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Abstract

We present a discretization of Koiter’s model of elastic thin shells based on a finite element that employs limit
surfaces of Catmull–Clark’s subdivision scheme. The discretization can directly be applied to control grids of
Catmull–Clark subdivision surfaces, and, therefore, integrates modeling of Catmull–Clark subdivision surfaces
with analysis and optimization of elastic thin shells. To test the discretization, we apply it to standard examples
for physical simulation of thin shells and compute free vibration modes of thin shells. Furthermore, we use the
discrete shell model to set up a deformation-based modeling system for Catmull–Clark subdivision surfaces. This
system integrates modeling of subdivision surfaces with deformation-based modeling and allows to switch back
and forth between the two different approaches to modeling.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Physically based modeling

1. Introduction

Geometric design and modeling has always been intimately
linked to the physics of elastic rods, plates, shells, or bodies.
For example, the archetype of spline curves, the draftman’s
spline, is a thin elastic wood beam that is anchored in place
by lead weights. Nowadays, shape design processes require
an interplay of CAD systems for modeling and editing as
well as FEA systems for analysis and optimization. A re-
sulting problem is that the two types of systems are based on
different geometry representations. Therefore, geometries
have to be converted back and forth between the represen-
tations, which is a laborious process that often is only semi-
automatic and causes approximation errors, see [HCY05].
This motivates to design schemes for the analysis and op-
timization of shapes that directly operate on CAD type of
geometry representations.

A recent trend in geometry processing are deformation-
based modeling schemes [BPGK06, BS08], which use en-
ergies based on models of elastic shells or solids for sur-
face modeling. Such schemes can describe modeling op-
erations by few constraints, and, therefore, allow for sim-
ple user-interfaces. Deformation-based modeling has origi-
nally been designed to enable modeling of 3d-scanned ob-
jects, and, therefore, schemes are formulated for triangle
meshes. In order to integrate deformation-based modeling

with a CAD system or a modeling system for computer ani-
mation, deformation-based modeling needs to be adapted to
geometry representations used in these systems.

1.1. Contributions

We present a discretization of Koiter’s model of elastic thin
shells based on limit surfaces of Catmull–Clark’s subdivi-
sion scheme and test it on standard examples for physical
simulation of thin shells. We use the discrete shell model to
set up a deformation-based modeling system for Catmull–
Clark subdivision surfaces. This system integrates model-
ing of subdivision surfaces with deformation-based model-
ing and allows to switch back and forth between the two
different approaches to modeling. As a third application, we
compute the free vibration modes of thin shells.

1.2. Related work

Subdivision surfaces are common for modeling, espe-
cially in computer animation. Catmull–Clark’s subdivision
scheme [CC78] was one of the first and is tightly linked
to surface representations with B-splines: the limit surface
of a regular patch is a tensor product bi-cubic B-spline.
Since limit surfaces are defined for irregular patches as
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well, Catmull–Clark’s scheme provides a way to gener-
alize tensor product bi-cubic B-spline surfaces to meshes
with arbitrary topology. Catmull–Clark limit surfaces are C2

up to a finite set of isolated points that is only C1; Reif
and Schröder [RS01] showed that the second derivatives of
Catmull–Clark limit surfaces are square integrable, hence el-
ements of the Sobolev space H2. Stam [Sta98] developed an
algorithm to directly evaluate Catmull–Clark limit surfaces
without having to refine them previously.

Koiter’s model [Koi66, Koi70] is an example of a model
of elastic thin shells that is based on the Kirchhoff–Love as-
sumptions [Kir52, Lov88]. Conforming finite element dis-
cretizations of such models of thin shells require elements
whose second derivatives are square integrable. Subdivi-
son surfaces allow for an elegant construction of such ele-
ments and Loop’s subdivision scheme has been used to dis-
cretize a Kirchhoff–Love type of thin shell model by Cirac et
al. [COS00, CO01, CSA∗02]. Recently, a scheme for simu-
lation of elastic bodies based on an extension of Catmull–
Clark’s subdivision scheme to volumetric solids has been
proposed by Burkhart et al. [BHU10].

2. Catmull–Clark Limit Surfaces

Subdivision schemes describe surfaces by an iterative re-
finement of a control grid. The repeated application of re-
finement rules generates in every subdivision step a new
finer discrete surface. The series of grids converges to-
wards a limit surface. Over the years, various subdivision
schemes have been proposed. Refinement schemes are com-
monly specified by a subdivision mask, which specifies
how to generate new vertices by averaging control ver-
tices. For an overview of subdivision surfaces, we refer to
[Ma05, PEK∗08].

