EG UK Theory and Practice of Computer Graphics (2005)
L. Lever, M. McDerhy (Editors)

Simulation and Visualization of alarge scale Real Time
Multi-Robot system

G. Al-Hudhud & A. Ayesh & H. Istance’

De Montfort University

and

M. Turner?*
The University of Manchester

Abstract

This paper describes the software implementation and the visualization aspects of an interaction-communication
protocol within a large scalable multi-robot system. It investigates the current communication protocols within
multi-agent systems and the feasibility to transfer them into a virtual environment system that performs a speci-
fied task intelligently, embedding human capability into the control system software. The proposed system allows
dynamic changes, i.e. the user may be able to continuously issue commands, or modify tasks. The work presented
exploits the Virtual Environment Centre VEC. The semi-immersive full scale environment within the VEC allows
the user to better understand the robots’ behaviour and in turn test whether they simulate the expected behaviour.
The use of a semi-immersive full-scale environment also gives an increased level of presence enabling the user to
believe they are within their own simulation. It also presents a prototype for a robot automatic fire extinguishing

system as a test application area.

1. Introduction

Virtual environments are considered a powerful tool for use
in realistic simulation studies within different applications.
Among these, robotic applications are of significant inter-
est. For example a simulation of a multi-robot system can
be evaluated and assessed by operating in a simulated en-
vironment where the simulated robots can be exposed to a
variety of different tasks and surroundings without an exces-
sive amount of development time. Thus, cooperative multi-
agents system can be developed and used as a testbed for
higher-level tasks without the necessity of developing the
specified hardware or transport the agents physically to the
location. For example, the same agent structure can be ap-
plied to tasks involving outer space or undersea exploration.

In the real world, cooperation in turn requires a sufficient
amount of communication that appears as a series of so-
cial activities: negotiation, dialogues, interaction. Coopera-

T Centre for Computational Intelligence& Virtual Environment
Centre

¥ Manchester Visualization Centre, Manchester Computing

(© The Eurographics Association 2005.

tive agents communicate to exchange information in order to
perform a specified task. Such large groups usually are faced
with a high degree of complexity, i.e.dynamic and unpre-
dictable environments. Hence, controlling the movements of
such organization is of great importance as most of the per-
formed actions by these agents must be guaranteed within
real-time and scalability constrains.

In order to develop a communication protocol within this
large multi-agent system it is essential to specify in detail
the motion control techniques used as well as the mechanism
used to interactively specify tasks to agents. Finally, it is im-
portant to understand and assess the simulated behaviours at
all developing processes. Therefore, a major interest of this
work is to present both the specified communication tech-
niques and the visualization tools used to evaluate the system
performance.

Section 2 discusses related work of controlling the move-
ments of a large scale multi-agent system. In section 3, the
mathematical method concerned with both local and global
interaction with the world is discussed. Section 4 discusses
the real time system used to visualize and assess the system

delivered by

EC

www.eg.org

EUROGRAPHICS
DIGITAL LIBRARY

diglib.eg.org

http://www.eg.org
http://diglib.eg.org

G. & S Behnke/ EG IATEX Author Guidelines

performance and the advantages of the proposed visualiza-
tion tools over the pure simulations. Section 5 presents the
preliminary results of the experimentations.

2. Related Work
2.1. Cooperation within a Multi-Agent System

In order for a set of agents to cooperate and perform a speci-
fied task intelligently, they must implement some form of so-
cial interactions. Communication and organization are con-
sidered to be the mainstays of cooperation [BdL*98]. There-
fore, organization and communication concepts are consid-
ered to control the autonomously moving geometrical ob-
jects within the simulated environment, in order to exchange
information about goals, intentions, results, and the state of
other agents.

An example of cooperation between agents is a cleaning
task that requires a pre-defined path planning to cover the un-
occupied areas in the specified environment [LYS03], which
is an essential issue in robotic applications, e.g. searching
tasks. For relatively small scaled systems, this has been
shown to be feasible.

So, in large scaled systems that represent complex en-
vironments with hundreds of moving objects, the conven-
tional pre-specified paths become impractical. Also, in a sit-
uation where the environment is not static, where all objects
might be in motion themselves, it is simply not practical to
try to fully specify all paths beforehand. A key issue when
trying to develop a large organization of multi-agents is to
overcome the problem of organizing themselves efficiently.
Hence, complexity of communication and the risk of failure
within such systems has raised the need for the evolution
of behavior that synchronizes the dynamics of such large
groups.

