
Ibero-American Symposium on Computer Graphics - SIACG (2006)
P. Brunet, N. Correia, and G. Baranoski (Editors)

Automatic architectural 3D model generation with sunlight
simulation

A. Mas and G. Besuievsky

Graphics Group of Girona, Universitat de Girona, Spain

Abstract

Nowadays, 2D architectural design is provided with many good tools. But it lacks efficient tools that could help
designers in early stages of a project for tasks such as virtual prototyping or 3D model simulation. The 3D model
generation from 2D floorplans in general implies tedious manual effort. With a 3D model the designer could
validate both the building structure and the space distribution. Natural lighting is also a basic feature in struc-
tures design as a correct sizing of the building openings allow a better exploration of daylight illumination, and
consequently, could prevent artificial illumination needs.
In this paper we present a tool that allows to obtain, in a highly automatic process, 3D architectural models from
2D floorplans. The system also provides sunlight simulation for visualization and interactive edition operations.
It allows to re-model the openings of the structure with real-time sunlight visualization. The whole module can
be integrated within a standard CAD architectural platform as a complement for fast virtual prototyping and
validation designs in an early stage of the project. We present results showing its application for both conceptual
designs and for a real building model.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Modeling packages, Shad-
owing

1. Introduction

Nowadays, the use of software tools for architectural design
is spreading from conventional architectural CAD products
to more automatic tools where designers can easily validate
their projects within interactive workflows. One of these im-
provements is the automatization of the 3D model genera-
tion from 2D floorplans. In this way, fast 3D visual inspec-
tion could be performed avoiding the tedious manual effort
that in general involves the model generation. The illumina-
tion in virtual environments has also a very important role
in architectural design, both for model visualization and for
the lighting system design. The correct modeling of opening
dimensions in a building allows to improve daylight uses.
A tool that could model the openings using daylight simu-
lation and visualization issues would be helpful for a better
exploration of daylight needs.

In this paper we present a system conceived to be com-
pletely integrated in any architectural CAD platform as a
complement for fast virtual prototyping and validation de-

signs in a conceptual phase of the project. The goal is to
provide design constructors with a set of interactive tools for
automatic 3D model generation from 2D plans and opening
edition with sunlight visualization. The main contributions
of this work are: a method for automatic 3D structures gener-
ation from 2D architecture symbols and the implementation
of a real-time shadow algorithm improved for architectural
environments.

The paper is organized as follow: in section 2 the state of
the art of architectural system tools is reviewed, the whole
system scheme is described in section 3, in section 4 the
model generation tool is presented and in section 5 and 6
our sunlight method and the opening edition module respec-
tively are described. We present results showing its appli-
cation for both conceptual designs and for a real building
(section 7). The system is shown to be a suitable tool for the
generation and validation of 3D models in an interactive and
easy way.

c© The Eurographics Association 2006.

http://www.eg.org
http://diglib.eg.org


A. Mas & G. Besuievsky / To3DSun

2. Tools and state of art

Analysing the state of the art of architectural tools related to
our proposed goals we can classify them in two categories:
architectural CAD tools and 3D modeling tools with their
respective features on visualization and lighting simulation.
Architectural CAD tools such as AutoCAD, Architectural
Desktop or AllPlan provides processes for generating 3D
models but not for a complete automated generation from
2D floorplans. 3D modeling and Image Synthesis software
such as Maya, VIZ or AccuRender provides advanced light-
ing simulation methods, but they also require computational
costs over interactive rate demands.

Our work could be related to the one presented in
[OWYC05]. In this work 3D architectural models are ob-
tained from 2D floorplans. The process is semi-automatic
and successful results are obtained. However, the method
makes some assumptions about the input data that could be
conflictive within the integration onto a CAD system. For
example, they assume a restricted set of symbols in the plan,
such as doors or windows, and this could be a problem if
the designer uses other symbols. We think that more flexible
rules can be adopted to allow a greater symbols domain.