2.1. Catmull–Clark Subdivision Surfaces

The Catmull–Clark subdivision scheme [CC78] is designed
for control grids with quadrilateral connectivity. On quad
grids, we distinguish two types of elements: regular and ir-
regular. An element is called regular if and only if all its
vertices have valence four, where the valence of a vertex
is the number of incident edges. For regular control grids
the limit surfaces of Catmull–Clark’s scheme are bi-cubic B-
splines. Since Catmull–Clark surfaces are defined for irreg-
ular grids as well, they extend B-spline surface representa-
tions to control grids with arbitrary topology. Every iteration
of Catmull–Clark’s scheme produces three types of new ver-
tices: element points, edge points and vertex points. Masks
corresponding to the considered vertex type are illustrated in
Figure 1.

2.2. Evaluation of Catmull–Clark Limit Surfaces

Stam [Sta98] introduced an algorithm to efficiently evaluate
Catmull–Clark limit surfaces. In the following, we sum-
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Figure 1: Masks of the Catmull–Clark Subdivision for
quadrangular meshes. The masks describes the weights of
the corresponding vertices of the control grid used for the
calculation of the new: element points, edge points and ver-
tex points.

marize this scheme, but we restrict our considerations to
control grids whose irregular elements have only one vertex
of valence unequal to 4, so called extraordinary elements.
Note, that after one refinement step of Catmull–Clark’s
scheme all irregular elements of a quad grid are extraor-
dinary. For every type of element the locations of control
vertices in a prescribed stencil is considered (see Figure 2).
The evaluation of the limit surface of every element type
will be examined individually.

Regular elements
For a regular element, the limit surface corresponds to a
uniform bi-cubic B-spline surface. We consider the control
vertex matrix

CT = (c0, ...,c15)

where the columns ci, i = 0...,15, of this matrix are the co-
efficient vectors of the 16 vertices of the prescribed stencil.
They correspond to the location of control vertices in a B-
spline patch. The indices of the vertices are given in Figure 2.
Furthermore, let b(u,v) be the vector with the 16 bi-cubic B-
spline base functions that are defined as follows:

bi (u,v) := ni%4 (u)ni/4 (v) , i = 0, ...,15, (1)

where “%” and “/” describes the remainder and the division.
The functions n j (t) are the four cubic B-spline basis func-
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Figure 2: Stencils for control vertex locations of a regular
and irregular element where the irregular vertex have va-
lence 5. Additionally, the indexing for the evaluation of the
surface patches is given. The green colored areas describes
the regular stencils of the elements. For the irregular ele-
ment, the increase of the white colored elements represents
the extended stencil, where stencils of three regular subele-
ments can be considered.

tions:

6 n0 (t) : = (1− t)3 ,

6 n1 (t) : = 4−6t2 +3t3,

6 n2 (t) : = 1+3t +3t2−3t3,

6 n3 (t) : = t3

with t ∈ [0,1]. Then, the surface patch of a regular element
is parametrized as

s(u,v) =CT b(u,v) , (u,v) ∈ [0,1]2 . (2)

The calculated patch is the limit surface of this element.

Irregular elements
Let us consider an extraordinary element with an irregular
vertex of valence N. For the K = 2N+8 vertices of the initial
stencil we specify a control vertex matrix

CT
0 = (c0, ...,cK−1) ,

where the indices of the corresponding vertices for N = 5 are
given in Figure 2 (consider the green area of this stencil).
For the subdivision of the associated stencil, two subdivi-
sion matrices are considered, the regular subdivision matrix
A and the extended matrix Ā. These determine two refined
grids of the stencil. The coefficients of these matrices are
listed in Figure 1. The difference between the subdivided
grids is that, in the first case the structure of the refined mesh
is identical to the initial stencil (see the green colored area in
Figure 2). In the second case a refined mesh is given which
contains regular stencils for one irregular and three regular
subelements (see the green and white area in Figure 2).

