
Ibero-American Symposium on Computer Graphics - SIACG (2006)
P. Brunet, N. Correia, and G. Baranoski (Editors)

Efficient Conservative Collision Detection for Populated
Virtual Worlds

A. Ramires Fernandes1 and L. Deusdado2

1CCTC, Universidade do Minho, Portugal
2Instituto Politécnico de Bragança, Portugal

Abstract
Large virtual worlds, with considerable level of detail are starting to emerge everywhere, from large areas of
actual cities to archaeological detailed reconstructions of sites. Populating a virtual world adds an extra touch
to the visualization of these worlds, but unfortunately it also brings an extra burden to the system. Several tasks
are required when adding animated characters to a virtual world, such as collision detection, path planning and
other AI algorithms, rendering of dynamic geometry, amongst others. In here a method for efficient and scalable
conservative collision detection, that is able to deal with large scenes and thousands of avatars, is presented. This
method does not perform exact collision detection, hence it is conservative. The method is suitable as a basis for
path planning algorithms and other AI algorithms where an avatar is often regarded as ’something’ that can be
bounded by a cylinder, or a box. The algorithm is capable of dealing with arbitrarily complex 3D worlds, and
does not require any a priori knowledge of the geometry.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Three-Dimensional Graphics and Realism]:
Virtual RealityAnimation; I.3.5 [Computational Geometry and Object Modeling]: Geometric Algorithms;

1. Introduction

With the advent of more and more powerful shader program-
ming enabled hardware, capable of rendering millions of tri-
angles, large projects are starting to emerge everywhere, vir-
tualizing, with considerable level of detail, large portions of
cities, ancient archaeological sites, or architectural projects
that are yet to be realized.

These 3D worlds becomes more interesting and "realis-
tic" as soon as they are populated with virtual characters,
or avatars. Having these characters inside the 3D world pro-
vides yet another clue for apprehending the context of the
virtual world, an interesting example is the usage of avatars
to provide a sense of scale.

Visualization of such projects in real time, requires one to
use a set of performance related techniques to achieve inter-
active frame rates. Even considering the fantastic evolution
of the graphics hardware, the quest for visual realism (for in-
stance the inclusion of quasi-global illumination models that
work in real time), implies that a large chunk of both CPU
and GPU is always going to be required.

In addition to the visualization performance issue, popu-

lated virtual worlds bring yet another burden on the system:
that of collision detection between the avatars and the world,
as well as between the avatars themselves.

Collision detection in populated worlds can be seen under
two different, yet complementary, perspectives: exact and
conservative collision detection. Imagine an avatar walking
on a city garden. Conservative collision detection can be
used while the avatar is walking on the garden. When the
avatar reaches a newspaper stand and it reaches for a news-
paper or any other item, then exact collision is required.

In here an efficient method to perform conservative colli-
sion detection between avatars and a 3D world is presented.
The method makes no assumptions on the 3D world, which
can be a soup of unrelated polygons as far as modeling is
concerned. The method is able to deal with arbitrarily com-
plex worlds without compromising performance scalability.

The paper is structured as follows: section 2 provides an
overview of previous work in the area, focusing on meth-
ods that are designed and tested with avatars, and the works
that we’re the foundation for the method presented in here;
section 3 details the method, namely the preprocessing stage

c© The Eurographics Association 2006.

http://www.eg.org
http://diglib.eg.org


A. Ramires Fernandes & L .Deusdado / Efficient Conservative Collision Detection for Populated Virtual Worlds

and the collision detection algorithm; section 4 shows ex-
amples of the application of the method, including some
preçiminary results with highly complex worlds and a very
large numbers of avatars. Finally conclusions and future
work are presented in section 5.

2. Background

Collision detection from a geometrical point of view, i.e. be-
tween generic geometrical objects, has been presented based
on different approaches, mostly supported by an hierarchal
structure: bounding boxes [GLM96], sphere trees [Hub93],
BSPs [NAT90], and octrees [Sam90].

As mentioned in the introduction, collision detection can
be considered under two different perspectives: exact and
conservative collision. As the designation points out, exact
collision is far more precise. The ability to detect collisions
precisely is also far more intensive from a computational
point of view.