Shadow visualization is a very important cue in or-
der to get a realistic illumination simulation. There are a
lot of methods for shadows computation and visualization
[WPF90]. We analyse here only the methods that allow inter-
active frame-rates. The Shadow Volumes algorithm [Cro77]
calculates the shadows from projections of shadow genera-
tor polygons. The algorithm is view dependent, so it is not
suitable for interactive purposes. A better approach is the
Stencil Shadow Volumes [Kil01] [Kwo04]. The foundation
of the method is very similar to the previous one, but its effi-
ciency is based on a hardware implementation with OpenGL
devices.

3. System overview

The proposed system can be integrated into any architectural
environment platform composed by other CAD systems. In
this way, it may be useful as a complement for fast vir-
tual prototyping. The 2D floorplan input is in DXF format,
which is one of the most standard formats used by 2D CAD
packages. After the 2D model is parsed and processed a 3D
model is created and stored in VRML format, also a standard
format accepted as input in most CAD packages. For the
sunlight simulation, condition parameters such as the date,
time and geographic position must be specified. A 3D nav-
igator allows to visualize the model modifying interactively
both the condition parameters and the openings dimensions
and positions (see Figure1). In the following sections we de-
scribe details of the system components.

Figure 1: General system scheme.

4. 3D model generation

A 2D architectural design is composed by vectorial informa-
tion representing structure elements like walls, doors, win-
dows and other symbols [Aut]. In our approach we classify
some of this vectorial elements based on their meaning and
the structure representation that is created in the 2D design
process through the layer assignment. Usually the designer
creates a set of layers in the design and each layer is asso-
ciated with a type of object based on their meaning. Also,
some symbols can be identified with labels. The user must
select manually, and in a semi-interactive way, the layers and
labels of interest. Once the 2D elements are identified, the
generation of 3D objects is automatic. We consider the fol-
lowing basic objects : walls, doors, windows, ground, ceil-
ing, stairs and furniture. Except for furniture, that is instan-
tiated form a 3D library, all of these objects have specific
algorithms to be generated.

4.1. Walls

The method to create wall objects has three steps. First,
we identify the vectorial objects that represent walls, which
could be represented in one or more layers, both as lines and
polylines. In a second step we search for the wall profiles.
Each wall profile must be a closed polygon with its vertices
sorted in a positive direction. Finally, we specify the floor
height and we create the walls from the extrusion of each
line in the polygon. Note that the positive vertices orienta-
tion allows the correct orientation for the normal of these
planes. (see Figure 2).

Two methods have been considered to obtain the profiles.
The first one assumes that each wall is represented by two
parallel lines. In this case we only need to search closed
polygon sequences. The second one assumes that each wall
is represented by only one line with a thickness value. Here
we have to create two parallel lines over the wall line and
separate them by the same distance than the thickness value.
Joining and closing the new lines we obtain closed polygons
(see Figure 3). If there are two consecutive walls we can join
them into one closed polygon.

c© The Eurographics Association 2006.

38



A. Mas & G. Besuievsky / To3DSun

Figure 2: Walls construction.

Figure 3: Wall profile creation from walls defined by only
one line. Red and blue lines are the exterior and interior wall
profile lines. Green lines are the walls joining and closings.

4.2. Openings

In the context of this work we only consider doors and win-
dows as openings of a building structure. In general, they are
represented with symbols composed by vectorial elements.
Because of the lack of a defined standard pattern to represent
openings (see Figure 4), we decided to use label information
instead of a vectorial recognition approach. In a first step,
we select all doors and windows using the labels that iden-
tify them or using the layer where they are placed. Then,
we search for the two nearest walls from the insertion point
symbol. Using the walls as bounds, we generate a rectan-
gle that fills the space between walls. In this way we define
the opening size. Finally, we generate the 3D structure by
extrusion of the rectangle according to their category : door
(with only top part) or window (with top and bottom part)
(see Figure5).

4.3. Ground and Ceiling

We can create the ground and ceiling by simply creating
bounding polygons that close the walls and all openings.

Figure 4: A small representation of opening symbol possi-
bilities.

Figure 5: Openings constructions.

But this approach could represent a problem if the result-
ing 3D model is exported for its usage in a rendering system
based on radiosity or finite elements methods (see Figure 6).
This kind of systems are frequently used in architectural in-
terior building visualization where global illumination is re-
quired. We propose a solution, called Rooms Search, which
allows the identification and segmentation of interior room
zones. The algorithm begins with the 2D bounding box cre-
ated from the walls and opening profiles found before. First,
the profiles of the wall are modified to join them with the
openings profiles to obtain the closed rooms. Then, an inter-
section boolean operation is applied between the 2D bound-
ing box and the structure profiles (see Figure 7). The result
are the segmented interior rooms zones (see Figure 8).

