
Vision, Modeling, and Visualization (2011)
Peter Eisert, Konrad Polthier, and Joachim Hornegger (Eds.)

RITK: The Range Imaging Toolkit –
A Framework for 3-D Range Image Stream Processing

J. Wasza1, S. Bauer1, S. Haase1, M. Schmid2, S. Reichert4, J. Hornegger1,3

1 Pattern Recognition Lab, Dept. of Computer Science
2 Hardware/Software Co-Design, Dept. of Computer Science

3 Erlangen Graduate School in Advanced Optical Technologies (SAOT)
Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

4 softgate GmbH, Erlangen, Germany

Abstract
The recent introduction of low-cost devices for real-time acquisition of dense 3-D range imaging (RI) streams
has attracted a great deal of attention. However, to date, there exists no open source framework that is explicitly
dedicated to real-time processing of RI streams. In this paper, we present the Range Imaging Toolkit (RITK).
The goal is to provide a powerful yet intuitive software platform that facilitates the development of range image
stream applications. RITK puts emphasis on real-time processing of range image streams and proposes the use
of a dedicated pipeline mechanism. Furthermore, we introduce a powerful and convenient interface for range
image processing on the graphics processing unit (GPU). Being designed thoroughly and in a generic manner, the
toolkit is able to cope with the broad diversity of data streams provided by available RI devices and can easily
be extended by custom range imaging sensors or processing modules. RITK is an open source project and will be
made publicly available at http://www5.cs.fau.de/ritk.

Categories and Subject Descriptors (according to ACM CCS): I.4.9 [Image Processing and Computer Vision]:
Applications—D.2.13 [Software Engineering]: Reusable libraries—

1. Introduction

In the past, the acquisition of dense three-dimensional range
imaging (RI) data was both tedious, time consuming and ex-
pensive, hence, hindering a widespread application. Lately,
technological advances in RI sensor design have rendered
metric 3-D surface acquisition at high resolutions (up to
300k points) and real-time frame rates (up to 40 Hz) pos-
sible. The advent of Microsoft’s Kinect, with a mass mar-
ket retail price of $150 a unit and more than 10 million
sales within a few months, has caused a furor in the field
of consumer electronics. With the introduction of afford-
able hardware, 3-D perception is gaining popularity and im-
portance across a wide range of domains. In particular, we
note an explosion of innovation in applications that benefit
from the fact that state-of-the-art RI sensors deliver dense
and dynamic range data streams in real-time. Among oth-
ers, real-time capable RI sensors hold potential for human
computer interaction, augmented reality, surveillance and

security applications, biometrics [BWMH11] , medical en-
gineering [MBWH11, BBHR11], or automotive and indus-
trial applications [RMBD08]. Among range imaging sen-
sors, structured light and Time-of-Flight (ToF) based devices
are of particular interest and popularity. Unlike conventional
RI approaches such as passive stereo vision, the recovery
of depth from texture-less regions or repetitive patterns is
not an issue with these novel modalities. Regardless of fun-
damentally different physical principles [GZ08, KBKL09],
both technologies are capable of delivering dense and metric
3-D surface information at real-time frame rates. However,
the acquisition and streaming of RI data typically implies an
immense amount of data (in the scale of 500 MBit/s) to be
propagated and processed. This poses a challenge in terms
of throughput for subsequent data processing and analysis
algorithms. Despite the advances in sensor technology, there
exists no open source framework dedicated to real-time pro-
cessing of RI streams.

c© The Eurographics Association 2011.

DOI: 10.2312/PE/VMV/VMV11/057-064

http://www5.cs.fau.de/ritk
http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/PE/VMV/VMV11/057-064

