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Abstract

Biomedical data can be classified according to different taxonomies. Understanding the relationships between

different data categories is essential for an in-depth knowledge of the data. We present a volume rendering system

aimed at outlining structural relationships between different classification criteria of a biomedical voxel model.

The system clusterizes the model into subsets of voxels sharing the same classification criteria. It constructs a

labelled voxel model storing for each voxel an identifier of its associated cluster. We represent the classification

space as a graph and we render it in the application interface. This way, clinicians can specify their visualization

queries by selecting nodes of the graph and boolean operations between them. Given a rendering query, the system

computes a transfer function on the labelled voxel model domain. This transfer function, together with the original

voxel model and the labelled voxel model, are used during rendering to visualize the selected data more or less

colored according to level of the graph at which they have been selected, and contextualized with the other parts

of the model to which they are related. We demonstrate the utility of our approach on several biomedical datasets.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Three-dimensional graph-
ics and realism

1. Introduction

Today, a major concern in biomedical visualization is to pro-
vide meaningful images conveying relevant information on
the data. As datasets are each time larger, they contain more
information than users can cope all at once. Moreover, pre-
cisely because of this data complexity, clinicians have more
difficulties to isolate relevant parts of the data with conven-
tional interfaces. This is why, inspired in classical illustration
techniques, new means of outlining significant features are
being developed, such as cut-aways, ghost views, silhouette
enhancement, Focus+Context (F+C) and adaptive shading.

Biomedical data can be organized into taxonomies ac-
cording to very diverse criteria such as functional system,
tissue type, anatomical structure and activity level. A good
understanding of the relationships between these different
criteria is essential in the acquisition of an in-depth know-
ledge of the information conveyed in the images. Current
rendering systems can outline regions of interest, but they
do not show the structural relationships existing in the data.
Moreover, structures as the human brain are composed of a
large number of parts, some of them tiny and difficult to se-
lect on a 3D rendered image. The system that we describe in

this paper provides means of specifying regions of interest
as a combination of classification criteria. Clinicians can use
it to select parts of the biomedical model using a graphical
representation of the structure of the dataset labelled with the
medical names of the structures. The system renders the se-
lected regions isolatedly or put them into context with other
regions having a structural relationship with them. We call
this type of rendering Structural Focus and Context (SF+C).

The paper brings four contributions: first, the modeling
of the relationships between isoclassified subsets of biomed-
ical data; next, the computation of the visibility and color
of these subsets according to SF+C rules; third, the visual-
ization of the data through a 3D texture mapping rendering
system; and, fourth, an intuitive widget for the interactive se-
lection of the rendered features and their structural context.

2. Previous work

The previous work related to ours falls into three categories:
F+C techniques, volume structuring and query-driven visu-
alization.

The idea of visually emphasizing certain structures in a
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dataset is based on the observation that cognitive under-
standing is easier when the observer’s attention is concen-
trated on few stimuli. Driving users attention on relevant
features can be accomplished by using several complemen-
tary approaches: camera adjustments, clipping, ghosting and
multiple shading styles. Setting the camera so that it focuses
on the relevant structures of the model requires sometimes
a lot of user expertise. Therefore, many authors [VFSG06]
have addressed viewpoint optimization and distortion lenses
[WZMK05]. Since relevant structures of the volume can be
occluded by others, Bruckner et al. [BE06] propose to gen-
erate exploded views of a volume. Alternatively, Wang et
al. [WK95] propose to explore volumes using sculpting clip-
ping tools. Weiskopf et al. [WEE02] apply cut-away in 3D-
texture mapping rendering. Owada et al. [ONOT04] describe
a system that shows textured arbitrary cuts of surface mod-
els. Finally, Correa et al. [CCS06] generalize the concept of
virtual cuts and deformation by defining feature-aligned ma-
nipulation operators. Instead of clipping non-relevant struc-
tures, many authors propose to show them but faded out
with high transparency, low resolution and different shading
style, so that they only contextualize the region-of-interest.
The semantic depth-of-field uses selective blur to make less
important objects less prominent [KMH∗02]. Depth-peeling
has been used to make more transparent peripheral regions
of the volume [RSK06]. Ghosting represents less-important
regions with high transparency and relevant features with
higher opacity [BGKG06]. Context surfaces can be out-
lined by modulating the opacity according to the gradient
value [Lev91] and by properly designing the transfer func-
tion [LM04]. Sparse representation of context is achieved by
rendering only the contour of these structures [CMH∗01].
Viola et al. [VKG05] propose several techniques to prevent
an object from being occluded by another less important one,
as for instance the screen door transparency, a technique in
which the occluder is painted as a wire mesh with holes in
it. Moreover, different shading styles can be used for focus
and context [LME02]. Rautek et al. [RBG07] introduce the
concept of semantic layer that define the mapping of volu-
metric attributes to one visual style. Features can also be ren-
dered separately with different algorithms and the resulting
images can combined [HMBG01] [VKG05]. The ClearView
system [KSW06] renders the context by layers, each layer
separately in a different texture. Then, it composes the tex-
tures according to the 2D user-defined position of the focus
and applying importance-based shaders based on the curva-
ture, the relative distance and the view distance of the tex-
els. The medical illustration system designed by Svakhine et
al. [SES05] integrates boundary and silhouette enhancement
with different shading styles, including toon.