Figure 6: Problem joining walls and ground. From this top
plan view you can note the illumination error under the wall

c© The Eurographics Association 2006.

39



A. Mas & G. Besuievsky / To3DSun

Figure 7: Rooms Search algorithm.

Figure 8: Final roof or ceiling construction.

4.4. Stairs, Open spaces and Multiple floors

Stairs are identified with a symbol that provides the grow-
ing orientation and the planar rest of the stair with their cor-
responding size (see Figure 9). With this data we generate
ramps for each stair flight, and planar surfaces for each land-
ing. For the stairs placements it is also necessary to make
holes in the ground or in the ceiling. For this step we use a
simple boolean operation between the ceiling or the ground,
and the 2D bounding box of the stairs.

Figure 9: Stairs 3D generation from 2D floorplan symbol.

Multiple floors are created by replicating them with the
corresponding transformation of the 3D model generated.
Open spaces, used to connect consecutive floors, are indi-
cated with a rectangular symbol in 2D plans. To create the
3D holes we perform the same boolean intersection opera-
tion applied for stairs. For both stairs and open size elements
no user intervention is required, the 3D modeling operation
is completely automatic.

5. Sunlight

A complete daylight simulation could be a complex task
when considering the sun and sky as sources and the global
illumination process with all the related parameters. The use
of a complete simulation generates realistic results [BM05]
but is not suitable for interactive changes. In order to achieve
interactive updates rates we consider only the sunlight sim-
ulation with the condition parameters such as hour, date and
geographic location, and the shadows produced in the archi-
tectural environment.

5.1. Sunlight source

An interactive visualization algorithm was developed con-
sidering only sun direct illumination. The Sun could be
though as a kind of omnidirectional source light because
it emits uniformly in all directions, although usually it is
considered as a directional light source due to the distance
from the Earth. Thus, the incoming sunlight only depends
on the angle of incidence of the rays to the Earth and the
intensity. We used the model proposed in [PSS99] to cal-
culate this incidence, which depends on the longitude, lati-
tude, day of the year and time. Directional direct illumina-
tion can be computed efficiently using hardware implemen-
tations [SWND03].

5.2. Shadows

For shadows simulation we used an approach of the Sten-
cil Shadow Volumes algorithm [Kil01] [Kil99] [Kwo04],
which bases its efficiency on the correct use of the graph-
ics library OpenGL. The Stencil Shadow Volumes is based
on the original idea of Shadow Volumes [Cro77]. This al-
gorithm proposes the construction of volumes generated by
the polygons that cause the shadows. The volumes split the
space in two regions: the first for shadowed objects and the
second for unshadowed ones (see Figure 10).

Figure 10: Shadow Volume sectional view.

The algorithm strategy has two stages. In the first one the

c© The Eurographics Association 2006.

40



A. Mas & G. Besuievsky / To3DSun

volumes are generated (Shadow Volumes) and in the sec-
ond one the scene is divided according to shadowed or un-
shadowed polygons. The core of the algorithm is well doc-
umented with examples in [Kil01] and [Kwo04]. In this
work we develop an adaptation of this algorithm to architec-
tural environments. In the following sections we describe the
proposed modifications to the original algorithm in order to
achieve efficient results within our goals.

5.2.1. Computing the volumes

The volumes are created from the projection of the polygons
that generate shadows and from the incident sunlight rays.
However, not all polygons are necessary to be considered as
shadow generators. For example, the ground of the building
will not generate shadows. Also, it can be observed that not
all the polygons of the wall are shadows generators, approx-
imately just the half. Applying a simple visibility algorithm
with the viewer placed in the source light direction, we can
discard visible polygons, and consider only the non-visible
polygons to generate the shadows (see Figure 11).

Figure 11: Selection of polygons that generate shadows. The
red polygons are selected.