J. Wasza et al. / RITK: The Range Imaging Toolkit

1.1. Contributions

In this paper, we introduce the range imaging toolkit (RITK).
It is a cross-platform and object-oriented toolkit explic-
itly dedicated to the processing of data streams from mod-
ern RI devices. The toolkit can support developers in two
ways: First, it can be used as an independent library for RI
stream processing within existing software. Second, it pro-
vides a comprehensive software platform for the develop-
ment of range imaging solutions at an application level. In
particular, we propose an easy-to-use interface infrastruc-
ture that allows the developer to incorporate individual pro-
cessing modules. An individual selection of modules from
the RITK pool of building blocks can then be assembled
into an application-specific RI processing pipeline. This ap-
proach facilitates the distribution and reuse of existing mod-
ules and thus provides a powerful yet intuitive rapid pro-
totyping environment for the creation of standalone applica-
tions. The toolkit is explicitly dedicated to real-time process-
ing of high-bandwidth data streams. In particular, we present
an user-friendly interface for general purpose computing on
modern many-core graphics processing units (GPUs). The
interface facilitates the usage of dedicated hardware with
a collection of convenience methods and macros. Further-
more, RITK takes advantage of the interoperability of gen-
eral purpose computing on the GPU and rendering for real-
time visualization of dynamic 3-D point cloud data.

Along with this publication, RITK will be released as
open source software, providing a hands-on range image
stream processing framework for the fast growing RI com-
munity. The release will include a collection of sample mod-
ules for acquisition, pre-processing, analysis and visualiza-
tion of range image streams.

The paper is organized as follows. The remainder of this
section compares the toolkit to related work. Section 2 gives
an overview of the framework’s architecture and underlying
design principles. Subsequently, in Section 3, the key con-
cepts of RITK and implementation issues are described in
more detail. Section 4 gives examples of applications using
RITK and illustrates how the concepts described before are
used therein. In Section 5, we draw conclusions and give
a brief outline of the future development plans for the pre-
sented platform.

1.2. Related Work

In the computer vision community, several open source soft-
ware libraries for general purpose 2-D and 3-D image pro-
cessing exist today [ISNC05,SML06,Bra00,RC11]. Most of
these libraries provide some basic functionality for the pro-
cessing of static 3-D point clouds or surfaces. However, the
state-of-the-art lacks a library that explicitly addresses real-
time processing of 3-D range image or point cloud streams.

To date, few platforms support ToF sensors [ART11,
BIA11] and/or Microsoft’s Kinect device [BIA11, SLR∗11,

RC11]. In terms of ToF imaging, we are aware of three li-
braries: The action recognition and tracking based on time-
of-flight sensors (ARTTS) toolbox [ART11] is dedicated to
ToF range data processing and divides into packages for gen-
eral signal processing, object tracking and action recogni-
tion. However, the toolbox is based on MATLAB. The med-
ical imaging interaction toolkit (MITK) [SYM∗11] is a plat-
form that exclusively addresses developers in the field of in-
teractive medical image processing. Basically, it combines
two established libraries for image processing and visualiza-
tion (ITK, VTK, see below). Since ToF imaging holds po-
tential for medical applications [MBWH11, SPH08], a sub-
module for acquisition and processing of ToF range data was
added recently but functionality is limited to basic I/O and
CPU-based filtering yet. The basic image algorithms (BIAS)
library [BIA11] provides a code basis for image process-
ing, motion estimation and 3-D reconstruction algorithms.
It supports both ToF devices and Microsoft’s Kinect, but the
library is not explicitly dedicated to range image processing.
The flexible action and articulated skeleton toolkit (FAAST)
[SLR∗11] supports the Kinect device, but is intended and
designed in particular for full-body control in gaming and
virtual reality applications. Hence, let us conclude that both
MITK and FAAST are not explicitly dedicated to range im-
age and point cloud processing, respectively.

Only recently, the Point Cloud Library (PCL) [RC11] was
introduced. To our knowledge, it is the first library that first
and foremost addresses the processing and interpretation of
3-D point clouds. However, in contrast to RITK, the library’s
focus is on providing a common repository of algorithms.
Furthermore, and similar to the libraries presented before,
PCL is designed for processing static range image or point
cloud data, respectively. This contradicts the fact that mod-
ern RI devices stand out due to its capability of dynamic 3-D
scene acquisition at real-time frame rates. These issues are
addressed by the toolkit presented in this paper, being ded-
icated to the processing of a sequence or stream of range
images on-the-fly and in real-time. These aspects point out
that RITK and PCL are no competitors but can complement
each other.