Examples of works that perform exact collision detec-
tion with hierarchical bounding volumes can be seen in
[CMM95], [WLML99] and [RKL∗04]. A different approach
is taken in [VP05] where the avatar casts rays into the en-
vironment to detect obstructed paths. In [GRLM03] poten-
tially colliding sets are determined with visibility queries
and use the information to perform exact collision detec-
tion. Collision detection is performed in [WS04] based on
depth maps taken from a frustum that encapsulates the move-
ment of the avatar. Interference detection is the term used
in [KP03] where a method inspired in shadow volumes is
described. Yet another related research area is collision de-
tection between the avatar body and its clothes [SK04].

Conservative collision detection is required when an
avatar is moving in a virtual world. In this case two pieces
of information are required: where are the feet of the avatar
standing; and if there is free space for the avatar to move
forward without colliding. Collision detection takes into ac-
count if the avatar is able to walk over, or jump down an
obstacle. Therefore a 2 meter wall is a collidable object, but
a fence 10 cm above ground is certainly not an obstacle, as-
suming an avatar with human proportions.

For simple virtual worlds, terrain following techniques
can provide the height at which the avatar should be placed,
as long as the graphical primitives that make up the ter-
rain are clearly identifiable. To obtain collision information,
works such as [Ste97] and [TC00] deal with worlds that are
planar in the sense that for a particular (X,Z) position there is
only a single Y value that is suitable for the avatar, assuming
Y as being the vertical axis.

The work in [Ste97] uses a BSP approach where the world
is decomposed in cells linked along the edges. The method is
dependent on the number of edges, although it can perform
incrementally dividing the cells as the avatar moves into less
defined areas.

3D space discretization was proposed in [BT95] and
[BT98]. The process involves dividing the world in thin hor-
izontal slices, where each slice contains a grid. For each
slice the geometry contained in the slice is drawn, and the
grid cells without geometry are empty world cells where
the avatar can potentially navigate. The resolution of this
method is determined by the thickness of the slices, and the
grid cell size. When considering a non flat world, for in-
stance with ramps, or non flat terrain, the number of slices
must be very large and grid cell size must be very small to
capture the heights at which the avatar travels.

In [TC00] a method to automatically extract heights and
collision detection information from a 3D world is proposed.
The heights are found by computing a depth map taken
with an orthographic camera, vertically looking down on the
scene. The depth map is rendered and the heights are then
extracted from the depth map. This technique is a very sim-
ple way of discretization of a 3D world for the purpose of
collision detection. Collision detection of an avatar against
the world is performed by checking the grid cells that the
avatar uses in its movement per frame. If all cells are within
reach of an avatar, i.e. if all the cells have the same height,
or if the difference in heights is less than what the avatar can
climb, then there is no collision. Collisions occur when the
avatar tries to access a grid cell that is at a height that is un-
reachable to the avatar because either the avatar can’t climb,
or because the avatar can’t jump, the height difference. This
technique was used in an agent behavior simulator described
in [TLCC01].

However when one considers a world with multi-levels,
for instance a bridge that the avatar could go over or under
it, or a building with many floors, the technique by [TC00]
is only capable of traveling on top of the bridge or the top of
the building, since these depth values are what is rendered
on the final depth map.

Both [BT98] and [TC00] methods were the main inspira-
tion for the method described in here. The goal is to combine
the techniques described above to multi-level 3D scenes, us-
ing height maps, and allowing the avatar to go under the
bridge, and on top of the bridge, or to navigate in the floors
of a building. The multi-level method works with arbitrar-
ily complex worlds, with theoretically unlimited number of
levels, and it scales linearly with the number of avatars.

3. Multi-Level Collision Detection

The method presented in here provides efficient collision de-
tection in multi-level 3D virtual worlds. An example of such
virtual environment can be seen in fig. 1. In this world the
avatar can navigate in both 3 floors, climb the ramps and
other small obstacles. It must detect collisions with the cars,
pillars, and other objects in the scene. It must also not jump
down from a floor.

The goal of the method is to provide an efficient way of

c© The Eurographics Association 2006.