5.2.2. Inside or outside of Shadow Volume

In order to know if a polygon is inside or outside of a Shadow
Volume, we use the position and the normal vector and check
if the polygon is visible from the sunlight direction. There
are some proposed approximations [Kil99] [Kil01] that has
been considered to adapt the Shadow Volume algorithm to
architectural environments and direct sunlight. We used a
modified version of an algorithm called Z-fail [Kil99]. This
algorithm casts rays from the infinite to the viewer, using an
integer counter for each ray, which is increased by one each
time the ray enters in a volume, and it is decreased when the
ray exits (see Figure 12). Each ray corresponds to one pixel
on final render image, thus, all pixels with counter different

to 0 are in shadow. This assumption is also valid when the
viewer is inside the volume, once the counters are initialized
at the infinite. This is a very frequent case when performing
walkthroughs in architectural interior buildings.

Figure 12: Z-fail example.

5.2.3. OpenGL implementation

The original Shadow Volumes algorithm [Cro77] was a
view dependent method, and, in consequence, not suit-
able for interactive purposes. The Stencil Shadow Volumes
[Kil99] [Kil01] improves the Shadow Volumes in order to
achieve efficiency for interactive tasks. The main idea be-
hind this method is a specific implementation using a current
graphics hardware library as OpenGL [SWND03].

We describe here the three implementation steps of the al-
gorithm using OpenGL. In the first step, all internal pipeline
buffers are initialized and the scene is rendered with the sun-
light source enabled.

EnableSunLight();
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LEQUAL);
glDepthMask(1);
glDisable(GL_STENCIL_TEST);
glClearStencil(0);
glColorMask(1,1,1,1);
glClear(GL_COLOR_BUFFER|

GL_DEPTH_BUFFER|
GL_STENCIL_BUFFER);

glEnable(GL_CULL_FACE);
DrawScene();

The second step disables the sunlight source and applies
the Z-Fail algorithm using the Stencil Buffer by processing
the volumes and the intersections between them with sun-
light rays. In this process the output rendering is disabled.

c© The Eurographics Association 2006.

41



A. Mas & G. Besuievsky / To3DSun

DisableSunLight();
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LESS);
glDepthMask(0);
glEnable(GL_STENCIL_TEST);
glStencilFunc(GL_ALWAYS,0,0);
glStencilMask(~0u);
glColorMask(0,0,0,0);
glEnable(GL_CULLFACE);
glStencilOp(GL_KEEP,GL_INCR,GL_KEEP);
glCullFace(GL_FRONT);
DrawShadowVolumes();
glStencilOp(GL_KEEP,GL_DECR,GL_KEEP);
glCullFace(GL_BACK);
DrawShadowVolumes();

Finally, all the scene is rendered again, but only the shad-
owed pixels are updated. To show the pixels in shadow, the
sunlight source is disabled.

glEnable(GL_LIGHTING);
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_EQUAL);
glDepthMask(0);
glEnable(GL_STENCIL_TEST);
glStencilFunc(GL_NOTEQUAL,0x0,~0u);
glStencilOp(GL_KEEP,GL_KEEP,GL_KEEP);
glColorMask(1,1,1,1);
DrawScene();

The use of Stencil Buffer is essential in this algorithm. It
is used to implement the counters for each pixel ray. Some
improvements to the basic algorithm have been applied, such
as a more efficient use of Display Lists to obtain a better
performance in geometry edition and volumes calculations.
Also the Blending functionality has been used properly to
avoid pure-black shadowed pixels.

6. Opening edition

For the edition operation in openings, we allow to change
the length, the heights and the position insertion in the wall
(see Figure 13). Note that the adjacent walls could also suffer
modifications as a consequence of an operation edition. All
processed changes cause geometry modifications and conse-
quently illumination changes. Using the algorithm described
above updates after a given edition can be done at interactive
rates.

The presented algorithm process the scene three times for
each render update. The process can be optimized using Dis-
play Lists for the geometry that does not changes. In this
way, only the modified geometry and volumes are recom-
puted. This means that the computational cost can be re-
duced avoiding processing stages because in general only
a few polygons need to be updated in each edition.