Being of particular relevance w.r.t. the design of RITK,
below, let us briefly depict one of the most established and
maintained open source libraries in the scientific computer
vision community. The Insight Segmentation and Registra-
tion Toolkit (ITK) [ISNC05] is a powerful open source li-
brary of algorithms for 2-D and 3-D image processing,
especially for segmentation and registration. In particular,
in the field of medical image processing, it is regarded
as the de-facto standard. For RITK, we take advantage of
ITK’s established programming paradigms for image pro-
cessing. For instance, we adopt the powerful pipeline- and
update-mechanism for the processing of RI data streams (see
Sec. 3.2). As a consequence, developers being familiar with
ITK will rapidly get accustomed to the RITK implementa-
tion scheme.

c© The Eurographics Association 2011.

58

J. Wasza et al. / RITK: The Range Imaging Toolkit

2. Architecture and Design Principles

RITK is an object-oriented, cross-platform toolkit written in
C++, that can be used as a regular library as well as an ap-
plication framework for rapid development. The application
layer of RITK is designed with a focus on dynamically load-
able plugins, facilitating the distribution and reuse of exist-
ing modules. Besides its rapid prototyping capability, this
design principle eventually eases the assembly of standalone
RI solutions.

The basic design strategy pursued during development
was to build the toolkit upon existing and established li-
braries, extending their functionality to fit the needs for real-
time range image streaming, and combine the libraries’ indi-
vidual advantages and unique characteristics to form a user-
friendly framework, yet satisfying scientific and industrial
demands. In particular, RITK is written with performance
in mind, supporting modern multi-core CPU and many-core
GPU architectures, as well as enabling the integration of
dedicated hardware such as FPGAs.

2.1. Conceptual Modules

Functionality in RITK is spread across different modules.
This ensures a high degree of cohesion and loose coupling,
eventually providing the basis for the usage of RITK as a
regular library as well as a standalone application.

• ritkCommon: This module defines the basic range imag-
ing data and processing types and implements an ITK-
style pipelining concept specially tailored to the needs of
real-time range image streaming. In addition, the inter-
face for seamless integration of dedicated hardware such
as GPUs into ITK is provided.

• ritkCore: The core engine of RITK on the application
layer is provided in this module. In particular, this in-
cludes a dynamically configurable range image acqui-
sition pipeline, plugin management, event handling and
broadcasting, as well as a graphical user interface (GUI)
front-end to the aforementioned tasks. Here, the well es-
tablished Qt framework [BS08] is used for both the GUI
and as backbone for the modular plugin system and multi-
threading on the application layer.

• ritkVisualization: Methods for the graphical represen-
tation of range data are implemented in this module.
RITK provides a high-performant visualization system
that is specifically designed for generic range image types.
The visualization system is based on OpenGL and the
OpenGL Shading Language (GLSL).

• ritkVTK: This optional module contains a conve-
nient interface to the well-established Visualization
Toolkit [SML06]. Usage of VTK is mainly confined to
rendering and interaction, however, the module also en-
ables utilization of VTK’s rich set of mesh manipulation
routines.

• ritkCUDA: This optional module contains the inter-
face for general purpose computing on the GPU using

Nvidia’s CUDA [NVI10] architecture. The main task of
this module is to facilitate CUDA usage and to provide
the infrastructure for high-performance GPU based image
processing using an ITK-style pipeline.

The conceptual modules of RITK and their dependencies are
illustrated in Fig. 1, see Sec. 3 for a detailed description of
functionality and concepts in RITK.

2.2. Application Layer and Plugin Architecture

The application layer of RITK is designed with a
strong focus on modularity by dynamically loadable plu-
gins/modules. The philosophy behind this approach is that
RITK can easily be extended by custom RI sensors or data
types and processing modules to assemble generic process-
ing pipelines at run-time. This obviates the need to re-
compile the whole framework when adding new features.
Due to the standardized, yet generic and modality inde-
pendent range image format in RITK, compatibility and
reusability of existing modules with custom extensions is
granted. Going one step further, the plugin system of RITK
is explicitly designed for dynamically loadable custom mod-
ules that run inside the application layer of RITK. This al-
lows for rapid development of small sandbox tools as well as
comprehensive standalone RI solutions that exploit RITK’s
generic custom sensor concept and real-time streaming ori-
ented data acquisition and processing infrastructure. For this
purpose, RITK provides an easy to use plugin creator and
employs an XML-based key-and-value configuration system
that eases automatic assembly and parameterization of appli-
cations at run-time.