Successive subdivision of an irregular element will pro-
duce a partition of the irregular element with a sequence of
regular subelements. The control vertex matrix of the ele-

ments in the nth subdivision step is given by the relation

C̄n = ĀCn−1 = ĀAn−1C0, n≥ 1, (3)

where Cn−1 = An−1C0 describes the (n−1)th regular re-
finement step of the initial mesh. For the evaluation of the
limit surface on the three regular subelements the vertices
of the corresponding stencils are picked by a picking matrix
Pk, k = 1,2,3, such that the control vertex matrix of the kth
regular subelement for the nth subdivision step is given by

Bk,n = PkC̄n, k = 1,2,3,

where each row of Pk is filled with zeros except for a one in
the column corresponding to the index in the stencil of this
subelement. Then the surface patches of the regular subele-
ments are

sk,n (u,v) = BT
k,nb(u,v) =CT

0

(
PkĀAn−1

)T
b(u,v) , (4)

for (u,v) ∈ [0,1] 2, where b(u,v) denotes the bicubic B-
spline basis functions (1). The functions

bk,n (u,v) =
(

PkĀAn−1
)T

b(u,v) (5)

describe the basis functions of the corresponding regular
subelement. The translation of the subelements to the corre-
sponding domain of the partition provides the parametriza-
tion of the whole irregular element except the irregular ver-
tex. This is given by

s(u,v) |Ωn
k
= sk,n

(
tk,n (u,v)

)
, (6)

where Ω
n
k is the domain of the kth regular subelement after

the nth subdivision step. The function tk,n (u,v) describes the
transformation of Ω

n
k onto the unit square. For details we

refer to [Sta98].

3. Koiter’s Thin Shells

We consider a homogeneous and isotropic thin shell whose
undeformed shape is described by a middle surface with
uniform thickness 2ε in normal direction. The shell can be
parametrized by a system {x1,x2,x3} of curvilinear coordi-
nates:

Θ(x1,x2,x3) := θ(x1,x2)+ x3a3 (x1,x2) (7)

for all (x1,x2,x3) ∈ ω̄× [−ε,ε], where ω̂ = θ(ω̄) describes
the parametrized middle surface and ω̄ ⊂ R2. This is illus-
trated in Figure 3. Throughout the text greek indices take the
values 1,2 and latin indices take the values 1,2,3. Let θ,α

denote the partial derivatives of θ. At any point of ω̄, the two
vectors

aα = θ,α α ∈ {1,2} (8)

span the tangent plane of the middle surface. The compo-
nents of the first fundamental form (resp. the covariant met-
ric tensor) are given by

aαβ = aα ·aβ. (9)
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Figure 3: Parametrization of the shell.

The components aαβ of the contravariant metric tensor are
defined by aαγaγβ = δ

α

β
. The area element of ω̂ is dω̂ =

√
adx1dx2, where

√
a = |a1×a2|. The normal of the middle

surface, is given by

a3 =
a1×a2
|a1×a2|

(10)

and the thickness of the shell is measured in this direction.
The components of the second fundamental form are

bαβ =−a3,β ·aα. (11)

For later reference, we introduce the covariant basis vectors
of the shell,

gα = Θ,α = aα + x3a3,α, g3 = a3, (12)

and the corresponding components of the first fundamental
form gi j = gi ·g j, i, j ∈ {1,2,3}.

3.1. Deformation of the Shell

Koiter’s shell model [Koi66, Koi70] is based on the
Kirchhoff–Love assumptions [Kir52, Lov88]:

1. any normal line through a point of the middle surface re-
mains a normal line through the same point of the middle
surface after deformation, and

2. for every point of the shell, the distance to the middle
surface remains constant during deformation.

Under these assumptions, the deformed shell can be
parametrized as

Θ
η (x1,x2,x3) := θ

η (x1,x2)+ x3aη

3 (x1,x2) , (13)

where the deformed state of the middle surface is given by
θ

η (x1,x2) := θ(x1,x2) + η, with the displacement vector
field η : ω→ R3. The vector aη

3 describes the normal vec-
tor of the deformed middle surface. The difference between
the metric tensors of the undeformed and deformed state of
the shell is measured by the Green–Lagrange strain tensor:

εi j =
1
2

(
gη

i j−gi j

)
(14)

where gη

i j denotes the covariant metric tensor of the de-
formed shell. The strain tensor can be written in terms of the
first and second fundamental form of the undeformed and the
deformed middle surface. Here, we consider a linearization
of this tensor, which is given by

εαβ = γαβ + x3ραβ, (15)

where α,β ∈ {1,2}. The tensors γ and ρ are the linearized
metric strain tensor and the linearized bending strain tensor;
their components are given by

γαβ = 1
2

[
aη

αβ
−aαβ

]lin
= 1

2
(
aα ·η,β +η,α ·aβ

)
(16)

and

ραβ =
[
bη

αβ
−bαβ

]lin
(17)

= −η,αβ +
1
2
(
η,1 ·

(
aα,β×a2

)
+η,2 ·

(
a1×aα,β

))
+

1√
a

(
a3 ·aα,β

)(
η,1 · (a2×a3)+η,2 · (a3×a1)

)
.