The systems described so far provide valuable illustra-
tive images but they do not focus on the visualization of the
structure of biomedical data. However, even apparently sim-
ple biomedical datasets can have complex structural relation-
ships. The analysis of these data can benefit from an explicit

modeling of their structure. Car et al. [ACS03] represent the
hierarchical structure of iso-valued surfaces within a volume
dataset as a contour tree. Weber et al. [WDC∗07] use dif-
ferent transfer functions to render pre-segmented regions of
equivalent contour topology. Nevertheless, these approaches
are restricted to value-based classification criteria and hier-
archies. Nadeau [Nad00] defines the scene graph to express
a multi-model scene as a graph of volume objects and fil-
ter operations. This is a constructive geometry approach in
which the graph reflects users manipulations rather than in-
trinsic data structuring. None of these approaches apply F+C
techniques.

Expressing visualization queries as boolean compound of
values or color ranges can be computationally expensive if
the expression is evaluated for every data sample and the
dataset is very large. Query-based visualization addresses
this problem. In particular, Stockinger et al. [SSBW05] de-
sign a bitmap indexing scheme (DEX) that efficiently an-
swers multivariate and multidimensional queries. Ferré et
al. [FPT06] propose to run-length codify combinations of
data values in order to skip unselected regions during data
traversal. Bruckner et al. [BG05] codify the selected vol-
ume with an auxiliary volume model that is modified on user
query. They define three types of regions: the selection, the
ghost and the background. Burns et al. [BHW∗07] address
illustrative visualization of an object of interest embedded
into context volume data. They define a flexible cut-away
importance-driven structure.

3. Overview

Figures 1 and 2 illustrate the pipeline of our method. First,
in a pre-process, the initial voxel model V is classified ac-
cording to various independent criteria. In our simulations
we have used hand-labeled anatomical regions, value-based
classifications and spatial partitioning. Moreover, in MR
brain models we have used an additional registered SPECT
dataset as a classification criteria of the activity level. In the
second step of the pre-process we clusterize the voxels of
the model according to the combination of classification cri-
teria that they fulfill. We construct a labelled voxel model LV
that stores, for each voxel, a unique identifier of the cluster
to which this voxel belongs. We represent the classification
space as a directed graphG such that its nodes represent clas-
sification criteria and its edges represent logical implications
between criteria. Each leaf node of the graph is associated to
one or more clusters.

Figure 3 shows a very simple illustrative example. We
have classified a CT foot dataset according to three differ-
ent criteria (foot and not_foot; ankle, palm and toe; toe_1 to
toe_5 and not_toe). After removing the empty regions, the
constructed graph, shown in the middle of the image, has
10 nodes. The edges between nodes indicate that a classi-
fication criterion implies another: for instance, being toe_1

implies being toe, and being toe implies being part of foot.

c© The Eurographics Association 2008.