The plugin concept in RITK is schematically illustrated
in Fig. 2. Besides the aforementioned generic acquisition
concept and run-time configurability, we point out RITK’s
broadcast mechanism and support for concurrently executed
modules, each running in its own individual thread. Thus,
reusability and integration of existing application modules
is also given, which is beneficial for several comprehensive

CUDAITK Qt

ritkCommon

ritkCore ritkVisualization

OpenGL / GLSL

ritkCUDA

VTK

ritkVTK

RITK

Figure 1: The RITK modules. RITK is mainly based on ITK,
the Qt framework, and OpenGL / GLSL for visualization.
The VTK front-end and GPU support using CUDA is op-
tional, yet included in the open source release.

c© The Eurographics Association 2011.

59

J. Wasza et al. / RITK: The Range Imaging Toolkit

RI solutions (see the example in Sec. 4.2). Being important
in industry driven cooperations and commercial research
projects, such a plugin system comes with the advantage that
no source code has to be provided. By providing pre-built
binaries equipped with a license of limited duration, repro-
ducible research or module testing is granted while retaining
full control with regard to copyright issues or unauthorized
disclosure and usage.

3. Implementation Details

In this chapter, we review the most important implemen-
tation details of RITK. In particular, we rediscover ITK’s
pipelining concept - originally developed for static medical
image processing - for real-time image streaming and GPU
support.

3.1. Range Image Format

The plurality of existing RI sensors (e.g. structured light,
ToF) and its different or incompatible data structures im-
plies the need for a standardized internal data format be-
ing flexible for future devices. Therefore, RITK comes
with its own range image base class that is derived from
itk::ImageBase, enabling full usage of ITK’s smart-
pointer, memory management and pipelining concept. By
design, this also enables multi-threaded image processing to
exploit the full potential of modern multi-core CPU archi-
tectures.

Range images contain a unique timestamp for detailed
analysis and proper chronological reconstruction of recorded
scenes. Furthermore, ITK’s origin, orientation, and spacing
concept can be used to provide multiple viewpoint function-
ality and for composite RI sensors and multi-camera setups.

Figure 2: The RITK plugin principle. RITK is explicitly de-
signed for dynamically loadable and interchangeable mod-
ules, both on the acquisition and application layer.

Besides the pure range information, RI sensors commonly
provide additional data such as photometric or validity in-
formation. Thus, the actual data payload of an range image
may consist of several values per pixel that can internally
be stored as individual ITK images. This concept allows
to take advantage of ITK’s rich set of existing image pro-
cessing functionalities and eases development of novel al-
gorithms using state-of-the-art programming paradigms. In
order to enable the integration of non-image data, RITK em-
ploys generic payload containers that can hold arbitrary data
such as body landmarks (see Sec. 4.1). Given the object ori-
ented approach in RITK, future sensors and additional pay-
load can thus be easily integrated.

3.2. Processing Pipeline

Consequently, pipeline propagation of range im-
ages coincides with ITK, i.e. an RI source de-
rived from itk::ImageSource is located at the
pipeline’s head and several RI filters derived from
itk::ImageToImageFilter are connected down-
stream. In this context, RI filters can be seen as composite
ITK filters or mini-pipelines that encapsulate processing
of a range image’s generic payload. Naturally, this allows
to use the same pipeline with different sensors and image
types. However, by default, ITK does not support pipeline
propagation of custom image types that are unknown at
compile-time. Regarding RITK’s design philosophy to
extend the framework by custom modules and to assemble
application modules at run-time, this is a critical restriction.
Therefore, the base class for RI filtering is specifically
designed to handle this task in a fully automatic manner,
by dynamically matching a filter’s output type to fit its
input type and to propagate this type information to all
downstream elements.

A key concept pursued for data processing in RITK
is the interface for so-called generic pixel containers.
These pixel containers are intended to replace regular
itk::ImportImageContainers dynamically at run-
time and enable image data to be stored and processed in
regular RAM as well as on dedicated hardware such as
GPUs (see Sec. 3.4). Through the usage of sophisticated,
yet fully automatic synchronization mechanisms, develop-
ment efforts are minimized and potentially time consuming
memory transfers between devices can be prevented. This is
a crucial prerequisite for real-time capability, especially for
streaming large data. Addressing the problem of pixel stor-
age at run-time has the advantage, that special hardware can
be seamlessly integrated into an ITK pipeline and combined
with existing RITK modules.

c© The Eurographics Association 2011.