We consider two types of external forces: surface forces f
acting on the middle surface ω̂ and boundary forces h acting
on the boundary of the middle surface ϕ̂ = ∂ω̂. Then, the
(linearized) thin shell model describes deformations of an
elastic thin shell by a minimization problem: the unknown
displacement vector field η should be the minimizer of the
quadratic functional

j (η) =
2E

1−ν2

∫
ω̂

Hαβστ

(
εγστγαβ +

ε
3

3
ρστραβ

)
dω̂

−
∫

ω̂

f ·ηdω̂−
∫

ϕ̂

h ·ηdϕ̂, (18)

0 0.165

Figure 4: Control grids 1-5 of the cylindrical shell and limit
surfaces of the deformed states of this control grids. The
color coding of the surfaces corresponds to the deviation of
the numerical solution from the exact solution.
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over an appropriate set of vector fields η. Here, E and ν are
material constants: the Young modulus and the Poisson ratio.
The tensor

Hαβστ = νaαβaστ +
1
2
(1−ν)

(
aασaβτ +aατaβσ

)
. (19)

is the shell elasticity tensor. We refer to [Cia05] for a deriva-
tion of the thin shell energy.

4. Discretization with a Catmull–Clark Finite Element

To obtain a conforming discretization of the thin shell en-
ergy, the finite element space we use needs to be a sub-
space of the Sobolev space H2. Limit surfaces of Catmull–
Clark’s subdivision scheme are H2-regular. This motivates
us to use a finite element space constructed from limit sur-
faces of Catmull–Clark’s subdivision scheme. This section
splits in two parts: first, we describe a general scheme for
the discretization of Koiter’s thin shells, which is indepen-
dent of the choice of a particular finite element space; and,
second, we discuss how a finite element space that is based
on Catmull–Clark’s subdivision scheme can be used in this
setting.

4.1. Discretization of the Shell Energy

The general form of the discretization of the shell energy,
we discuss in this section, follows the approach introduced
by Cirac at al. [COS00]. Because of the strain tensors (16)
and (17) are symmetric, they can be represented in Voigt’s
notation

γ =

 γ11
γ22
γ12

 , ρ =

 ρ11
ρ22
ρ12

 .

Again using Voigt notation, the elastic tensor (19), can be
represented by the matrix:

H =

 a11a11 h1 a11a12

a22a22 a22a12

sym. h2

 , (20)

where

h1 = νa11a22 +(1+ν)a12a12,

h2 =
1
2

(
(1−ν)a11a22 +(1+ν)a12a12

)
.

In the discrete setting, we consider a mesh that partitions
the domain ω. The set ωh = {ωi|i = 1, ...,noe} describes the
partition elements, where ωi denotes the domain of the ith
element, noe is the number of the mesh elements, and nov is
the number of vertices. To describe a finite element space on
ω, we specify a set of nov functions Ni, the shape functions,
that form a basis of the space. Then, a displacement of the
shell is given by

ηh (x1,x2) =
nov

∑
i=0

ηi Ni (x1,x2) , (21)

z

x
y

f
f

ff

Figure 5: Deformation of a hemisphere under the action of
external forces. Equal and opposite concentrated forces are
applied at antipodal points of the equator. Problem descrip-
tion, mesh and deformed state are presented. The coloring
corresponds to the contours of displacement in direction of
the load.

where ηi ∈ R3. In the basis formed by the shape functions,
the linearized metric and bending strains are represented by
matrices Mi and Bi that satisfy

γh =
nov

∑
i=1

Mi
ηi, and ρh =

nov

∑
i=1

Bi
ηi.

Explicit formula for these matrices are provided in the ap-
pendix.

The discrete counterpart of the functional j is a quadratic
functional on the finite element space. To solve the discrete
minimization problem we need to solve the system of linear
equations

Khηh = fh (22)

where Kh is the shell stiffness matrix, fh the force vector,
and ηh the unknown displacement. The entry with indices i j
of the matrix Kh is given by

Ki j
h =

noe

∑
k=1

(
2εE

1−ν2

∫
ω̂k

(
Mi
)T

HM jdω̂k

+
2εE

3
(
1−ν2

) ∫
ω̂k

(
Bi
)T

HB jdω̂k

)
(23)

=
noe

∑
k=1

Ki j
k .

