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Abstract
Topological and morphological descriptions of (sub-)cellular structures play a central role in the understanding
of biological processes. Deriving such descriptions from image data, however, is a challenging task that has
so far only been addressed for individual objects at a coarse resolution with small numbers of samples. For
larger samples, the structured analysis is highly challenging as little a priori knowledge exists. In this paper,
we address the design of a generic parameter space for segmented objects that forms the basis for subsequent
structural analysis. We detail theoretical considerations, discuss the proposed model using examples from electron
microscopy, and summarize lessons learned for subsequent implementation and analysis.

Categories and Subject Descriptors (according to ACM CCS):

1. Introduction

Visual analysis of microscopy images has played a domi-
nant role in the history of biology. For small samples and a
limited number of images this proved to be a very power-
ful analysis strategy. With the rise of high-resolution high-
throughput microscopy, however, this is no longer feasible.
Modern electron microscopes, for example, can automati-
cally scan large tissue blocks resulting in image stacks con-
sisting of several hundred images, each with a resolution
of several giga pixels. Manual analysis in this setting is no
longer practicable and the need for automatic support has
been widely expressed in the past years [WSB∗10].

Excellent progress has been achieved in the last years for
images capturing cell data [CJL∗06,JKW∗08], gene expres-
sion patterns [RWK∗06,TC05,SND05], or cellular pathways
[SHF∗03, DBD∗02]. In these applications, there already ex-
ists a quite good understanding of how to quantify relevant
parameters in the data using, for example, size, shape, or
texture statistics which can be automatically computed us-
ing computer vision and machine learning algorithms.

For segmented image structures and their analysis, how-
ever, the required parameters are often not clear as there is
yet too little understanding of what is in the data, how struc-
tures look like, and how much natural variability there is.

A precise quantification has not yet been addressed as (a)
the necessary image modalities to record such data have not
been available and (b) tools that are currently available for
the analysis of segmented image data are not yet powerful
enough and often require a large amount of manual tweak-
ing and implementation experience from the biologist.

The data acquisition part has lately been addressed with
the new generation of electron microscopes that allow for
the rapid acquisition of huge amounts of image data each at
a high level of detail. Figure 1(left) shows an electron mi-
croscopy image of a mouse’s muscle tissue along with the
segmented structures. Such tissue scans hold the promise of
telling what the “standard” cell looks like and how much
natural variability there exists. The big remaining challenge
is to derive relevant description parameters and to build an
appropriate model organism with inherent uncertainty.

In this paper, we address the first issue –parameter space
analysis– and make the following contributions:

• (i) We detail a systematic description of the feature space
for segmented biological image data.

• (ii) We describe lessons learned on how to model these
feature spaces in software.

• (iii) We discuss all findings using examples from electron
microscopy data of neuromuscular junctions.
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Figure 1: Analysis pipeline (left to right): (i) Classification of segmented data objects. (ii) Parameter space design. (iii) Final
analysis of parametric features data.

2. Related Work

In visualization there has been much effort to visualize
multi-dimensional parameter spaces. Starting with static
methods like parallel coordinates [Ins85] and scatterplot ma-
trices, increasingly sophisticated algorithms have been de-
signed using, for example, multivariate projection (PCA,
multidimensional scaling [BG05], worlds within worlds
[FB90] or hyperslice [vWvL93]). Additional support is pro-
vided using animation or animated interaction to guide the
user on their tour through the parameter space. Examples
in this area are the grand tour [Asi85], rolling the dice
[EDF08], or the TripAdvisorN-D [NM13].

An alternative approach analysis the influence of param-
eter settings on an underlying model. This domain can be
divided into two groups: The first one examines the impact
of parameters on the model and wants to understand how
changing the settings affects the model (e.g., for simula-
tion models [PBK10,BPFG11,BMPM12] or image segmen-
tation [TWSM∗11, PBCR11, CJL∗06]). The second group
supports parameter selection by result, i.e., the user is pre-
sented a number of outcomes and explores the parameter
space based on the outcome. Applications in the area of com-
puter graphics model selection are [MAB∗97, BM10].

The methods discussed so far assume that the parameter
space is known a priori. In our applications, we found that
the scientific question was not very precise. The goal is to
derive a metric description of segmented structures. Which
aspects of the data are relevant and need to be integrated into
the parameter space is often not clear. Additionally, we usu-
ally do not deal with continuous parameters but with power
sets of nominal parameters where many of the above pre-
sented methods will fail. Hence, we concentrate in this paper
on the modeling of a flexible parameter space design for the
analysis of segmented objects from biological image data.