2.2. Motion Control Techniqueswithin aLarge scale
Multi-Agent System

Regarding the motion within a dynamic and unpredictable
environment, adaptive movement behaviour techniques have
developed a long way within computer graphics. Early mod-
els involved the movement of a large crowd on large scale
terrain [TWPO03], which require an accurate environment
map before the path planning algorithm is executed, as it
is essential to pre-specify paths around a static environ-
ment. Systems capable of complex planning of partially un-
known environments [WCEOQ3] have used centralized solu-
tions which is considered to be impractical when developing
a cooperative multi-agent system [GMO1].

2.3. Visualization

Researchers in the field have addressed a number of prob-
lems using the conventional simulations, for example the

time required to run the simulations as well as objects were
represented by static geometrical objects which move ac-
cording to pre-exisiting plans. Within this paper, the sec-
ond concern was to develop a real time system within a vir-
tual environment. The simulation process involved model-
ing the environment and the agents. Originally agents within
the simulation were represented as abstract shapes, just in-
dicating the minimal information required of location and
heading. The use of complex robot models for increased res-
olution as can be seen in the figures in section 6, were intro-
duced, even if not accurately representing real robot design.
The key issues will be discussed in section 5.

3. Methodology & Technique

The proposed technique requires agents to posses a local and
global knowledge in order to communicate and coordinate
their movements and actions [NLJ94]. Regarding movement
coordination, a directed flocking behavior [Rey87] is used
to organize the group as a system for producing animated
simulations for animal behavior via three interaction rules.
A recent example of implementing this motion control tech-
nique is described by Watson etal [WJCO03]. In this situation,
agents only have local views, goals and knowledge.

The proposed model extends the flocking algorithm used
in [WJCO03] to establish a higher level of communication
with a human actor to perform specific tasks. Therefore and
to avoid the disorder that results when agents no longer pos-
sess a global view of the entire organization, agents have to
globally communicate with a human actor, agents then coop-
erate through a global blackboard [NLJ94] as a fourth rule.
The three flocking rules and the blackboard communication
rule form the set of intelligence rules an agent uses to move
and interact with its environment.

The agent’s internal system is composed of four main
components: sensor, communication, interpreter, and a met-
alevel component. Each agent continuously updates its
knowledge every time interval T = 1/Framerate by con-
stantly reading both the sensory data and the blackboard
message and replacing old information with new informa-
tion. The agent places the captured information in its Knowl-
edge Representational System (KRS). Once the information
is passed to an agent’s internal system, the interpreter tests
this information against a set of intelligence rules and per-
forms the numerical computations over the time interval ().
An agent revises its beliefs according to the new information
placed in its Knowledge Representational System before de-
ciding on the next action which is most probably ’correct
and in a real time fashion’.

3.1. Intelligence Rules

The proposed communication algorithm exploits the flock-
ing rules, previously described by the authors in [AHTAO4]
and [AHATI04], and the blackboard messages rule. The

(© The Eurographics Association 2005.

G. & S Behnke/ EG IATEX Author Guidelines

flocking rules are used to control the movements of a large
group of agents and consider the sensory data as the only
source of an agent’s knowledge. Consequently, the agent’s
movement is partially characterized by a sensor. The black-
board messages represent the final part of the agent’s knowl-
edge and forms the fourth rule in our communication algo-
rithm. The flocking rules in addition to the blackboard rule
form the set of intelligence rules that provides an agent with
sufficient intelligence to move autonomously within its en-
vironment. These rules are described as follows:

1. Alignment RuleRq
According to the sensory data, each agent A; searches the
nearest agent A and tries to align its velocity vector with
the velocity vector of Aj. The velocity vector (centroid
CE‘;, correction angle 92’;) obtained from this rule is used
to modify the current heading Y, of agent A;. A weight-
ing value associated with this rule is wfff. W,Fif’ is used to
adjust the strength of the alignment force.

2. Cohesion RuleRp
This rule acts as a binding force where each agent tries
to orient its velocity vector toward the centroid of the de-

tected team members. The velocity vector (centroid CR_“,

correction angle 92“) obtained from this rule is also used
to modify the current direction 5, of agent A;. A weight-

ing value associated with this rule is WZ“. WZ“ is used to
adjust the strength of the cohesive force. An agent’s field
of view for both alignment and cohesion rule is 360 de-
grees.
3. Callision Avoidance RuleRy:

This rule is essential to avoid overcrowding as well as
colliding with other objects(static or dynamic). Accord-
ing to this rule and when agent A; detects an agent Aj, it
can do one of two actions: move away from agent Aj if
it is too close, or move toward it if agent A; is far away.
An agent’s field of view for this rule is 36 degree ahead.