60

J. Wasza et al. / RITK: The Range Imaging Toolkit

3.3. Visualization

The graphical representation of range images is a key issue
for understanding and analysis of 3-D scenes as well as an
important feedback when designing processing algorithms.
RITK offers OpenGL-based visualization methods that are
specially tailored to high-performance rendering of stream-
ing range data. In particular, RITK’s visualization module
puts emphasis on rendering of 3-D point clouds and surface
meshes computed from the range or depth information. The
visualization of a range image’s additional payload such as
photometric information is done by utilizing the OpenGL
Shading Language. This enables continuous and interactive
blending of different generic payload components in one
scene. In order to support the interoperability of general pur-
pose computing on the GPU and rendering, RITK’s visual-
ization module employs the concept of vertex buffer objects.

In addition, RITK provides a direct interface and easy-to-
use convenience modules for 3-D surface and point cloud
rendering in VTK [SML06]. However, VTK is not designed
for processing and visualization of real-time streaming data.
Besides run-time issues due to the computational overhead
of an additional abstraction layer, VTK natively lacks syn-
chronization methods for critical sections. This is a crucial
drawback, as for performance reasons, data acquisition and
rendering in RITK is usually performed in coherent threads.
Thus, the visualization module of RITK extends VTK func-
tionality to synchronize data while streaming, eventually
preventing race conditions and invalid data states.

3.4. GPU Interface

RITK’s GPU module contains a convenience interface for
general purpose computing on the GPU using Nvidia’s
CUDA architecture. The main task of this module is to fa-
cilitate CUDA usage and to provide the infrastructure for
high-performance GPU based image processing. This is
done by providing concrete implementations of the generic
pixel container concept (see Sec. 3.2) that is part of RITK’s
run-time configurable processing pipeline. In particular,
these containers facilitate conversion between the differ-
ent memory types in the CUDA architecture and automate
host/device transfer in a way that minimizes copy overhead.
Given their inheritance hierarchy, the CUDA containers nat-
urally comply with resource (de-)allocation and storage in
ITK. Thus, an ITK-style processing pipeline running entirely
on the GPU as well as a heterogeneous pipeline using CPU
and GPU processing elements is enabled.

As for CUDA versions < 4.0 memory allocation, access,
and deallocation must be performed within the same thread
context, convenience methods and macros to ease these tasks
are provided.

Figure 3: The data format of a range image sequence (.ris)
file, dividing into data header and payload. The image type
is used to allocate dedicated I/O routines.

3.5. File Format

There exist several standardized file formats (e.g. .stl, .ply,
.vtk) for static point cloud and surface data, respectively. In
contrast, there is not even one established file format for
range image stream data. As a consequence, along with the
introduction of RITK, we propose a new file format for dy-
namic range image stream data. In particular, RITK discrim-
inates between a single static range image (.ri) and range im-
age sequences (.ris). Both file formats divide into a compact
header and the actual RI data payload, see Fig. 3.

The header holds the respective image type, the version of
the file format (for backward compatibility), device-specific
parameters w.r.t. camera calibration and 3-D reconstruction,
image-specific information and the total number of frames in
case of range image streams. In fact, the image type header
field serves as an identifier for device-specific payload in-
terpretation at runtime. Consequently, RITK is capable of
allocating dedicated I/O routines for different RI sensors.
Instead of using a separate parameter file, camera-specific
parameters are stored as part of the header. This is motivated
by the fact that the payload can be interpreted solely with the
individual parameters of the actual sensor that was used for
acquisition. The payload holds the RI data on a per-frame
basis. For each single range image of a sequence, a unique
timestamp is stored in addition to the captured sensor data.
Hence, recorded scenes can be reconstructed, processed and
analyzed in a chronologically accurate way. The type and
size of the payload depends on the device-specific raw data.
For instance, Microsoft’s Kinect delivers orthogonal depth
and the corresponding RGB data, whereas ToF sensors may
provide either radial range and amplitude data or a sequence
of measured phase images [KBKL09]. With respect to effi-
cient I/O for range image sequences, data is stored as binary
streams.

c© The Eurographics Association 2011.