The force vector fh has the entries

f i
h =

noe

∑
k=1

(∫
ω̂k

f ·Nidω̂k +
∫

ϕ̂k

h ·Nidϕ̂k

)
=

noe

∑
k=1

f i
k. (24)

The matrices Kk and the vectors fk are called the local stiff-
ness matrices and the local force vector.

4.2. A Catmull–Clark Finite Element

We consider a Catmull–Clark limit surface that describes the
middle surface of an undeformed shell. The limit surface, in
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Figure 6: Deformation-based modeling of a torus.

turn, is specified by a control mesh. Any variation of the
vertices of the control mesh induces a variation of the mid-
dle surface and consequently describes a deformation of the
shell. We restrict the set of possible deformations of the shell
to the set generated by all possible variations of the vertices
of the control grid. This set forms a (3nov)-dimensional vec-
tor space. The displacement vector field ηh corresponding to
a deformation of the shell has the form (21), where the shape
functions Ni are evaluated as described in Section 2.2.

To set up the matrix Kh, we need to evaluate the integrals
(23). The Nis have local support, therefore the sum over all
elements in (23) reduces to a sum over the elements in the
intersection of the supports of Ni and N j. Since the intersec-
tion of the support of two shape functions is in most cases
empty, the stiffness matrix Kh is a sparse matrix. To set up
the matrix Kh, we iterate over all elements of the control
mesh and for every element we compute the local matrix Kk
and add it to the global matrix. The vertices of the control
mesh that contribute to the local matrix Kk of an element are
all the vertices that are in one of the stencils of the element,
see Figure 2. For numerical evaluation of the integrals, we
use the Gauß–Lagrange scheme, see [DHB02]. To set up the
force vector fh, we proceed analogously.

After setting up Kh and fh, the displacement ηh of the
control vertices is determined as the solutions of the linear
system (22). To solve the system, we use a sparse factor-
ization of the stiffness matrix. The deformation of the con-
trol grid is given by translation of the grid vertices from the
undeformed to the deformed state along the calculated dis-
placement field ηh. Finally, the deformed state of the middle
surface described by the limit surface of the deformed con-
trol grid.

Figure 7: Deformation-based modeling of a cylinder.

5. Experiments

In this section, we present three applications of our dis-
cretization of Koiter’s shells with Catmull–Clark finite el-
ements: physical simulations, surface modeling, and modal
analysis. Some of the meshes used in the experiments were
generated with the QuadCover algorithm [KNP07]. For Sec-
tion 5.2 and 5.3 the material constants of the shell are thick-
ness ε = 0.1, Young’s modulus E = 1 · 106, and Poisson’s
ratio ν = 0.0.

5.1. Physical Deformations

In the first example, we consider a thin cylindrical shell with
fixed ends, which is affected by an uniform internal pressure
that causes a deformation of the shell in normal direction.
The exact solution of this problem was calculated by Tim-
oshenko and Woinowsky–Krieger [TWK59]. The cylinder
we consider has length 5, radius 1, and thickness 0.1 and
its material constants are E = 1 · 105 and ν = 0.0. We sim-
ulate the deformation with 5 grids of increasing resolution,
which we obtained by Catmull–Clark subdividing the coars-
est grid. Results and control grids are shown in Figure 4.
The color coding illustrates the deviation of the numerical
solution from the exact solution and it can be seen that the
finer grids produce more accurate results. The finest grid on
the one hand produces a larger error than the previous grid in
some areas, but on the other hand it approximates the bound-
ary more accurately.

In a second experiment, we examine a pinched hemi-
sphere with a fixed pole that is affected by force acting
at four points on the equator. The hemisphere has radius
1, thickness 0.01, and material constants E = 1 · 106 and
ν = 0,1. The grid we use for the simulation has one irreg-
ular vertex that is located at the pole. The result is shown in
Figure 5, where the color coding indicates the deviation of
the deformed shell from the hemisphere.