The velocity vector (centroid CZV, correction angle effj)
obtained from this rule is used to modify the current di-

rection Y, of the agent A;j. The weighting value WZV is
used to give the priority to this rule over the other rules.

The collision avoidance procedures used in our algorithm
exploits the sensory data stored in three locations only.
These locations are the straight ahead and 18 degree both
to the left and to the right. This implies that the field of
view is specified by 36 degrees ahead and within a prede-
fined minimum separation distance between a robot and
other objects. If a 3D-object exists in this field of view,
it is detected at least by one or more of the three lines of
sight that cover this field. The detected object is avoided
by testing its position against a set of a predefined cases.
These cases are: (a) if the detected object is straight ahead
then change heading 18 degrees to the left and move pro-
vided that no objects exist 18 degrees to the left otherwise
the change in the heading is 18 degrees to the right. (b)
if the detected object is located 18 degrees to the right

(© The Eurographics Association 2005.

and change the heading 18 degrees to the left then move
provided that no object exists straight ahead. (c) if the de-
tected object is located 18 degrees to the left, change the
heading 18 degrees to the right then move provided that
no object exists straight ahead.
4. Blackboard messages rule Rppg:

It utilizes message passing via the blackboard that allows
agents to communicate with a human actor to perform
a specified task. An agent Aj computes a velocity vec-
tor (centroid cRes, correction angle eR?B). The velocity
vector produced by this rule depends on the position of
the target. The weighting value wfffs is used to adjust the
strength of this rule.

How does an agent makes its decision? After the in-
terpreter calculates the velocity demands from the four
interaction-communication rules, it vector-sums the veloc-
ities each frame according to the following equations:

_ ReeRe R¢
Xg = ZWAi Cpcos <9Aa> ()
— R R gi R
Yi = 3 WRCRsin (6%))
From equation 1 & 2 the new heading angle {», is calculated:
{p, =arctan (Y, X3) ®)

Finally, the agent’s metalevel component tests the appro-
priateness of the next action and the suitability of the de-
cision that has been made. Accordingly, agents process the
information in two steps: first, where the interpretor decides
on the next action. Second, where the metalevel component
tests the next action against a set of predefined undesired sit-
uations, and prevents the system from reaching any of these
undesired situations.

4. Software Development

The real-time software used can be described in two parts:
(a) Representing the scene and the objects attached to it. This
implies creating 3D models and has been done using a 3D
modeling package (MultiGen Paradigm Creator). (b) Sim-
ulating the interaction between agents and rendering. The
software environment VegaPrime is used for the real-time
visual simulations including the scene description, interact-
ing with scene, visualising interaction between agents within
the environment, and allowing testing the algorithm in real-
time.

The user interface for Vega Prime is Lynx Prime where
most of the set up is managed. The output of Lynx Prime
is a VegaPrime Application Configuration File (ACF).
ACEF is the input for the application which is composed of
Vega Prime API and integrated C++ within which all the
intelligence rules that an agent need to move and interact
with the environment are defined, see figure 1. The runtime

G. & S Behnke/ EG IATEX Author Guidelines

OpenFlight

Model Lynx Prime

ACF
Application Configuration File

Yega Prime

AP S

Vega Scene Graph{(V8G

VEG5-Scene
VSGR-Render
VEGU-Utility

Figurel: Vega Prime System Architecture, [Ant03].

control then includes:(a) defining the ACF. (b)configuring
the ACF and the system.(c)executing the runtime loop
which contains the user’s methods. (d) shutting down at the
end of the application. In a VegaPrime application, after
initializing the system the next step is to create a \egaPrime
instance using VegaPrime application class defined in

(vpApp.h).