110



P. Abellán & A. Puig & D. Tost / Focus+Context rendering of structured biomedical data

multiclassif ication
clustering and  

graph construct ionV

LV

V’

GRAPH

LABELLED VOXEL MODEL

VOXEL MODEL

Figure 1: Pre-process of the proposed method. The voxel

model V is classified according to various criteria, eventu-

ally taking into account other data modalities V ′. The graph

and the labelled voxel model LV are constructed.

The combination of classification criteria defines seven clus-
ters (c1 to c7) shown at the bottom part of the graph. Cluster
c1, for instance is the set of voxels that fulfill the criteria
of being part of the foot, not being a toe and being part of
the ankle. At the left side of the image, each cluster of the
labelled voxel model is shown with a different color.

The rendering stage is divided into two steps. In the first
stage, users interactively express their rendering query as a
boolean expression of classification criteria. Given the query,
a parser traverses the graph in order to identify the selected
clusters. The parser computes a transfer function LTF in the
labelled voxel model LV domain that denotes color, opac-
ity and gradient modulation factor of the different clusters.
The second step takes as input the original voxel model V ,
its original transfer function TF , the labelled voxel model
LV and its computed transfer function LTF . Rendering is
performed by applying 3D texture-mapping. The fragment
shader fetches the voxel value in V and the cluster identi-
fier in LV and, from them, the corresponding rendering pa-
rameters in TF and LTF , respectively. Shading merges the
rendering parameters according to a user-specified weight.

The right-most image of Figure 3 shows the rendering
of the example query to draw palm contextualized with the
other nodes of the graph to which it is related. Since the par-
ent node of palm is node foot, the computed transfer function
LTF sets to very low opacity values and white color all the
clusters but c1. The color and opacity of cluster c1 are a mix-
ture of its color and opacity in TF and LTF .

SFC

3D texture-mapping

V

LV
LTF

TF
QUERY

parser 

LTF

GRAPH

Figure 2: Rendering step. Left: first step, given a user query

and the graph, the transfer function LTF is computed. Right:

second step, 3D texture mapping handling simultaneously

the original voxel model V and the labelled voxel model LV

together with their transfer functions TF and LTF.

With this strategy, we are able to enhance focus fea-
tures and to show them in relation to the other structures
of the graph. The contextual information is structural, this
is why we define this type of visualization as Structural Fo-
cus+Context. We are able to visualize the structures that in-
clude the ones into focus at different levels of depth and to
show other structures sharing a common ancestor. Moreover,
the widget that we have designed for the specification of the
focus features, provides a visual feedback of the colors and
opacity with which all the structures of the model are ren-
dered. This gives to users interesting clues to understand the
structural semantics of the image.

4. Multiclassified set structure model

4.1. The structure graph G

Let V be the voxel model and nc be the number of indepen-
dent classification criteria defined on V . Each classification
criterion ci, i = 1 . . .nc separates the voxel model into a fi-
nite set of nci disjoint classes. We denote as cij the jth class

identifier of the ith criterion. We call isoclass(cij) the set of

voxels of V that share the classification identifier cij . Since
isoclasses of the same criterion are disjoint, it is fulfilled that:

• ∀ j,k : 1≤ j,k≤ nci, j 6= k : isoclas(cij)∩ isoclas(cik) = ∅

•
Snci

j=1 isoclas(c
i
j) =V

On the contrary, isoclasses of different criteria are not nec-
essarily disjoint. Even more, one isoclass can include an-
other one. Specifically, we say that a class identifier cik im-

plies a class identifier c j
l
if the isoclass of c j

l
includes all the

voxels of the isoclass of cik, being i 6= j:

cik ⇒ c
j
l
iff isoclas(cik) ⊂ isoclas(c

j
l
)

We denote as I = {c ji ,1 ≤ i ≤ nc,1 ≤ j ≤ nci} the set
of all isoclass identifiers. We call E the set of all implication
relationships between isoclass identifiers. Therefore, we rep-
resent the structure of V as a directed graph G = (I,E) such
that the nodes represent isoclass identifiers and the edges im-
plications between nodes. Edges go from inclusor isoclasses
to included ones. Since the inclusion relationship is antisym-
metric, G is acyclic. Thus, it has leaf nodes from which no
edges exit. It may have many roots, and it can be a tree only
in very simple cases as the one shown in Figure 3.