30



A. Ramires Fernandes & L .Deusdado / Efficient Conservative Collision Detection for Populated Virtual Worlds

Figure 1: Simple Multi-Level Virtual World

controlling the avatar position, while at the same time pre-
venting collisions with the world objects. It is assumed that
the height of an avatar, avatarHeight, is known.

The method starts by automatically extracting informa-
tion of the 3D world to determine the areas where the avatar
can go and at what height the avatar should be placed when
moving.

This is achieved by slicing the world with horizontal
planes. For each slice, the height at which the slice was
taken, as well as the height map obtained at that slice is
kept. The slicing process takes into consideration the value
of avatarHeight to decide at which height the next slice will
be taken. The slicing process may generate a large number
of slices because it is assumed that no a priori knowledge
of the virtual world is available. However, only a few slices
are actually required for navigation, so the memory footprint
is kept under control. This process is detailed in sub-section
3.2.

This preprocess stage is reasonably fast since the most
computationally intensive operation is rendering the depth
map. Rendering the depth maps does not require shaders,
lighting, and other effects that slow down rendering. Fur-
thermore, only for the first slice is the whole scene rendered.
As the height at which the slices are taken decreases, less
and less geometry is involved, hence the final slices should
be much faster then the initial ones.

When the virtual world is being visualized, after the pre-
processing stage is concluded, the slices are used to deter-
mine two important pieces of information:

· The height at which the feet of the avatar should be placed
· The free space on the areas where the avatar wants to

move to

This process is also very simple from a computational
point of view and it amounts to a few lookups in the slices
that were stored in the preprocessing stage. The simplicity
of the process allows it to perform conservative collision de-
tection with thousands of moving avatars in an arbitrarily

complex virtual world. The runtime step is detailed in sub-
section 3.1.

3.1. Runtime stage: collision detection

Assume that the preprocessing stage has computed two
slices for the virtual world in figure 2. The bold vertical lines
represent the clip planes (see section 3.3) used to render the
depth maps, and the legend to these lines indicates the height
at which they were positioned. In this case the first slice
(from the top) is taken with a clip plane set at Y = 12,6 ,
and the second slice is taken with Y = 5,9. The boxes with
the numbers above each slice line, represent the pixels in the
height map and the values stored in the boxes indicate the
height recorded.

Figure 2: Sliced World with Avatars

The avatar has three parameters: width, height and step.
The first two relate to its dimensions, and the latter indicates
how much the avatar can jump both up and down. Assuming
that an avatar has a step of less than 3 units, then the move-
ment of the avatars is limited to the regions depicted in figure
2, for instance avatar A can only move in region R1.

This information can be extracted from the slices in figure
2. An avatar will read the information of the slice that is
immediately above its head. So avatars A and C will read
the information on the lower slice, and avatar B will read the
information on the upper slice. If avatar B tries to move to
region R1, it will find that it must move from a height of 4
units to a height of 1 unit. Assuming that the avatar’s step
is less than 3 units, this movement would be classified as
illegal. Similarly, avatars A and C can’t move to region R2.

The world has been discretized in cells on the X axis (in
the 3D case the discretization would be in the XZ plane). An
avatar stands in one of those cells at a particular height h, the
height of the top of its head. (avatars A and C would have h
= 5.5, and avatar B would have h = 8.5).

When an avatar wants to move to a neighboring cell, the
motion is then decomposed into a vertical motion followed

c© The Eurographics Association 2006.

31



A. Ramires Fernandes & L .Deusdado / Efficient Conservative Collision Detection for Populated Virtual Worlds

by an horizontal motion. First it is necessary to check if the
avatar’s step is higher than the height difference between the
current cell and the new cell. Assuming that the avatar step is
smaller than its height, this requires only checking the mag-
nitude of the vertical movement. Assuming that this magni-
tude is not superior to the avatar’s step then it is necessary to
check if there is free space for the avatar to move horizon-
tally.

If after the vertical movement the avatar’s head new height
is still below the original slice, then the motion is legal. If the
avatar is moving up and its head is now above the original
slice, then it is necessary to use a new slice, more precisely
the slice above its head after moving up to validate the move-
ment.

Algorithm 1 describes this process in detail.