Vega Prime Application: Runtime Control.
#include< vpApp.h >

int main(int argc,char * argv[])

{

Il'initialize vega prime

vp::initialize(argc, argv);

/lcreate a vpApp instance
use the class has been created

myApp *app = new myApp;

//'load acf file, assumes argv[1]is the acf file

app—define(argv[1]);

/I configure the application

app—-configure();

/I runtime loop: the run() method executes
the main simulation loop

app—run();

/I unref the app instance

app—unref();

/I shutdown vega prime
vp::shutdown();

return 0; }

4.1. Realism of the Simulation

The realism of the simulation is critical to ensuring that
the implemented algorithm during the simulation is feasi-
bly transferable to a real application e.g. robots. The real-
time 3D simulation features of the Vega Prime again pro-
vide the chance to focus on the specifics of the application
to satisfy special simulation needs, e.g. laser sensors. This
aims at giving a deeper understanding of the simulation and
a possible easier introduction to seeing how a real life robot
system would be employed. The sensor for any agent is im-
plemented as a collision detection of a fixed line segment at
a defined angle centred just outside of the agent’s location.
The length of the line segment determines the laser sensor
range. The sensor rotates 360 degrees quantized into 18 de-
gree intervals, therefore it detects one of 20 locations each
frame. The horizontal sensor fired from the robot toward the
scene returns the calculated distance between the robot and
the intersection point on the detected object. Also, at each
location the sensor returns the detected object’s identity lo-
cation and heading. For each frame, the agent’s sensory data
is stored in (1 x 20) array. The information stored here are fil-
tered as each rule focuses on the relevant information only.
This allows an agent to easily recognize its team members,
remembers the other detected objects, their directions and
their identities. Figure 2 shows that at each location, the sen-

Figure2: Rotating Sensor: the red line represents the sensor.

sor detects only one object. For example in figure 3 there
are two objects that fall on the same line of sight, the sensor
will only detect the first hit one and will not detect the other
(object A in figure 3).

The collision avoidance procedures used here allow for
smooth change in the robot’s heading and also allows the
robot to steer around the obstacle rather than stopping and
then change heading. In the case where the agent’s sensor
detects three objects in the three locations then it neither
changes the heading nor moves until the next frame comes

(© The Eurographics Association 2005.

G. & S Behnke/ EG IATEX Author Guidelines

Figure 3: The sensor renders green once it hits an object.
Object A is detected while object B is not.

with a new sensory data that may show a new set of detected
objects and locations. If the new information keeps showing
detected objects in the three locations this means the agent
is "dead" and can not move anymore.

By using standard hierarchical bounding volumes dictated
around all the robots and other objects the complexity of
the collision detection algorithm can probabilistically be re-
duced from a worst case scenario of O(n2) as the number
of agents increase. In practice, as shown in table 1, a linear
scale-up has been observed for up to 50 agents.

4.2. Rendering

The number and position of the observer, how to move
around the scene and the specification of the environment
are managed by LynxPrime. Considering the observer as an
eyepoint or camera, everything drawn in the drawing area
including the scene and the attached objects is drawn from
the observer’s perspective. Scene display has then been man-
aged by both defining the level of details and setting a num-
ber of eyepoints. The level of detail allows rendering a col-
lection of robots upon their distance from the eyepoint. Typ-
ically, higher detail geometry is rendered when objects are
close to the eye point and lower detail geometry is rendered
when objects are further away. It also allows for smooth tran-
sitions between these levels of detail, where there would oth-
erwise be abrupt changes. Using this approach, higher detail
is only rendered when it is close enough to the eye point
that the detail can be seen, and progressively lower detail is
automatically used as the eye point gets further away. This
increases the appearance of scene complexity whilst reduc-
ing the cost of always rendering the highest detail.

(© The Eurographics Association 2005.

4.3. Visualisation of Agents' behaviours

A cluster of 6-PC’s is used to generate 6 images that are pro-
jected onto a 145 degrees curved screen (giving a 3K x 1K
resolution). The agents’ movements and interaction inside
the virtual world are projected on a big screen in the VEC.
All the camera views can be drawn and are displayed at once
on the screen allowing multiple users to visualize and as-
sess the simulation. There is complete flexibility of view-
ing location and direction allowing an observer to monitor
and view any action possibly with multiple views in differ-
ent windows; including for example both global and agent
view points. The big advantage over a pure simulation is the
building of a semi-immersive full-scale virtual environment
that mimics to different quality levels the real physical space.
The use of a semi-immersive full-scale environment, which
the VEC allows, gives an increased level of épresenceé en-
abling the user to believe they are within their own simu-
lation. This allows for real-world "what-if” problems to be
tested and seen in an easy to understand manner. Group and
collaborative analysis can then also take place in the Centre
allowing experts from various fields to monitor, discuss and
control a simulation.

Figure 7 shows an abstract version of the the VEC at
De Montfort University. The space in front of the screen
hosts up to 20 users at once. The users are able to evalu-
ate subjectively the simulated expected behavior. The exper-
iments’ expectations are designed to be able to show emer-
gent behaviours in environments with hundreds of agents.
The choices made for the visualization allow the user to bet-
ter understand the way agents move inside the world and
how they make their decisions.