4.2. The labeled voxel model LV

For each voxel v of the voxel model V we can compute a
nc_tuple of class identifiers, one for each criterion. During
the process of graph construction, we separate the voxels
into clusters, i.e. sets of voxels sharing the same isoclass
identifiers tuple. There are potentially as many clusters as
combinations of isoclasses, however, we consider only the
non-empty sets. Therefore, the number of clusters nr is such
that 1 ≤ nr ≤ ∏

nc
i=1 nci. We denote R the set of all the clus-

ters: R = {ri, i ∈ {1 . . .nr}}. Again, it is fulfilled that all the
clusters are disjoints and their union is the voxel model.
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We define the labelled voxel model LV with the same res-
olution and spatial orientation as V and such that the value
of every voxel in LV is the identifier of the cluster to which
the voxel belongs. The labelled voxel model LV is used
as a selection mask of V . The correspondence between the
leaf nodes of the graph and the voxels of LV is established
through a binary relation F with domain the isoclass identi-
fiers set I and with codomain the clusters set R. This relation
associates to a class identifier c ji ∈ I a cluster r ∈ R, if c ji
has no descendant in graph G and if all voxels of r fulfill the
classification criterion c

j
i .

4.3. User queries and parser rules

In order to explore the structure of the dataset, users define
regions of focus as union, intersections and complementary
sets of the isoclasses. We express user queries as boolean ex-
pressions defining the isoclasses to which the selected voxels
belong. Specifically, let bik(v) be a boolean expression that
indicates if voxel v (v ∈V ) belongs to the isoclass identified
by cik: b

i
k(v) ⇔ v ∈ isoclass(cik). A user query can be ex-

pressed as a combination of b j
i with the operators ∧,∨ and

¬. These combinations define unequivocally a subset of V
that can be expressed in terms of unions of clusters of LV .
We call M the function that associates to any user query a
unique union of clusters in R. It is based on the following
rules: let Cr be the nc_tuple of class identifier of a cluster r,
for all i, j ∈ {1 . . .nc}, k,k1,k2 ∈ {1 . . .nci} being k1 6= k2,
and l ∈ {1 . . .nc j}:

• M(bik) =
Snr
m=1 rm such that cik ∈Crm

• M(¬(bik)) =
Snr
m=1 rm such that cik /∈Crm

• M(bik ∪b
j
l
) =

Snr
m=1 rm such that cik ∈Crm ∨ c

j
l
∈Crm

• M(bik1∩bik2) = ∅

• M(bik ∩b
j
l
) =

Snr
m=1 rm such that cik ∈Crm ∧ c

j
l
∈Crm

The parser implements these rules. It traverses the graph
until reaching nodes that are F -related to clusters. Through-
out the traversal, it computes the list of bounding boxes of
the selected clusters and the transfer function LTF following
the coloring rules described in Section 6.

5. Graph Construction

The graph construction proceeds in two steps. First, we
construct the isoclasses by separating each classified voxel
model into sets. At this stage of the process, we also com-
pute the number of voxels of the isoclasses and their bound-
ing box. We set the opacity of the isoclass as a factor of
their bounding sphere radius and their number of voxels.
These are the basic opacities of the isoclasses that are com-
bined for rendering according to the algorithm exposed in
Section 6.2 and taking into account F+C rules. We automat-
ically compute nodes colors according to Stone’s coloring
model [Sto06], but we also let users interactively editing
them at their convenience. We create one graph node per

isoclass. Then, we compute for each isoclass the set of iso-
classes that it contains. For that, we construct an adjacency
table that stores the number of voxels of the included iso-
classes and a zero value for the non-included isoclasses. We
sort the raws of the adjacency table by increasing number of
voxels, in order to be able to derive the inclusion hierarchy
between nodes through a simple matrix traversal. We per-
form this process on a per-slice basis, in order to avoid an
excessive memory load for huge and complex models.