// consider a start cell A and a neighbor cell B
// Let slices be an array of slices taken so far.
// Let sliceHeight be an array of the heights the slices we’re taken
// Let avatarHeight be the height of the avatar
boolean move(A,B) {
· hA = slice[i][A] + avatarHeight;
· hB = slice[i][B] + avatarHeight;
· if (|hA - hB| < avatarStep) {

· if (hB > sliceHeight[i]) {

· // find the slice above the avatars
· // head after the vertical movement
· j = i;
· while (hB > sliceHeight[++j]);
· if (slice[i][A] == slice[j][A])

� return(LEGAL);

· else
· // there is something preventing the vertical movement

� return(ILEGAL);

· else

· return(LEGAL);

· }
· else

· return(ILEGAL);

}

Algorithm 1: Runtime algorithm to evaluate whether an
avatar movement between neighboring cells A and B is legal
or illegal

Collision detection amongst avatars is also solved using a
similar strategy. An extra bit is kept for each cell that states
its occupancy status. The bit must be checked prior to mov-
ing the avatar to check for avatar-avatar collision.

3.2. Preprocessing stage: slicing the virtual world

This section details the preprocessing stage of the method
and presents several examples that illustrate common situa-
tions.

Initially an axis aligned bounding box of the virtual
world is computed. This process can be performed at al-
most no extra cost when the model is loaded. The max-
imum and minimum values on each axis are stored as
maxX,minX,maxY,minY,maxZ,minZ. An orthographic cam-
era is then placed on top of the world, looking down the Y
axis such that the view frustum includes the full bounding
box. The near plane is set above maxY value recorded, and
the far plane is set bellow minY value (the darkest planes in
fig. 3 represent the near and far planes).

Figure 3: Simple Multi-Level Virtual World

To simplify the presentation of the method, and without
loss of generality, the diagrams will be presented in 2D, rep-
resenting a section parallel to the plane XY from a 3D virtual
world, see figure 4.

Figure 4: 2D Simplification of Virtual World

The near plane is placed at an height defined in eq. 1.

hNearPlane = maxY +avatarHeight + resolution (1)

where resolution indicates the maximum vertical error in
the discretization of the virtual world for collision detec-
tion purposes. This error does not influence the ability of

c© The Eurographics Association 2006.

32



A. Ramires Fernandes & L .Deusdado / Efficient Conservative Collision Detection for Populated Virtual Worlds

the avatar to keep its feet on the ground, as that information
is stored in the height map. This error implies that the avatar
must have a minimum space over its head that will in the
worst case be the full value of resolution.

Both near and far planes are constant throughout the pro-
cess. The far plane is set at an height defined in eq 2.

hFarPlane = minY − resolution (2)

The depth map is then rendered and it is processed in
order to obtain a height map. Assuming an avatar with an
height of 4.5 units, and a resolution of 0.1 units the first slice
would be taken at Y = 12.6. The maximum registered height,
according to figure 4 would be 9 units.

The following slices are taken resorting to a clip plane (in-
stead of altering the near plane, see 3.3) to limit the geometry
that is drawn. Let max(i) be the maximum height recorded in
slice i. The next slice, slice i+1, is then taken at a height as
defined in eq. 3, i.e. the clip plane is placed horizontally at
the defined height.

nextSliceHeight = max(i)− resolution (3)

The first two slices are depicted in figure 5.

Figure 5: First and second slices

The third slice, according to eq. 3, should be taken at
height Y = 8,8. In fact, slices will be taken at intervals de-
fined by the parameter resolution until Y = 5,9, see figure
6.

The maximum value in the last slice, Y=5.9, is 4, and
since the minimum avatar height as been assumed to be 4.5
there is no need to get any more slices. Assuming that res-
olution is set at 0.1, a total of 32 slices are computed in the
process, however only two are required to perform collision
detection, namely the first and last ones. All other slices do
not carry any further information relevant to collision detec-
tion.

