline. The
shaded points are passed back to a software rendering sys-
tem for hiding, though implementation of a simple hardware
hider within the FPGA would be possible.

4.4. External Data Sources

With the exception of the simplest shaders, it is necessary
to access external data such as texture, light source and ray
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Figure 4: Each stage (usually a network of shade-ops) in
the pipeline compares the point’s label to its stage number
(SNum). If the label and stage number are equal, the result of
the node is applied to the point’s parameters and the label is
set to the reset number (RNum). In doing so, the point is pro-
gressed to the next node in the pipeline, which can now op-
erate on its parameters. The (above) illustration shows two
sections of a pipeline that use the stage and reset numbers
of the nodes within them to construct iterative and selective
structures.

traced information, in addition to a MP’s parameters. To pro-
vide these features, an interface is included in the architec-
ture to allow a uniform method of data access between the
shader and any other data provider. The external intercon-
nection works as a transparent layer between the shading
networks and the external data source, providing the infor-
mation to each MP as if it were simply another parameter
BRAM.

When a MP attempts to read or write data from the param-
eter BRAM representing the external source, an interconnect
node requests the data required from the external source’s
data provider. If the data is available, the interconnect node
passes the information to the shade-ops that require it and
increments the MP’s label, allowing it to progress through
the pipe. If the data is not available, the MP’s label is not
changed, effectively stalling it until it is. Figure 5 shows an
illustration of the system.

To ensure the communication with a multitude of different
data sources, all external data providers have a common in-
terface with the shader. This allows them to be customised to
most efficiently supply the data being requested. For exam-
ple, a provider giving access to an external RAM that holds
texture values may consist of a paged caching system but
will use the same interface and communication protocol as a
Ray Trace unit.

One problem that was immediately obvious when design-
ing such a system was how to compensate for the variable
latencies of the data providers and how to combat the neg-
ative effect that large delays would have on performance.
To minimise any bottleneck created by a variable latency,

Figure 5: The access of data external to the shader: The data
is requested from the interconnect node which communicates
with the external data source. If it is available, the data is
supplied to the shade-ops that require it and the MP’s label
is incremented to the next stage. If no data is available, the
MP’s label is left unchanged and it is forced to wait until it
is.

an additional point cache is employed. The cache acts as a
FIFO buffer into which points that are waiting for external
data are branched. Upon exiting the buffer, each point has
its status re-evaluated and is either permitted to continue or
delayed further. When the maximum latency of the external
data source is less that the size of the FIFO buffer, there is no
degradation to the performance of the pipeline. This is due
to the FIFO essentially being a wait state within the pipeline,
which as a result, only extends its initial latency but not its
throughput.

4.5. Adjacency Information

While simple surface shaders can be computed at each point
using only its local parameters, more complex shaders can
also require values from the local neighbourhood. One such
example is a displacement shader that uses the position of
two adjacent points to recalculate its normal using the cross
product.

Our system implements the access of adjacency informa-
tion through the use of local BRAM caches that are address-
able using the absolute or relative value of a point’s ID num-
ber. As each point passes through the pipeline, it can make
data available globally by writing it to a BRAM cache un-
der the address of its ID number. This provides other points
with the means to access the data by either using an absolute
address or a relative address generated using their own ID
number offset by a variable.

As a massively pipelined SIMD processor, our system
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avoids all of the structural and control hazards usually asso-
ciated with traditional SISD processors. However, with the
introduction of access to adjacency information, potential
data hazards such as read after write, write after read and
write after write are introduced.

To prevent such situations from occurring, two ap-
proaches are adopted. These are the regulated/ordered entry
of points to the pipeline for linear shaders and, when itera-
tive constructs are involved, the use of flags or semaphore
bits to control data access.