5. Experimentation Test

For the purpose of testing the described algorithm, a series of
experiments have been carried out. The initial position and
direction of the agents were set randomly but were placed in-
side navigable areas. The initial experiments were designed
to test both: the optimum sensor range that satisfies locality
needs for our agents. The results showed that as the sensor
range increases the agents are not capable in groups to pass
through narrow areas between the two obstacles, figure 4.

Also, the task completion time increases as an agent takes
time to steer around obstacles instead of passing through
possible narrow areas between them. Finally, a fire extin-
guishing task has been assigned to a set of agents and the re-
sulting behaviour has been evaluated. This experimentation
has been developed to test the following two models:

5.1. Local-Global Communication (LGC) Model

Agents in this model communicate both locally and glob-
ally, figure 5. Agents communicate with each other and with

G. & S Behnke/ EG IATEX Author Guidelines

. ActualPath

Figure 4: The agent can not pass through the two Objects A
& B. The white line shows the actual path

a human actor. Agents are grouped in teams, as tasks are al-
located as team tasks. Applying the proposed algorithm in-
creases the chance of task completion despite any difficulties
that may arise. For example, when any agent fails to perform
the specified task, other team members will continue to per-
form the task. Figure 6 shows a set of agents circling around
the fire location.

Figure 5: A set of agents moving within a team and influ-
enced by the cohesion force and the alignment force.

Figure 6: Team members are circling around a fire location.

5.2. Oscillate State and Recovery Mode (OSRM) Model

When a robot encounters an obstacle on its way to a target,
it may turn to avoid the obstacle then turn back heading to-
ward the target. This implies an agent would turn backward
and forward repeatedly. This new model allows the robot to
move smoothly alongside the obstacle until it can turn again
toward the target. In this model, an agent is in one of two
modes. The first mode is when the agent controls and man-
ages its actions according to the LGC model while the sec-
ond one is when the agent switches to the OSRM mode.

6. A prototype of Fire Extinguishing System

In order to verify the algorithm and the models described in
the previous section, an initial prototype has been developed.
Our agents were situated in an unknown environment; a vir-
tual laboratory that represents the Leicester Reality Center
at De Montfort University shown in figure 7.

Jhli- s e

Figure 7: Virtual Environment Center at De Montfort Uni-
versity.

A set of agents started the task from the start area (see fig-
ure 7) and aim at reaching the fire position and circle around
the fire. In figure 7, the black line shows the shortest path to
the fire position, while the white line shows the agents’ ac-
tual path to the target. To analyze the simulation results and
evaluate the system performance, we selected scalability and
real time performance as a measure of the system capability.
What we mean by scalability is: Is the system limited to a
small number of agents or it scales up to a larger number of
agents, with the same level of efficiency and safety? In order
to investigate the effect of increasing the number of agents
on the emergent behaviour, a number of experiments were
performed using the different population sizes.

The simulation results,table 1, showed that the system is
considered to be scalable for the following reasons: (a) It
can handle increasingly complex structures of groups that
demand a greater amount of self-organization and motion

(© The Eurographics Association 2005.

G. & S Behnke/ EG IATEX Author Guidelines

Table 1. Scalability.

No. of | Frame | Response | Completion

Agents Rate Time Time
5 30 0.033 50
10 24 0.42 95
15 15 0.067 150
20 14 0.071 213
25 10 0.1 261
30 9 0.11 298
35 6 0.167 356
40 5 0.2 417
45 4 0.25 465
50 3 0.333 512

coordination without direct change to the underlying mech-
anisms of the algorithm. (b) All the processing steps and the
agents’ performance take place in real time (the time interval
T = 1/Framerate represents the response time). (c) the task
completion time linearly increases as the population size in-
creases, figure 8. Figure 9 shows that the response time also

Completion Time

500
53
500 i
4
400 }7/
s
300 _E,EB//
251
14
200
1
100+ 9
50"
00— T T T T T
a 10 20 30 40 50
Number of Agents

Figure 8: Task completion time as a function of team size.

(required time to process the information) as a function of
the number of agents. The response time increases as the
number of agents in creases.