Figure 6: Slices up to 5.9 units

A slice is used by an avatar to perform collision detection
when it is the closest slice above its head. Hence, consid-
ering a particular slice, if a cell has a recorded height such
that the difference between the height at which the slice was
taken and the height recorded is less than the avatars mini-
mum height, this cell will never be used for testing. This is
the case in the second slice in figure 6, where the recorded
height is actually equal to the slice height. All other values of
the second slice are equal to the corresponding values of the
first slice, therefore the second slice does not carry any new
information and can be dismissed. This reasoning leaves us
with only 2 (out of the 32 computed slices) useful slices in
figure 6, the one taken at a height of 12,6 units and the one
taken at 5,9 units.

The example in figure 7 shows another case where slices
can be dismissed. Consider the three slices present in figure
8. The slice taken at 7,9 units of height can be dismissed
because all its information is either present in the first and
third slices, or it will never be used for testing, for instance
the values 4, 5, 6, 7, and 7.9. The red crosses in each slice
indicate the cells that will never be used for collision detec-
tion because the avatar will have its head above the slice in
that particular position.

So far two situations where a slice can be dismissed have
been identified. The algorithm to detect these situations and
dismiss the slices is presented in algorithm 2. The algorithm
is called each time a new slice is computed, and checks if the
new slice contains any new relevant information (example
from figure 6). If the new slice does not contain any new rel-
evant information it dismisses the slice. If the slice contains
new information, then the algorithm checks if the previous
slice should be replaced by the new slice (example from fig-
ure 7).

In algorithm 3 the full process of slicing is detailed, as-
suming that a bounding box has been computed and Y varies
between maxY and minY.

c© The Eurographics Association 2006.

33



A. Ramires Fernandes & L .Deusdado / Efficient Conservative Collision Detection for Populated Virtual Worlds

Figure 7: Example with stairs

Figure 8: Slices from stairs example

3.3. Implementation Details

As mentioned before, the method renders a depth map and
then transforms it into a height map. In recent hardware the
scene could be rendered with appropriate shaders to perform
these two steps in one go.

Rendering the depth map is conceptually a sound idea to
obtain a height map, however, in practice, some issues must
be dealt with.

The Z buffer is not linear, using more precision for areas
near the clip plane that for areas close to the far plane. When
one considers the depth maps for two slices taken with two
different Z-near planes, the depth recorded values, for the
same pixels, may be different in the two slices due to the
non-linearity of the Z buffer. By using a clip plane, we are
able to keep the Z near and Z far planes fixed and vary only
the clip plane, hence guaranteeing that for the same pixels,
the heights recorded are the same for all slices.

A more relevant issue has to do with the precision of the
height maps, and consequently, the memory required per
slice. If one considers a world where a unit corresponds to
a meter, then a 16-bit height map would allows us to deal
with scenes up to 65.536 meters with a height error of less
than one millimeter. Or if one can be more tolerant then one
could go up to 655.36 meters with a height error of at most
one centimeter. This is enough for the currently tallest build-
ing in the world: the Taipei Tower 101, with 509 meters.

However an error of one centimeter may be excessive in
some situations. A possible solution is to store height differ-

Let slices be an array of slices taken so far.
Let sliceHeight be an array of the heights the slices we’re taken
Let avatarHeight be the height of the avatar
define INVALID as being below minY
testSlice(i) {
· auxSlice = new Slice()
· countEqual = 0
· countUseless = 0
· for every cell a in slice[i] {

· if (sliceHeight[i] - slice[i][a] < avatarHeight)

· countUseless++

· else if (slice[i][a] == slice[i-1][a]) {

· auxSlice[a] = INVALID
· countEqual++

· }

· }
· if (countEqual + countUseless == number of cells in slice)

· return(DISMISS_CURRENT_SLICE)

· // are there more than two slices?
· if (i > 1) {

· for every cell a {

· if ((auxSlice[a] == INVALID) || (slice[i-2][a] == slice[i-
1][a]) || (sliceHeight[i-1] - slice[i-1][a] < avatarHeight))

� count++;

· }
· if (count == number of cells in slice)

· return(REPLACE_PREVIOUS_SLICE)

· }
· return(KEEP_SLICES);
}

Algorithm 2: function testSlice

ences, or depths in the slices, instead of the actual height.
The height at which a slice was taken can use as much
precision as required, and the slice values would store the
depths. In runtime only an extra subtraction would be re-
quired. The method is therefore not limited by precision is-
sues, even considering memory saving features, such as stor-
ing the heights/depths with 16-bit integer precision.