3. The Parameter Space

The first step in the comprehensive quantitative descrip-
tion of biological structures is the definition of a parame-

ter space that comprises all potentially relevant information
concerning the segmented structures. Often relevant param-
eters comprise structural properties (e.g. length, width, vol-
ume, shape), textural properties (e.g. intensity, granularity,
patterns), or neighborhood information (e.g. nearest object
of same type, number of surrounding objects of different
type). Commonly there is also secondary information such
as the age of the subject the sample was taken from, the type
of subject (e.g. healthy vs. pathological), or the location of
the sample within a larger context (e.g. muscle tissue sam-
ple from the leg, heart, or face). The parameter space has to
encompass all this information to allow for a versatile sub-
sequent analysis.

3.1. Biological Questions and Model Implications

Before going into detail about the precise definition of the
parameter space, we want to look at some typical questions
that arise when analyzing segmented image data:

• In which features do healthy and pathological subj. differ?
• What is the mean shape and how does it vary?
• Does spatial location influence the segmented structures?
• How do structures change with increasing age?

These questions illustrate some of the fundamental dif-
ficulties in visualizing biological segmentation data, which
strongly influence the theoretical data basis and the software
design: (i) Problem specification: The scientific question is
commonly rather fuzzy. The transition from the general “I
want to understand my data.” to precise questions that can
be answered using visualization or mathematical analysis is
a central aspect in the “visualization” process. (ii) Feature
selection and definition: Features necessary to answer the
extracted questions are commonly not clear a priori. A vari-
ety of potentially helpful features has to be identified, imple-
mented, and tested. (iii) Interactive subset selection: The
software has to support database-like functionalities to se-
lect and/or group subsets of the data. (iv) Coupling of multi-
ple algorithms interactively: The users commonly require
a coupled set of algorithms for a holistic analysis. Visual-
izations of the raw data with highlighting functionality have
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to be connected to parameter space visualization and ex-
ploration algorithms via linking-and-brushing. (v) Ensem-
ble visualization: The software needs to be able to visual-
ize ensembles to compare multiple subjects across different
groups.

3.2. Features and Classes

An important part of the parametric data description is the
distinction of two types of information: we will divide ob-
ject parameters into features and classes. Features are quan-
tifiable properties of segmented objects that are commonly
directly measured using the input image/segmentation data.
Examples for features are size, shape, or texture. Classes are
properties of the segmented objects that are used to cluster
data. Examples for classes are healthy vs. pathological, age
group, species, or location of sample. During our research
we found some cases, where classification was more diffi-
cult. These are commonly derived attributes such as spatial
location within the data set, which might be used for data
aggregation (→ class) as well as statistical analysis (→ fea-
ture). The implications for the software design will be dis-
cussed later. Overall, we found this distinction very helpful
to provide a first structuring of the data, which is used to
add levels of detail to the analysis process, and to make the
biologists render their research questions more precisely.

Class information is commonly used to separate the seg-
mented data into groups that are to be compared. The easi-
est setting is to chose one primary class, e.g., a certain age
group, and compare it to the rest of the data. Often a more
detailed analysis is necessary to derive meaningful informa-
tion. For example, subjects of a certain age group may only
differ in healthy subjects but not in pathological ones.

Feature information is the one that is subsequently ana-
lyzed and used to derive model information. In manual anal-
ysis of the feature space, biologists commonly rely on low-
dimensional standard techniques such as histograms, scatter-
plots or heat maps [WSB∗10]. For many data attributes, the
distinction between feature and class is readily given.

In summary, classes are for data selection and clustering
and features are used to quantify commonalities and differ-
ences between subsets of the data.

3.3. Theoretical Model

Taking the previous considerations into account the theoret-
ical model for the parameter space for quantitative descrip-
tors of segmented biological image data consist of two ma-
jor parts for data classes and features respectively. The first
n dimensions of the parameter space are dedicated to the n
classes. In many cases classes take nominal values that have
no implicit ordering, such as type of species, gender, or spa-
tial location. There also exist classes with ordinal and even
continuous properties, such as age or data acquisition param-
eters. The next m dimensions represent the derived object

features which are often continuous scalar quantities but may
also have more complex structure such as shape information
or graph structures to represent neighborhood properties.

Data points are stored in the common form: each seg-
mented object is assigned an n+m-dimensional vector con-
taining class and feature information. In our collaborations,
we often revised and extended the feature space, which does
not affect the theoretical model, but has strong implications
on the resulting implementation.

Operations on the data directly arise from the feature
and class discussions. For classes we require functionalities
for interactive selection and grouping of data. For features
we need data analysis routines from statistics and machine
learning to extract data characteristics and clusters and struc-
tures that emerge in the parameter space.

For the visual inspection of the parameter space, infor-
mation visualization techniques and statistical graphics are
necessary to render the parameter space. Augmented image
visualizations including highlighting and interactive selec-
tion are required for the image and segmentation data. As
discussed in section 3.1, all methods have to be linked via
linking-and-brushing and have to be interactive. They also
have to support ensemble visualization.