For most shaders that only execute a linear control flow
and can therefore guarantee in-order execution of their MPs,
by regulating the order that points are entered into the
pipeline we eliminate any potential race conditions and data
hazards. However, it is unlikely that this will always be the
case as it is common for points to be delayed due to data re-
trieval times and iterative structures that shuffle their orders.
This problem can be solved using a pre-existing device: a
condition node that checks if a semaphore bit indicating that
the data has been written, has been set.

4.6. Assembler Optimizations

When a shader is compiled from SL to a hardware layout,
it is the job of the assembler to generate an HDL descrip-
tion optimised for either speed or area. As there are several
factors that can affect the execution speed of the shading en-
gine, the assembler produces a circuit that utilises all avail-
able logic resources to increase performance unless other-
wise specified.

Performance within the shading engine is measured by the
number of clock cycles taken to advance a point through the
pipeline. This is affected by two main factors: the number of
reads/writes per BRAM and the extent to which the shade-
ops are multiplexed.

An excessive number of reads or writes to a single BRAM
per pipeline stage is the main cause of loss in execution
speed. However, this can be combated (if resources permit)
by splitting the parameter contained within the BRAM over
several different regions, reducing the number of accesses
per BRAM.

Excessive BRAM accesses are often caused by the writ-
ing of a variable only to be read back again several stages
down the pipeline. This can be avoided (at the expense of
chip capacity) by introducing a FIFO to supply the data di-
rectly to the second shade-op rather than write it back to pa-
rameter RAM. Usually, if only one other source requires the
data, a FIFO is implemented, otherwise when supplying the
data to several sources spread throughout the pipeline, it is
more efficient to write it to RAM. An additional factor that is
also considered when solving this issue is whether the target
FPGA has greater shift register resources than BRAMs and
how much of each remains for use.

Figure 6: The test scene shaded with 1D Noise

The multiplexing of shade-ops is the other main cause of
a decrease in performance but multiplexing produces more
compact circuits at the expense of speed, allowing more
complex shaders to fit within a given chip. By multiplexing
the inputs and outputs of the shade-ops to increase the num-
ber of data sources that each one is able to execute upon,
the number of cycles required to advance a point though the
pipeline is linearly increased but the use of logic resources
is reduced.

Often a compromise can be found for both shade-op mul-
tiplexing and the number of BRAM accesses per pipeline
stage, as their effects on performance are not additive. There-
fore the number of BRAM accesses can be increased and the
logic footprint of the shading engine decreased with only a
minimal decrease in performance.

5. Results

Table 1 shows the results of synthesising and executing a
number of SL Shaders on a Xilinx Spartan-3 FPGA [Xil08]
mounted on an EnterPoint Raggedstone1-1500 development
board. A standard scene of 11,000 MicroPolygons (shown
in Figure 6) was rendered using a number of simple shaders:
forward-facing ratio, matte, metal and plastic, matte with 2D
Perlin noise applied as a uv texture map, and a displacement
based on cellnoise. Though all of the features required by
more complex shaders are supported within the architecture
(including conditionals, loops, derivatives and area opera-
tions), these shaders quickly exceed the 1.5 million gate ca-
pacity of the Spartan-3 FPGA.

Increasing shader complexity produces longer pipelines,
which increases latency, but as the system is fully pipelined,
the throughput is unaffected by this, as shown in Figure 7.
The current implementation uses a clock rate of 33MHz,
and uses 4 clock cycles per pipeline stage, giving a poten-
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33 mHz, 4 cycles per stage, Max Pipe Throughput is 8.25 Million MPs a second.