If the height variation is small enough so that precision is
not an issue, than one bit can be used to indicate if the cell is
occupied by an avatar, otherwise an extra grid of bits can be
considered for avatar-avatar collision detection. Hence only
16 bits, or two bytes, are required per cell for collision de-
tection between the avatar and the world.

4. Experiments

Tests have been performed in the garage scene (see figure
1) to illustrate the concept, and in the powerplant model

c© The Eurographics Association 2006.

34



A. Ramires Fernandes & L .Deusdado / Efficient Conservative Collision Detection for Populated Virtual Worlds

sliceWorld(maxY, minY) {
· sliceHeight[0] = maxY + avatarHeight + resolution
· slice[0] = ComputeSlice(sliceHeight[0])
· max = maximum(slice[0])
· i = 1
· While (max > minY + avatarHeight) {

· sliceHeight[i] = max - resolution
· slice[i] = ComputeSlice(sliceHeight[i])
· max = maximum(slice[i])
· test = testSlice[i]
· if (test == KEEP_SLICES)

· i++

· else if (test == REPLACE_PREVIOUS_SLICE) {

· slice[i-1] = slice[i]
· sliceHeight[i-1] = sliceHeight[i]

· }

· }
}

Algorithm 3: The slicing algorithm

(http://www.cs.unc.edu/~geom/Powerplant/ from the
Walkthru Project at Stanford University, see figure 11) to
show its applicability to very large scenes (by today’s stan-
dards).

The slices taken for the garage scene are shown in figure
9. The processing time required to slice the scene (5 slices
were generated) and to eliminate the unnecessary slices was
less than one second.

Figure 9: Slices obtained for the garage scene

Tests were also performed to evaluate the performance in
the collision detection phase. The results are presented in ta-
ble 1. For reference purposes only, the time taken to draw an
avatar (represented graphically by a box) is also presented.
The number of avatars tested ranged from 500 to a million
avatars. As can be seen the method scales linearly with the
number of avatars as expected. Also note that the time to
move the avatar also includes deciding a new direction in
case of collision, and testing the new direction. The algo-
rithm to decide a new direction, when an avatar moving for-
ward collides, is simply a random choice of left or right.

Nr. of Avatars draw avatars move avatars
500 2 2

1000 5 4
1500 7 6
2000 9 8
5000 23 20

10000 48 39
100000 467 395

1000000 4780 3990

Table 1: Performance results for collision detection on the
garage scene (time in milliseconds)

Other scenes were tested for the number of slices, namely
a church building , and the powerplant. Table 2 shows the
number of slices computed and kept for each world. All tests
assumed an avatar with the equivalent height of a 1.75 me-
ters, and a resolution of 10 cm.

Scene computed kept
cube 42 2

garage 86 5
church 159 7

powerplant 835 85

Table 2: Slices

As can be seen in table 2, even for a very complex world,
such as the powerplant with 13 million triangles, only 85
slices were kept. Considering a grid with 512x512 cells, then
a slice requires 512x512x2 bytes of memory, or 512MB.
The powerplant requires 85 slices or approximately 42.5MB
which is acceptable considering the complexity of the ge-
ometry involved and the fact that the slices are stored in
RAM memory and hence don’t take the precious space in
the graphics hardware.

Figure 10: Simple Tested Environments: cube and garage

5. Conclusions and Future Work

A method for Multi-Level collision detection for arbitrarily
complex 3D worlds was presented. The method is able to
detect collisions between the avatars and the virtual world,
as well as avatar-avatar collisions.

The tests show that collision detection in complex envi-
ronments in a multi-level 3D world can be performed with

c© The Eurographics Association 2006.

35

http://www.cs.unc.edu/~geom/Powerplant/


A. Ramires Fernandes & L .Deusdado / Efficient Conservative Collision Detection for Populated Virtual Worlds

Figure 11: Complex Tested Environments: church and pow-
erplant

very large number of avatars at interactive rates, and that the
run-time performance is not significantly influenced by the
complexity of the 3D world. A more complex world may re-
quire more slices, but the performance of the system is not
affected by the number of slices (unless the memory required
exceeds the memory available).