Figure 10 shows the paths of a set of five agents moving
toward the target. Each frame, the positions of the agents
and how far they are from the mean of their positions are
calculated. Since, the mean of the positions is sensitive to
the change in the positions of the agents so any change in
the positions of the agents will cause a change in the mean.
The graph in figure 10 shows the deviation of the agents
positions about the mean. The sum of deviations about the
mean, represented by a 2D-delta, equals zero. This is a quite
interesting graph it exhibits the flocking behaviour of a set of
agents as it shows how agents are able to move away from
each other when trying to avoid collisions with each other
or encountering an obstacle, presented as a high deviation,

(© The Eurographics Association 2005.

04]

03]

02|

014

014

Figure9: The response time as a function of population size.

and then move back again towards each other, presented as
a small deviation.

150

S0 B

-100

) 2000 4000 6000 8000 10000 12000 14000 16000 18000

ano 500 £00 700

Figure 10: Top, 2D-delta for a set of 5 agents. Bottom, the
cohesion weights along the x-coordinates.

7. Conclusion

The work presented provides a platform to easily develop
different types of behavioral rules and to visualize and in-
teract with agents in a 3D virtual environment in real time.
The implemented method focuses on behaviour based mo-
tion ,using the flocking algorithms, and blackboard commu-
nication techniques. The flocking algorithms as a bi-product
aims at minimising extreme clustering of agents, to a known
level that again appears to reduce the chance of the worst

G. & S Behnke/ EG IATEX Author Guidelines

5 10 15 20 25 30 35 40 45 &0

Figure 11: The frame rate as a function of the population
size.

case scenario. It allows an agent in a large scaled multi-agent
system to interact and produce a believable behavior both lo-
cally and globally and can be executed at interactive rates.

The use of the Reality Centre allows multi users to as-
sess and evaluate the behaviour during any of the simulation
stages and modify the algorithm to suite the application.

The presented work takes account of the real-time con-
siderations for monitoring purposes and timely issuing
command-centre actions, but always the internal simulation
must take priority with the effect of reducing the frame-
rate(figure 11). Also, the incorporation of complex models
increases the realism giving extra benefits, but adds com-
plexity to the collision detection algorithms required to see
if the sensor detects an object.

References

[AHATIO4] AL-HUDHUD G., AYESH A., TURNER M.,
ISTANCE H.: Agents negotiation & communication
within a real time cooperative multi-agent system. Pre-
sented at the Fifth International Conference on Recent
Advances in Soft Computing (RASC2004) (December
2004).

[AHTA04] AL-HuDHUD G., TURNER M., AYESH A.:
Speech act and blackboard negotiation based communica-
tion protocol for real time multi-agent systems. Presented
at the 2004 UK Workshop on Computational Intelligence
(UKCI-04), September (2004), 112-120.

[Ant03] ANTYCIP UK LTD, DISTRIBUTORS FOR
MULTIGEN-PARADIGM, INC. A COMPUTER ASSO-
CIATES COMPANY: Vega Prime Training Manual,
Version 1.2, 2003.

[BAL*98] BEER M., D’INVERNO M., Luck M., JEN-
NINGS N., PREIST C., SCHROEDER M.: Negotiation
in multi-agent systems. The workshop of the UK Spe-

cial Interest Group on Multi-Agent Systems (UKMAS’98)
(1998).

[WJC03] WATSON N. AND JOHN N. AND CROWTHER
W.: Simulation of Unmanned Air Vehicles. In Proceed-
ings of Theory and Practice of Computer Graphics(2003),
IEEE.

[GMO01] GENTILI F., MARTINELLI F.: Optimal paths for
robot group formations based on dynamic programming.
In IEEE International Journal of Robotics and Automa-
tion (2001), pp. 197- 206.

[LYS03] Luo C., YANG S., STACEY D.: Real time path
planning with deadloock avoidance of multiple cleaning
robots. In IEEE International conference on Robotics and
Automation (September 2003). Tiwan, Thaibi.

[NLJ94] NWwANA H., LEE L., JENNINGS N.: Coordina-
tion in software Agent System. Tech. rep., BT, Queen
Marry and Westfeild College, 1994. Intelligent Systems
Research Group, Applied Research and Technology Lab,
BT Labs.

[Rey87] REYNOLDS C.: Flocks, herds and schools: A
distributed behavioral model. In SIGGRAPH 87 (July
1987), vol. 21, pp. 25- 34.

[TWP03] TANGW., WAN T., PATEL S.: Real-time crowd

movement on large scale terrains. In Theory and Practice
of Computer Graphics (2003), IEEE.

[WCEO03] WAN T., CHEN H., EARNSHAW R.: Real time
path planning for navigation in unknown environment.
In Theory and Practice of Computer Graphics (2003),
IEEE.

(© The Eurographics Association 2005.