61

J. Wasza et al. / RITK: The Range Imaging Toolkit

4. Applications and Examples

Due to its generic design, RITK can be used for a broad vari-
ety of real-time applications. Below, we briefly outline four
practical examples that are based on and built with the pre-
sented toolkit. Thereby, we demonstrate the capabilities of
RITK to be used as a software framework and rapid proto-
typing platform for assembling (standalone) range imaging
solutions. Please note that not all examples and modules pre-
sented in the following sections will be included in the open
source release of RITK.

4.1. Kinect Interface

The open source release of RITK comes with a ready-to-use
interface for Microsoft’s Kinect device using the OpenNI
and NITE frameworks [Ope11]. The generic payload con-
cept in RITK (Sec. 3.1) seamlessly enables the integration of
Kinect’s range information, RGB data and skeleton tracking
functionality into RITK solutions. Fig. 4 shows a screenshot
of a skeleton tracking application module that was imple-
mented using RITK’s plugin creator and VTK frontend.

4.2. Respiratory Motion

The management of respiratory motion is an important fac-
tor in fractionated radiotherapy (RT). The basic idea behind
the application of real-time RI sensors in RT is that the pa-
tient’s respiration curve can be acquired in a markerless and

Figure 4: Microsoft Kinect integration in RITK. Skeleton
tracking is performed using the NITE framework. The esti-
mated 3-D body landmark positions are propagated through
the processing pipeline and to the skeleton tracking applica-
tion module using RITK’s generic payload concept.

Figure 5: Respiratory motion management in RITK using
Microsoft’s Kinect device. The patient’s respiration curve
can be accurately reconstructed. Note the concurrently run-
ning recording module that can be used for the purpose of
clinical documentation.

non-obtrusive manner. The reconstructed respiration curve
can be employed in gated radiotherapy [SPH08], for in-
stance. An RITK based implementation of this use-case is
illustrated in Fig. 5. The example demonstrates RITK’s sup-
port for the development of powerful standalone solutions.
Here, we explicitly note the concept of application modules
that run in parallel: in RT, a concurrently running recording
module can be used for clinical documentation of the treat-
ment fraction.

4.3. Range Image Stream Simulator

This example demonstrates the generic range image source
concept pursued in RITK (Sec. 3.1), providing the funda-
mental basis to code modality independent algorithms that
can be applied to data from different RI devices or syn-
thetic sources. Here, we have implemented a range image
stream simulator that produces range data based on the z-
buffer representation of a 3-D scene. The scene can be in-
dividually composed. Using the simulator allows to experi-
ment with different noise characteristics and sensor resolu-
tions that occur with cameras from different manufacturers,
while providing an absolute ground truth for evaluation pur-
poses. Due to the modality independent processing pipeline
in RITK, this inherently allows for benchmarking both accu-
racy and run-times of pre-processing filters in a reproducible
manner [WBH11]. A screenshot of the simulator applica-
tion is given in Fig. 6. In this example, the simulator is set
up to produce synthetic range data that resembles ToF mea-
surements including its unique noise and artifact characteris-
tics [LSKK10]. The employed pre-processing pipeline was
assembled from the pool of filter modules and effectively
produces a reliable output surface while exploiting RITK’s
GPGPU convenience interface to achieve real-time frame
rates. Besides benchmarking of pre-processing algorithms,
this RI simulator can also be used to create virtual 3-D test
environments. This, for instance, allows to evaluate segmen-

c© The Eurographics Association 2011.

62

J. Wasza et al. / RITK: The Range Imaging Toolkit

Figure 6: Range image stream simulation for a liver mesh, used for benchmarking of pre-processing filters for real-time in-
terventional range imaging. Left: Noisy and corrupted output of the simulator source module (synthetic sensor resolution:
200×200 px), providing the input for the pre-processing pipeline. Right: Surface data after pre-processing. The CPU-based
implementation of the simulator takes 10 ms to generate one single output image. Using RITK’s GPGPU interface, a pre-
processing pipeline running entirely on the GPU can be implemented. For example, a pipeline that includes filters for nor-
malized convolution, temporal averaging and edge-preserving bilateral denoising has a total run-time of ∼3 ms on an Nvidia
Quadro FX 2800M GPU.

tation and registration algorithms w.r.t. its robustness against
occlusion or partial visibility. The basic RI simulator will be
included in the open source release of RITK.