4. Example: Folds in the Neuromuscular Junction

In this example, we illustrate the design of the parameter
space for junctional folds. Junctional folds are subcellular
structures at neuromuscular junctions (NMJs) located at the
junction between an axon terminal of a motoneuron and a
muscle fiber (see fig. 1). Samples were taken from muscle
tissue of mice.

First we collected the relevant object classes:

Synapse Type ∈ {wt,mdx}
Location Type ∈ {neuron, interspace,glia}
Fold Type ∈ {primary,secondary, internal}

where synapse type describes the animal’s state of health. wt
encodes healthy wild type mice and mdx pathological ones.
The location type indicates the cell organelle that lies oppo-
site the junctional fold. The fold type characterizes the struc-
ture of the fold. Regular ones on the membrane are called
primary, those having a protruding extra bulge are called
secondary and folds without a direct connection to the mem-
brane section in 2D are called internal. At a later stage, we
found that we have to extend the model to account for an
additional class: spatial location within the entire synapse.

For the features we started with a small initial set of
widely used features. As large scale quantitative descriptions
have so far not been made for NMJs and junctional folds the
set of relevant features was not clear a priori and we will
extend it on demand. So far we measure for each junctional
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fold (see figure 1(center) for an illustration): area, length, arc
length, opening width, distance to next fold.

This initial distinction forced the biologists to formulate
the research questions more precisely. On a very coarse
level, they had to decide which groups they want to com-
pare and which features they want to analyze statistically.
This added valuable user knowledge to the system, which
intrinsically structured the resulting info graphics (compare
fig. 1(right)) in a hierarchical fashion.

Additionally, we used this information to provide a more
structured interface to the data that readily summarizes all
classes and features (fig. 2). Classes and their values are pre-
sented on the left hand-side, features on the right hand-side.
We allow the user to select a primary class that is used to
partition the data into different groups. Data selection is per-
formed by selecting or deselecting presented classes. Two
sample configurations are presented in fig. 2b. In an ad-
ditional pixel-based visualization, we record the configura-
tions that the user has already investigated, which gives feed-
back about potentially interesting missing configurations.
Upon selection the user is presented with statistical graphics
of the selected parameter (compare fig. 1(right)). The new
interface helped them to quickly update their selection and
see the implications on the resulting statistical graphics.

Using the described parameter space and the visual in-
terface, biologists had for the first time an easy and clearly
structured access to their data. During their trial they made
the following observations:

• Differences could be observed in all features when com-
paring folds of mdx and wt mice.

• Those differences became clearer and more pronounced
for subgroups. In particular, they found that internal and
primary folds should not be analyzed jointly.

• In literature it is postulated that folds are usually opposite
to neurons. With our interface biologists rapidly observed
that a substantial number of folds are located outside these
regions, what they want to investigate in more detail.

5. Lessons Learned for Software Development

The parameter space design resulted from several iterations
of software development and monthly discussions with biol-
ogists over the last two years. From this work we learned:

The structuring helped in the analysis of the parameter
spaces with dozens of attributes. In a first implementation we
summarized classes and features in a common data model
which constantly resulted in confusions about the allowed
operations and the configurations that already had been an-
alyzed. A clear distinction helps in the analysis process and
in the formulation of biological questions.

The structured navigation panel, a visual interface holding
all attributes compared to simple drop-down menus, helped
us select valid configurations while presenting at the same

(a) Detailed description (using the default configuration).

(b) Alternative valid configurations.

Figure 2: The navigation panel for the parameter space: The
left column of circular items selects the class that is used for
partitioning. The rectangular boxes in the center name for
each class its entities and visualize the proportion of data in
this class (width). Features are listed in the right column.

time information about the amount of data records to be an-
alyzed, which is relevant to ensure statistical significance.

Databases provide good means to store and structure the
data on demand. A simple mechanism has to be imple-
mented to distinguish between features and classes as they
allow for different operations.

The data attribute hierarchy (attribute→ class/feature→
name) has to be stored in an easily accessible and modifiable
way. Our system is implemented in C++. In the first stage
we employed enumerates that were edited on demand. We
faced problems when trying to derive for a given name the
respective class/feature and when trying to iterate over all
values within a class/feature. In the current implementation,
we employ a lookup-table with an accompanying operator
class that provides both functionalities.

One unsolved problem is on how to store and pass the con-
figuration of the selected data between algorithms efficiently.
As classes, features, and their assignment still change, hard
coded identifiers are not applicable.

6. Conclusion

In this paper we described a theoretical model for the design
of parameter spaces for the analysis of segmented structures
in biological image data. We exemplified our considerations
using examples from electron microscopy images of neuro-
muscular junctions in mice and detailed lessons learned re-
garding software development.
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