N.I Matte Matte and Noise Metal Plastic Noise Displaced

Number of Micropolygons 11040 11040 11040 11040 11040 11040

RM Parameters (Write) Num, N, I Num, N, P Num, N, P, U, V Num, N, P, I Num, N, P, I Num, N,P, I, U, V, S, T

RM Parameters (Read) Num, Cs Num, Cs Num, Cs Num, Cs Num, Cs Num, Cs, P

Number of 32 bit writes per Micropolygon 8 8 10 11 11 15

Number of 32 bit reads per Micropolygon 5 5 5 5 5 8

Pipeline Length (Capacity) 19 115 141 270 330 102

Latency (Pipe Length * Cycles Per Stage) 76 Cycles 460 Cycles 564 Cycles 1080 Cycles 1320 Cycles 408 Cycles

Average Execution Time 0.551 0.581 0.618 0.724 0.728 0.841

Table 1: Results
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Figure 7: Performance Vs Shader Complexity (stages)

tial throughput of 8.25 Million MP/s. FPGAs are currently
available at speeds of up to 600Mhz, which would scale to
150 Million MP/s. By comparison a 2.4GHz Intel Core 2
Duo processor can evaluate Perlin noise [Per85] approxmi-
nately 16 Million times per second (approximately 150 clock
cycles per evaluation). Noise is a standard building block
found in SL shaders (including two of the test shaders), and
any real shader would execute many operations of similar
complexity in order to arrive at a final shading result.

A modern graphics accelerator might have 128 cores run-
ning at 1500Mhz. If these also used 150 clock cycles to eval-
uate the noise function, they would be able to evaluate 1280
Million noise functions per second. However a shader which
used more than 8 functions of similar complexity would be
faster on a 600MHz FPGA.

The weak correlation seen between shader size, and per-
formance are not directly caused by the increased shader
size, but rather that complex shaders typically take more
parameters which must be fed to the FPGA. Though the
points can be shaded at a constant rate, the parameters to
each shader must first be calculated on the CPU, and writ-
ten into memory mapped registers on the FPGA. The test
shaders used between 8 and 15 32bit writes to set up each
MP.

When the number of writes to the FPGA per MP is plot-
ted against execution time, in Figure 8, we see that system
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Figure 8: Performance Vs Bus Writes

throughput is proportional to the amount of data transferred
over the PCI bus (note that though the plastic shader is more
complex than the metal shader its performance is identical
as they have the same number of parameters, and hence the
data points are coincident on this graph). The performance of
the current implementation is limited by the speed at which
points can be transferred to the system of the PCI bus, rather
than by the time taken to shade the points.

6. Future Work

The system is currently limited by the speed at which the pa-
rameters for MPs can be loaded into the FPGA over the PCI
bus. While improved transfer methods such as block DMA
would improve this, a better solution would be to generate
these parameters directly on the FPGA. Most of the param-
eters are directly related to geometry, so only the high level
per object parameters need be transferred. Even when user
supplied attributes must be transferred these are at the reso-
lution of the control hull, rather than the MP level.

While retrieving the results of the shader back from the
FPGA has less impact on performance (as only a small num-
ber of parameters need be retrieved), by implementing Hid-
ing on the FPGA, the full REYES pipeline could be could
be run in hardware.

Reprogramming of the FPGA on the RaggedStone devel-
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opment board used to prototype the system is slow, making
it impossible to change the shader while the system is exe-
cuting. Real FPGA rendering systems will need to support
multiple shaders, which can be achieved by more powerful
FPGA and/or the use of multiple chips. Through use of ap-
propriate caching, and the ability to reprogram one (or one
part of a) chip while another is in use it should be possible
to support scenes with multiple shaders efficiently.

Standard graphics cards achieve high performance though
the use of massive parallelism, using 128 or more process-
ing elements in parallel to scale performance. In a similar
fashion multiple FPGA shading engines could be operated
in parallel to achieve even higher levels of performance.

7. Conclusions

Though the current system is limited by its supporting hard-
ware, we have shown that compiling shaders to FPGA hard-
ware is a practical method of hardware accelerating produc-
tion shaders, capable of performance far beyond a CPU im-
plementation, and with potential performance similar to cur-
rent generation dedicated graphics cards.

The system’s performance is independent of shader com-
plexity, as larger shaders produce only an increase in latency.
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