4.4. FPGA Filter Plugin

In this example, we demonstrate how external computing re-
sources can be deployed within RITK. In particular, let us
consider the integration of an FPGA for hardware acceler-
ation of range image pre-processing and filtering. Using a
Xilinx University Program Virtex-5-LX110T development
board [Xil11], we have decided to connect the FPGA via
Gigabit Ethernet to a host running RITK. This allows to
employ the external board with different kind of host com-
puters, including notebooks. However, this connection type
is not mandatory, as, for example, PCI-Express might pro-
vide higher transfer rates. We use standard user datagram
protocol (UDP) sockets to achieve low latency and mini-
mum transmission overhead. On the FPGA, an open-source
UDP/IP core optimized for direct PC-FPGA connectivity

[ABS10] is employed in conjunction with a frame buffer.
See Fig. 7 for an illustration. Concerning the RI data itself,
the on-chip block memory (BRAM) might not be sufficient,
as modern RI sensors feature resolutions of up to 640×480
pixels. Hence, the FPGA architecture distinguishes between
image data stored in off-chip DDR RAM, and setup infor-
mation kept in on-chip BRAM.

5. Conclusions

In this paper, we have presented an open source toolkit ex-
plicitly dedicated to real-time processing of 3-D data streams
from modern RI devices. In addition to its usage as a range
image stream processing library for existing software, RITK
supports developers at an application level with a powerful
development and rapid prototyping infrastructure for the cre-
ation of application-specific RI solutions. The toolkit can
cope with the broad diversity of data streams provided by
available RI devices and can be extended by custom sensor
interfaces and processing modules. Due to its generic de-

c© The Eurographics Association 2011.

63

J. Wasza et al. / RITK: The Range Imaging Toolkit

XUPV5-LX110T

FPGA
Plugin . . . Filter N

FPGAU
D

P/IP C
ore

Setup
Information

(BRAM)

Compute
Engine

Frame
Buffer
(DDR)

G
igE

Figure 7: Illustration of an FPGA integration into RITK’s
processing pipeline. In contrast to the GPU interface, com-
munication ports for host/device data transfer are not pro-
vided as an RITK core module but within a filter plugin.

sign, existing modules can be reused to assemble individual
RI processing pipelines at run-time. With an emphasis on
real-time capability, we have introduced a powerful pipeline
concept and convenient interfaces for RI processing on mod-
ern multi-core CPUs and GPUs.

In our internal experience, RITK proved to greatly reduce
the time required to develop range image stream applica-
tions. Hence, we feel confident that other researchers in the
rapid growing community will also benefit from it. The sim-
ilar structure should make it easy for developers already fa-
miliar with ITK to get accustomed to RITK.

The toolkit as presented is released under a free software
license at http://www5.cs.fau.de/ritk.

Acknowledgments

J. Wasza, S. Bauer, M. Schmid and S. Reichert gratefully
acknowledge the support by the European Regional De-
velopment Fund (ERDF) and the Bayerisches Staatsminis-
terium für Wirtschaft, Infrastruktur, Verkehr und Technolo-
gie (StMWIVT), in the context of the R&D program IuK
Bayern under Grant No. IUK338. S. Haase is supported by
the Deutsche Forschungsgemeinschaft (DFG) under Grant
No. HO 1791/7-1.