In the second step of the process, we construct the labelled
voxel model LV and the list of clusters. For each voxel v, we
identify the set of isoclasses to which the voxel belongs. We
compute the identifier of the corresponding cluster as a hash
code of the isoclasse identifiers. We label the voxel with this
identifier in LV and, if the cluster identifier is new, we insert
it in the clusters list. The relationship F between the graph
nodes and the clusters is codified in the hash code.

6. Rendering

The rendering step is based on 3D texture-mapping. The
fragment shader fetches the property value p in the origi-
nal voxel model V and the cluster identifier r in LV . Since
both models are aligned, a unique geometrical transforma-
tion per pixel is needed. Tri-linear interpolation is set in V

and nearest-neighbor in LV . The cluster identifier r is used
to fetch the rendering parameters of LV in the transfer func-
tion LTF . The property value r is used to fetch the voxel
color and opacity in V ’s transfer function TF . The fragment
shader combines these values in the shading equation, get-
ting structural cut-away, ghosting and coloring effects. After
texture slicing, on user query, all the bounding boxes com-
puted by the parser can be rendered in wire frame.

For very large datasets such as the Visible Male (see Sec-
tion 8), that do not fit into one texture, during the graph con-
struction, we subdivide V into a set of disjoint, axis aligned
bricks. We store the set of bricks to which each cluster be-
longs. The graph traversal returns the list of selected bricks
bounding boxes. Since the boxes are axis aligned and dis-
joint, we trivially sort them according to the current view-
point. The rendering step processes this list orderly and, for
each brick, it loads the texture before rendering it.

6.1. Structural coloring

The graph provides a natural way to show with colors the
structure of classes to which a voxel belongs. Each classi-
fication criterion independently identifies each of its classes
with a different color. The color associated to each class is
stored as an attribute of the corresponding node in the graph.
Given a user query, during the graph traversal, the parser
computes the clusters colors in the LTF transfer function. In
the rendering step, the clusters colors are blended with the
voxels colors according to a user-specified blending factor
β, 0≤ β ≤ 1.
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We have tested several color arithmetics for the compu-
tation of LTF . The results shown in Section 8 are based
on the following color arithmetics: let c1 = (r1,g1,b1) and
c2 = (r2,g2,b2),

• (c1) = (MAX − r1,MAX − g1,MAX − b1), being MAX
the maximum intensity

• c1∪ c2 = (max(r1,r2),max(g1,g2),max(b1,b2))
• c1∩ c2 = (min(r1,r2),min(g1,g2),min(b1,b2))

The parser applies the following rules. Let col(bij) be the

color of isoclass bij, for i ∈ {1 . . .nc} and j ∈ {1 . . .nci},

• if r = M(¬bik) then LTF(r) = col(bi
k
)

• if r ∈M(bik ∪b
j
l
) then LTF(r) = col(bik)∪ col(b

j
l
)

• if r ∈M(bik ∩b
j
l
) then LTF(r) = col(bik)∩ col(b

j
l
)

6.2. Structural Cut-away and structural ghosting

Cut-away is achieved through the definition of the α-channel
of the transfer function (LTF). The combination of classifi-
cation criteria expressed by users define the union of clusters
on focus. In order to cut-away the other clusters, the parser
sets the opacity channel with binary values, 1 to the selected
clusters and 0 otherwise. Thus, the shader does not render
fragments with zero opacity value.

In order to contextualize the focus into the structure to
which it belongs, users can define the ghosting level. This is
an integer value ranging between 0 (cut-away) to the maxi-
mum depth of the hierarchy of trees inside the graph. Specif-
ically, a ghosting level of 1 shows as context all the clusters
that have a direct common ancestor with the focused clus-
ters. A ghosting level of 2 shows the clusters having com-
mon ancestors with the focused clusters through a one-edge
path in the graph, and so on with higher ghosting levels.

The parser computes non-zero opacity values for the con-
textual clusters in the α-channel of LTF . This computation
is done after the user query has been evaluated and the fo-
cus clusters have been determined. Starting from the graph
nodes F -related to those clusters, it traverses the graph up to
the ghosting depth. It computes the opacity of the contextual
clusters according to a factor inversely proportional to the
depth of the nodes that are related to them. Therefore, the
further in the hierarchy is a node, the lighter is the opacity of
the related cluster.