5.2. Surface Modeling

For deformation-based editing of surfaces, a deformation en-
ergy is used to describe the elastic behavior of a surface to
be modeled. A designer can edit a surface by specifying
forces that act on the surface, the modeling system returns
a static solution in which the forces specified by the user

Figure 8: Deformation-based modeling of a cactus model.
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and the forces of the surface that counteract a deformation
are in an equilibrium. A benefit of such modeling systems is
that they allow to describe complex editing operations with
only few constraints. To be intuitive to use, the computed
deformations need to be physically meaningful. We use our
discretization of thin shells to compute such deformations.
For a background on deformation-based modeling, we refer
to [BS08].

In our modeling system the designer marks parts of the
surface as handles and applies a rigid motion to each of the
handles. Then, the system computes forces that pull the han-
dles towards the specified new positions. The forces act like
springs with zero rest length, hence have a quadratic po-
tential energy. Then the energy of the modeling system is
the sum of the thin shell energy and potential energy of the
forces that act on the handles. To compute a deformation,
our modeling system needs to find a minimum of this en-
ergy. This means it needs to solve an unconstrained quadratic
problem, which amount to solving a system of linear equa-
tions. Since the matrix of the linear system remains the same
as long as the same handles are used, it is efficient to com-
pute a sparse factorization of the matrix and to use it to solve
all the systems. This strategy allows for interactive modeling
of the surface.

Surface deformations computed with our system are
shown in Figure 6, 7 and 8. The handles are colored blue
and the flexible parts of the surface are yellow. The control
grids of undeformed surfaces are shown as well.

5.3. Vibration Modes

As a third application, we compute free vibration modes of
thin shells. The modes are given as the solutions of the gen-
eralized eigenvalue problem

Khφh = λMhφh, (25)

Figure 9: Eight first modes of the Laplacian. The color-
ing corresponds to the contours of the displacement: the
changes in positive z-direction are shown as green-black ar-
eas, in negative z-direction as blue-black area respectively.

Figure 10: Different vibration modes of the torus. For com-
parison, the initial grid is pictured. Additionally to the limit
surface, the vector field of the corresponding mode is repre-
sented.

where Kh is the stiffness matrix (see (23)), Mh the mass ma-
trix, φh a vibration mode, and

√
λ the corresponding eigen-

frequency. We refer to [HSvTP10] for details.

To simplify the computation we have used a diagonal
mass matrix instead of the full mass matrix in our experi-
ments. The ith diagonal entry of this matrix equals a quarter
of the sum of the surface areas of the elements adjacent to
the ith vertex of the grid. The resulting generalized eigen-
value problem can be transferred into a standard eigenvalue
problem using the technique discussed in [VL08]. We use a
Jacobi procedure to solve the standard eigenvalue problem.

Resulting vibration modes are shown in Figures 9, 10,
and 11. The first example shows modes of a clamped plate,
the second shows eigenmodes of the torus (where the first six
are the linearized rigid body motions), and the third example
shows eigenmodes of a double torus.
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Appendix
In this appendix, we describe the coefficients of membrane
and bending strain matrices introduced in Section 4.1. Let

Figure 11: Different vibration modes of a double torus.

(e1,e2,e3) denote the standard basis of R3. Then, the mem-
brane and bending strain matrices take the form:

Mi =

 Mi
1 · e1 Mi

1 · e2 Mi
1 · e3

Mi
2 · e1 Mi

2 · e2 Mi
2 · e3

Mi
3 · e1 Mi

3 · e2 Mi
3 · e3


with

Mi
1 = Ni

,1a1,

Mi
2 = Ni

,2a2,

Mi
3 =

(
Ni
,2a1 +Ni

,1a2
)
,

and

Bi =

 Bi
1 · e1 Bi

1 · e2 Bi
1 · e3

Bi
2 · e1 Bi

2 · e2 Bi
2 · e3

2Bi
3 · e1 2Bi

3 · e2 2Bi
3 · e3

 ,

where

Bi
1 =−Ni

,11a3 + 1√
a

[
Ni
,1a1,1 ×a2 +Ni

,2a1 ×a1,1

+ a3 ·a1,1

(
Ni
,1a2 ×a3 +Ni

,2a3 ×a1

)]
Bi

2 =−Ni
,22a3 + 1√

a

[
Ni
,1a2,2 ×a2 +Ni

,2a1 ×a2,2

+ a3 ·a2,2

(
Ni
,1a2 ×a3 +Ni

,2a3 ×a1

)]
Bi

3 =−Ni
,12a3 + 1√

a

[
Ni
,1a1,2 ×a2 +Ni

,2a1 ×a1,2

+ a3 ·a1,2

(
Ni
,1a2 ×a3 +Ni

,2a3 ×a1

)]
.
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