7. Results

In this section we present applications of our system tool.
Figure 14 and 15 show the 2D floorplan and the 3D gener-
ated models for two conceptual design building containing
all the element structures described. The generation process
is automatic and allows to produce a fast virtual prototyper
3D inspection. Figure 16 shows one of the 2D floorplan of
a three-floor real building of the Universitat de Girona cam-
pus and the generated 3D model. In this case the floors are
generated separately and joined to compose the building.

Figure 17 and 18 show results for both sunlight interactive
visualization at different times of the day and an opening edi-
tion session respectively. In order to check the performance
in today’s current hardware, we used a computer with one
of the most simplest OpenGL graphics cards. The only re-
quirement the graphic card needs is the OpenGL buffers im-
plementation, such as Stencil Buffer and Depth Buffer, cur-
rently available in most cards. The minimum requirements
aren’t so high, needing only a Stencil Buffer with 8 bits of
precision or more. Note that this bit precision indicates the
number of intersected objects by each ray [Kil01].

Attached to the paper file there is an animation where all
of this processes and results are demonstrated.

8. Conclusions and future work

We have presented an architecture system tool that offers
automatic modeling that can complement conventional ar-
chitectural CAD packages. It allows the automatic genera-
tion of 3D models from the original 2D floorplans and the
interactive edition of the openings on 3D model with a sun-
light simulation and visualization. This allows to design, test
and validate the correct dimension of the openings in a fast
way. The tool, which is conceived to be integrated with other
CAD systems, had been successfully applied for both mod-
eling real building and for visualization conceptual design
projects.

Future work of this project include automatic roof gener-
ation methods and also fast global illumination simulation
including the sky contribution.

Figure 13: Opening edition parameters.

c© The Eurographics Association 2006.

42



A. Mas & G. Besuievsky / To3DSun

Figure 14: Example of 3D model generation.

Figure 15: Example of 3D model generation with stairs,
open spaces and multiple floors

9. Acknowledgments

This work has been financed partially by TIN 2004-07672-
C03-00, CERTAP (Generalitat de Catalunya) project, PICS
2005 (DURSI), and by the Grup de Recerca Consolidat
2001/SGR/00296.

References

[Aut] AUTODESK DEVELOPMENT: DXF Reference, v.
U14.1.04.

[BM05] BESUIEVSKY G., MARTÍN I.: A hierarchical al-
gorithm for radiosity daylighting. XV Congreso Español
de Informática Gráfica (2005), 75–84.

Figure 16: Above, the University of Girona P4 building 2D
floorplan. Below, the 3D generated model

[Cro77] CROW F.: Shadows algorithms for computer
graphics. Computer Graphics (Proc. SIGGRAPH’77) 11,
2 (jul 1977), 242–248.

[Kil99] KILGARD M. J.: Improving shadows and reflec-
tions via stencil buffer. Advanced OpenGL Game Devel-
opment course notes, Game Developer Conference (Mar.
1999), 204–253.

[Kil01] KILGARD M. J.: Robust stencil shadow volumes.
CEDEC Presentation, Tokyo, Sep. 2001.

[Kwo04] KWOON H. Y.: The theory of stencil shadow
volumes. In ShaderX2, Introductions and Tutorials, W. F.
Engel, Ed. Wordware Publishing, pp. 197–278.

[OWYC05] OR S. H., WONG K. H., YU Y. K., CHANG

M. M. Y.: Highly automatic approach to architectural
floorplan image understanding and model generation. Vi-
sion, Modeling, and Visualization (Nov. 2005), 25–32.

[PSS99] PREETHAM A., SHIRLEY P., SMITS P.: A prac-
tical analytic model for daylight. Proc. SIGGRAPH’99
(1999), 91–199.

c© The Eurographics Association 2006.

43



A. Mas & G. Besuievsky / To3DSun

Figure 17: Example of sunlight simulation at different day
hours

Figure 18: Opening edition and sunlight simulation updat-
ing

[SWND03] SHREINER D., WOO M., NEIDER J., DAVIS

T.: OpenGL Programing Guide. Adisson-Wesley Profes-
sional, 2003.

[WPF90] WOO A., POULIN P., FOURNIER A.: A survey
of shadow algorithms. IEEE Computer Graphics and Ap-
plications (Nov. 1990), 13–32.

c© The Eurographics Association 2006.

44