The color of the contextual cluster can be computed simi-
larly as that of the focus, applying structural coloring (see
Section 6.1). Alternatively, if a color_ghosting flag is acti-
vated, the parser can set the values of LTF to a gray-scale for
the contextual clusters, taking into account only the nodes
intensity rather than their RGB values. The use of gray scale
for the context enhances by contrast the perception of the
colored focus.

6.3. Shading

The shader computes surface shading (Phong), emission and
absorption or both models for the focus data as well as the
context data. The shading type is a global parameter of the
application. Users define the type of visualization of the con-
text: all the context voxels, only boundary context voxels
or only bounding boxes. In the second case, we modulate
the width of the context surfaces according to the gradient
modulation computed by the parser and stored in LTF . This
factor is related to the ghosting depth so that, the deepest
in the hierarchy is a context cluster, the thinner and most
transparent its surface. When the context bounding boxes are
shown, the parser sets to zero the opacity of LTF in order to
prevent context voxels from being rendered.

6.4. Camera and clipping

The view reference point of the camera is computed as the
center of the clusters on focus. However, the projection win-
dow is computed as the bounding box of the focus and the
contextual clusters. This way, the whole contextual infor-
mation is visible but the images are centered on the focus.
Moreover, during 3D texture rendering, we apply a per-plane
opacity modulation to all the proxy polygons that are in front
of the focus bounding box. This makes more transparent the
slices that traverse only contextual information. Currently,
we do not apply view point optimization, therefore the ca-
mera orientation is specified interactively by users.

The interface allows users interactively defining clipping
planes. We set the initial position of these clipping planes at
the bounding box of the focus. Moreover, our application is
able to load a third voxel model that contains the distance
map of all the voxels to the nearest boundary. Using this dis-
tance map and given a user-defined width, during rendering,
we are able to cull-off the voxels that are further from the
surfaces than the given threshold, be they focus or context.

7. User interface

The application shows the graph and the clusters at the left
side of a two-window widget (see Figure 4). The nodes
are indicated with colored rectangular boxes. The edges are
drawn with black arrows. The clusters are depicted as col-
ored circles and the relationship F between nodes and clus-
ter is shown with blue arrows. This side of the widget is
editable: users can select nodes and modify their name and
color using the options of the bottom part of the widget.

Users choose boolean operations and parenthesis on the
menu bar at the top of the window and select nodes of the
graph. The selected nodes form the focus of the visualiza-
tion. They are shown at the right side of the widget with
their parser computed color stored in LTF . This gives users
a visual feedback on the subset of selected data. At the bot-
tom of the widget, a ruler allows users establishing the level
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of required ghosting. When a non-zero ghosting level is se-
lected, automatically, the context nodes are also shown in the
right part of the widget. Moreover, the type of visualization
of the context clusters can be specified by users by activating
or not the bounding boxes flag and the surface_voxels_only
flags. Zooming and panning can be performed at both sides
of the widget, which is very useful for large graphs such as
that of the brain dataset (see Section 8). The parameter β

that modulates the influence of the LTF color in the shading
is specified with a ruler at the bottom of the graphical area.

8. Implementation and results

We have implemented our method on top of the Tulip open-
source graph visualization system [Aub03]. We have defined
an aggregate class having as attributes a graph and the nodes
properties. In order to accelerate the search of the selected
clusters, we actually perform the graph traversal step and the
mapping from nodes to clusters in one step. For this, we add
as graph nodes the region identifiers. This way, the mapping
step is implemented as another traversal level. The interface
widget described in Section 7 uses Tulip visualization tools.

The parser is implemented with Bison GNU parser gener-
ator. We have defined a context-free grammar that describes
the boolean operations between isoclasses. We have attached
to every synthetic rule an action that calls a traversal proce-
dure on the Tulip graph. We store the root nodes in a table
and we use a hash table to have a direct access to the nodes.

Table 1: Datasets: modality, size and website.

Data Mod. size http

foot CT 1283 curtard.org/˜ andrew
brain MR 181x217x181 sph.sc.edu
mouse MR 2563 idibaps.ub.edu
vhm CT 5122x1877 nlm.nih.gov

Table 2: Graphs: number of nodes, edges and clusters; con-

struction time in minutes; frames per second of rendering.