References
[ABS10] ALACHIOTIS N., BERGER S. A., STAMATAKIS A.: Ef-

ficient PC-FPGA Communication over Gigabit Ethernet. In Pro-
ceedings of IEEE International Conference on Computer and In-
formation Technology (2010), pp. 1727–1734. 7

[ART11] ARTTS, The Action Recognition and Tracking
based on Time-of-Flight Sensors (ARTTS) project, 2011.
http://www.artts.eu/publications/artts_toolbox. 2

[BBHR11] BAUER S., BERKELS B., HORNEGGER J., RUMPF
M.: Joint ToF Image Denoising and Registration with a CT Sur-
face in Radiation Therapy. In Proceedings of the International
Conference on Scale Space and Variational Methods in Com-
puter Vision (2011). In press. 1

[BIA11] BIAS, The Basic Image AlgorithmS Library,
http://www.mip.informatik.uni-kiel.de, 2011. 2

[Bra00] BRADSKI G.: The OpenCV Library. Dr. Dobb’s Journal
of Software Tools (2000). 2

[BS08] BLANCHETTE J., SUMMERFIELD M.: C++ GUI Pro-
gramming with Qt 4. Prentice Hall, 2008. 3

[BWMH11] BAUER S., WASZA J., MÜLLER K., HORNEGGER
J.: 4D Photogeometric Face Recognition with Time-of-Flight
Sensors. In Proceedings of IEEE Workshop on Applications of
Computer Vision (2011), pp. 196–203. 1

[GZ08] GARCIA J., ZALEVSKY Z.: Range mapping using
speckle decorrelation. US patent No.7433024, 2008. 1

[ISNC05] IBANEZ L., SCHROEDER W., NG L., CATES J.: The
ITK Software Guide, second ed., 2005. 2

[KBKL09] KOLB A., BARTH E., KOCH R., LARSEN R.: Time-
of-Flight Sensors in Computer Graphics. In Eurographics - State
of the Art Reports (2009), Eurographics, pp. 119–134. 1, 5

[LSKK10] LINDNER M., SCHILLER I., KOLB A., KOCH R.:
Time-of-Flight sensor calibration for accurate range sensing.
Computer Vision and Image Understanding 114, 12 (2010), 1318
– 1328. Special issue on Time-of-Flight Camera Based Computer
Vision. 6

[MBWH11] MÜLLER K., BAUER S., WASZA J., HORNEGGER
J.: Automatic Multi-modal ToF/CT Organ Surface Registra-
tion. In Proceedings of Bildverarbeitung für die Medizin (2011),
pp. 154–158. 1, 2

[NVI10] NVIDIA: CUDA C Programming Guide 3.2. NVIDIA,
2010. 3

[Ope11] OpenNI, Open Natural Interaction, 2011.
http://www.openni.org. 6

[RC11] RUSU R. B., COUSINS S.: 3D is here: Point Cloud Li-
brary (PCL). In Proceedings of IEEE International Conference
on Robotics and Automation (2011). 2

[RMBD08] RAPUS M., MUNDER S., BARATOFF G., DENZLER
J.: Pedestrian recognition using combined low-resolution depth
and intensity images. In Proceedings of IEEE Intelligent Vehicles
Symposium (2008), pp. 632–636. 1

[SLR∗11] SUMA E., LANGE B., RIZZO A., KRUM D., BO-
LAS M.: FAAST: The Flexible Action and Articulated Skeleton
Toolkit. In Proceedings of IEEE Virtual Reality (2011), pp. 247–
248. 2

[SML06] SCHROEDER W., MARTIN K., LORENSEN B.: The Vi-
sualization Toolkit: An Object-Oriented Approach To 3D Graph-
ics. Kitware, Inc., 2006. 2, 3, 5

[SPH08] SCHALLER C., PENNE J., HORNEGGER J.: Time-of-
Flight Sensor for Respiratory Motion Gating. Medical Physics
35, 7 (2008), 3090–3093. 2, 6

[SYM∗11] SEITEL A., YUNG K., MERSMANN S., KILGUS
T., GROCH A., DOS SANTOS T., FRANZ A., NOLDEN M.,
MEINZER H.-P., MAIER-HEIN L.: MITK-ToF - Range data
within MITK. International Journal of Computer Assisted Ra-
diology and Surgery (2011), 1–10. 2

[WBH11] WASZA J., BAUER S., HORNEGGER J.: High Perfor-
mance GPU-based Preprocessing for Time-of-Flight Imaging in
Medical Applications. In Proceedings of Bildverarbeitung für
die Medizin (2011), pp. 324–328. 6

[Xil11] XILINX: ML505/ML506/ML507 Evaluation Platform
User Guide, 2011. 7

c© The Eurographics Association 2011.

64

http://www5.cs.fau.de/ritk