The memory footprint is perfectly acceptable for the ex-
amples tested in here. The number of slices is kept to a min-
imum by testing the usefulness of each slice. Nevertheless
some occasions may rise where memory usage is a con-
cern, hence a future direction is to explore algorithms that
deal with sparse matrices, and evaluate the trade off between
memory consumption and performance. Another possibility
is to evaluate the feasibility of using an out-of-core algo-
rithm to store and retrieve the matrices. Yet another avenue
of research that may bear fruits is the exploration of the in-
formation in the slices for real-time path planning.

References

[BT95] BANDI S., THALMANN D.: An adaptive spatial
subdivision of the object space for fast collision detection
of animated rigid bodies. In Computer Graphics Forum
(1995), Post F., Göbel M., (Eds.), vol. 14(3), Blackwell
Publishers, pp. 259–270.

[BT98] BANDI S., THALMANN D.: Space discretiza-
tion for efficient human navigation. In Proceedings of
the Eurographics Conference, Computer Graphics Forum
(1998), vol. 17, pp. 295–270.

[CMM95] COHEN J., M.LIN, M.PONAMGI: I-collide:
An interactive and exact collision detection system for
large-scale environments. In Proceedings of the ACM In-
teractive 3D Graphics Conference (1995), pp. 189–196.

[GLM96] GOTTSCHALK S., LIN M., MANOCHA D.:
Obb-tree: A hierarchical structure for rapid interfer-
ence detection. In SIGGRAPH Conference Proceedings
(1996), pp. 171–180.

[GRLM03] GOVINDARAJU N., REDON S., LIN M.,
MANOCHA D.: Cullide: Interactive collision detec-
tion between complex models in large environments us-
ing graphics hardware. In Proceedings of the Eu-

rographics/SIGGRAPH Graphics Hardware Workshop,
2003. (2003).

[Hub93] HUBBARD P. M.: Interactive collision detection.
In Proceedings of IEEE Symposium on Research Frontiers
on Virtual Reality (1993).

[KP03] KNOTT D., PAI D.: Cinder: Collision and inter-
ference detection in real–time using graphics hardware. In
Proc. of Graphics Interface ’03, 2003. (2003).

[NAT90] NAYLOR B., AMANATIDES J., THIBAULT W.:
Merging bsp trees yields polyhedral set operations. In
ACM Computer Graphics (1990), vol. 24(4), pp. 115–124.

[RKL∗04] REDON S., KIM Y., LIN M., MANOCHA D.,
TEMPLEMAN J.: Interactive and continuous collision de-
tection for avatars in virtual environments. In Proceed-
ings of IEEE International Conference on Virtual Reality
(2004).

[Sam90] SAMET H.: The design and analysis of spatial
data structures.

[SK04] S. KIMMERLE MATTHIEU NESME F. F.: Hierar-
chy accelerated stochastic collision detection. In Vision,
Modeling, and Visualization (2004).

[Ste97] STEED A.: Efficient navigation around complex
virtual environments. In VRST (1997), pp. 173–180.

[TC00] TECCHIA F., CHRYSANTHOU Y.: Real-time ren-
dering of densely populated urban environments. In Pro-
ceedings of the Eurographics Workshop on Rendering
Techniques (2000), pp. 83–88.

[TLCC01] TECCHIA F., LOSCOS C., CONROY R.,
CHRYSANTHOU Y.: Agent behaviour simulator (abs):
A platform for urban behaviour development. In Games
Technology 2001(GTEC 2001) (2001).

[VP05] VOSINAKIS S., PANAYIOTOPOULOS T.: A tool
for constructing 3d environments with virtual agents.
Multimedia Tools Applications 25, 2 (2005), 253–279.

[WLML99] WILSON A., LARSEN E., MANOCHA D.,
LIN M. C.: Partitioning and handling massive mod-
els for interactive collision detection. In Proceedings of
the Eurographics Conference, Computer Graphics Forum
(1999), vol. 18(3).

[WS04] WINTER M., STAMMINGER M.: Depth-buffer
based navigation. In Vision, Modeling, and Visualization
Conference Proceedings (VMV) (2004), pp. 271–278.

c© The Eurographics Association 2006.

36