Data Nodes Edges Clusters Const. Render
mins fps

foot 14 13 13 3,05 118
brain 138 602 116 87,2 70
mouse 26 384 120 92,7 35,6
vhm 27 53 10 80,3 2,2

We have tested our system on a Intel CoreDuo
6600@2400Mhz with 3.5 GB of RAM and a NVIDIA
GeForce 8800 GTX with 768 MB of video memory. In order
to test our system, we have used several biomedical datasets
(see Table 1). For each dataset, different classification crite-
ria, and therefore, different graphs can be constructed. Table

2 shows the characteristics of the graphs used in the color
plates. The foot dataset represents a CT of a human foot. We
have classified it into anatomical parts (each toe, the palm
and the ankle) with slice-to-slice contour tracking tools. We
have segmented it into soft tissue, bone and skin, and we
have clipped it into left and right parts. Brain is a MR hu-
man brain already segmented into anatomical parts such as
caudate and cerebellum, and left and right. For the mouse

MR dataset of a laboratory mouse’s brain we have used a co-
registered SPECT model of the data and we have taken the
activity level as a classification criterion in addition to clip-
ping planes and anatomical labeling. Finally, the vhm comes
from the Visible HumanMale frozen CT repository. We have
reconstructed the whole model and subdivided it into anato-
mical parts and segmented it into bone and soft tissue.

The construction time depends strongly on the size of the
dataset and on the graph complexity. It is high formouse and
brain because of their graph complexity, and also for vhm be-
cause of its size. Rendering is very fast in all cases but slower
in vhm, because this dataset is composed of 12 bricks and has
the extra cost of loading several texture bricks per render.
Figure 5 illustrates different queries and the effect of color
ghosting. Figure 6 shows the difference between rendering
all the context voxels or only their surface. Figure 7 shows
the effect of the β parameter: the top image is rendered with
TF only, while in the right-most image the weigth of LTF is
of 0.75. The bottom image shows the surface of context with
color ghosting. Figure 8 illustrates that our system can han-
dle very large datasets such as the Visible Male. The videos
attached to the submission (to reproduce with VLC) show
how to use the system.

9. Conclusions

In this paper, we have presented a system for the illustrative
visualization of structural relationships into multiclassified
biomedical datasets. Our system provides new insights on
the organization of data according to different taxonomies. It
helps users to identify regions of the data that share common
attributes, or have complementary characteristics.

Starting from this paper, we will continue our work in sev-
eral directions. On one hand, we are currently working on
designing a strategy to represent in the graph and render not
only volume data but also polygon models of isosurface. On
the other hand, the usability of the graph visualizer widget
can be enhanced for the very complex graph structures by
grouping nodes into metanodes and by allowing steerable
exploration.
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Figure 3: Graph example. Left: the labelled voxel model in

which each isoclass is rendered with a different color; Mid-

dle: the graph; Right: rendered for a given query.

Figure 4: The selection interface widget. Left side: the

graph; right side: the queried selection.

Figure 5: Foot dataset. Queries: (a) Bone ∪ (Toe ∩ Right);

(b) (Ankle ∩ Left) ∪ ((Toe ∪ Palm) ∩ Right)); (c) Palm; (d)

Bottom row, without color ghosting, Ankle - Left; (e) Ankle

∪(( Toe ∪ Palm ) ∩ Right; (f) Ankle ∪ Toe ∪ (Palm ∩ Right).

Top row with color ghosting and bottom row without.

Figure 6: Brain dataset. Query: (Left ∩ (Caudate ∪ Cu-

neous ∪ Putamen) ∪ (Right ∩ (Cerebellum ∪ Calcarine ∪
Crust)). Left: with inner context voxel; right: with context

surface voxels only.

Figure 7: Mouse dataset. Top: without ghosting, β = 0.0;

Middle: without ghosting, β=0.75; Bottom: color ghosting,

surface-only and β = 0.75.

Figure 8: vhm dataset. Query: Trunk ∩ ( Bone ∪ (SoftTis-

sue - Right)); β = 0.40; Left without ghosting, Right with

ghosting.
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