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Abstract
A new method for robust generation of distance fields from triangle meshes is presented. Graphics hardware is
used to accelerate a technique for generating layered depth images. From multiple layered depth images, a binary
volume and a point representation are extracted. The point information is then used to convert the binary volume
into a distance field.
The method is robust and handles holes, spurious triangles and ambiguities. Moreover, the method lends itself to
boolean operations between solids.
Since a point cloud as well as a signed distance is generated, it is possible to extract an iso-surface of the dis-
tance field and fit it to the point set. Using this method, one may recover sharp edge information. Examples are
given where the method for generating distance fields coupled with mesh fitting is used to perform boolean and
morphological operations on triangle meshes. [volume graphics] [layered depth image] [distance field]

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

1. Introduction

An interesting trend in computer graphics is the use of
the volume representation and volumetric techniques in a
widening range of applications. For instance, volumes are
used for applications such as collision detection [GBF03],
shape filtering [TW03], and interactive shape modeling
[Bær02].

Many of these applications rely on signed distance fields
[Gib98, OF02], i.e. volumes where each voxel contains the
shortest distance to a watertight surface. The distance is neg-
ative if the voxel is inside and positive if it is outside. Signed
distance fields are, for instance, commonly used to initialize
the level set method [Set99b, OF02] which is a volumetric
technique for tracking a deforming interface. The level set
method and its variations have many applications in com-
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puter graphics and computer vision [TW03, Bær02, Set99b,
OP03].

For may reasons, triangle meshes are the prevailing rep-
resentation of 3D geometry. Hence, it is important to be
able to convert triangles meshes to signed distance fields.
This problem is more difficult than the problem of comput-
ing unsigned distance fields. An unsigned distance field can
be computed trivially by finding for each voxel the distance
to each triangle and picking the shortest. Most researchers
subsequently use some form of scan conversion to com-
pute the sign [JS01]. Recently, it has been shown that if
angle-weighted normals are stored at each vertex, edge, and
face, one may use the normal stored at the closest feature
to compute whether a given point is inside or outside the
mesh [BA05].

Unfortunately, these methods require that the surface is
watertight, i.e. a closed two-manifold, and in many cases this
requirement is not met; triangle meshes with a wide variety
of degeneracies are often encountered. Typically the meshes
have holes, but a mesh may also fail to be two-manifold for
other reasons, e.g. because it contains a self-intersection.
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Here, a novel technique which converts a triangle mesh to
a distance field is proposed. The method works on meshes
which may have holes or self-intersections, and it is possible
to perform boolean operations on the meshes as a part of
the conversion. The method works by generating a set of
layered depth images from a number of directions and by
voting amongst these LDIs to decide whether a given voxel
is inside or out. This idea was proposed by Nooruddin and
Turk [NT03], but it is extended and improved here, and new
applications are demonstrated. The major contributions of
this paper are

- A technique for generating LDIs based on graphics hard-
ware and LDI processing which allows for boolean opera-
tions on solids.

- A robust procedure which produces distance fields from
these LDIs.

- The LDI representation subsumes a point representation of
the surface. Applications where an iso-surface is fitted to this
cloud are shown.

The LDI representation and processing is discussed in Sec-
tion 3, and the conversion from LDI to voxel grid is de-
scribed in Section 3.2 with details on how to compute and
correct distances in Section 3.3 and Section 3.4, respectively.
In Section 4 results are discussed. Applications involving
mesh fitting are demonstrated in Section 5. There are some
remarks about the implementation in Section 6, and conclu-
sions are drawn in Section 7. Related work is discussed in
the next section, but first a word on nomenclature: In the fol-
lowing, the word voxel will be used to denote a point in a
3D lattice whereas the word cell is reserved for the cubic
element framed by eight voxels and their connecting lines.

2. Related Work

The present method is most directly influenced by the work
of Nooruddin and Turk [NT03] who first used multiple
“deep” z-buffers for voxelization and also noted that this was
essentially the same as layered depth images. Layered depth
images were introduced by Shade et al. [SGHS98] in the
context of image based rendering.

While the work described in the present paper has many
similarities to the work of Nooruddin et al. [NT03], there
are also fundamental differences. Precise surface points
are recorded and used to generate distance values whereas
Nooruddin et al. generate LDIs at a higher resolution, filter,
and then downsample to get a scalar volume, but as noted by
Gibson [Gib98], a great deal of supersampling has to be used
to achieve results comparable to a distance map. In their ex-
tension of Nooruddin and Turk’s work, Kolb et al. also gen-
erate distance fields [KJ01], but the distances are distances
along the direction of projection used to generate the LDI.
Kolb et al. also use graphics hardware, but they use a simpler
method than ours which allows for only a single entry and

exit point along a given ray (i.e. there are at most two layers
in the LDI). An alternative to the voting technique used here
and in [NT03, KJ01] was proposed by Ju [Ju04]. In his pa-
per, Ju observes that the surface consisting of faces dual to
the edges intersected in a scan converted grid must be closed.
If it is not, there is a boundary cycle, and he introduces an el-
egant method which detects and patches these cycles. While
the voting approach works very well, this method could also
have been used.

There is also another volumetric approach for hole closing
due to Davis et al. who propose to use volumetric diffusion
[DMGL02] to extend known boundary information across
hole regions.

In this paper, a technique for GPU implemented depth
peeling similar to the one proposed by Everitt [Eve01] is
used to extract all visual layers of the object, thus creating
an LDI representation. Depth peeling is otherwise mostly
used for order independent transparency [Eve01]. Another
application is the generation of point impostors which is dis-
cussed by Bærentzen [Bær].

Several other authors have used graphics hardware as
a part of a voxelization process. For instance, Liao et al.
[LF02] voxelize CSG hierarchies using an approach where
the volume is divided into a set of slices that are pro-
cessed iteratively on the graphics card. This method gen-
erates only binary volumes, and the same is true of the
method by Passalis et al. [GPT04], although their work is
more similar to the present paper since they also use depth
buffers in the voxelization process. Graphics hardware has
also been used to accelerate Mauch’s characteristics scan
conversion method [Mau03] for distance field generation
[CS03]. A more generic approach with a number of opti-
mizations is due to Sud et al. [SOM04]. Hoff et al. used
graphics hardware to generate Voronoi diagrams in 2D and
3D [KEHKL∗99]. His work was inspired by a brief mention
in the OpenGL Programming Guide [WND98].

One alternative to the approach presented here is to use a
technique for fixing the polygonal mesh first and then gen-
erate a distance field from the cleaned mesh. That could be
done directly using the method in [Ju04], except that its dual
contouring does not necessarily produce a two-manifold
surface which is required as input to non-robust distance
field algorithms. Hence, a different algorithm would need
to be used for the final mesh generation. Another alterna-
tive would be to generate an implicit function containing
the polygonal surface as its zero set and then compute the
distance to that zero set. Such a method has recently been
proposed by Shen et al. [SOS04]. However, for the precise
purpose of generating distance fields, the present method is
arguably more direct and simpler than either alternative, and
it is certainly faster than the latter method.

Another related area is the construction of distance vol-
umes from range images which can be understood as single
layer depth images. For instance, Hoppe et al. [HDD∗92],
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Figure 1: A layered depth image. The first intersection at
depth d0 is recorded in layer 0 and the second intersection
is recorded in layer 1 of the LDI.

Wheeler et al. [WSI98] and Frisken et al. [FRP02] all gener-
ate distance fields from range scans. However, the problem is
not exactly the same since range scans have an uncertainty
associated with the physical scanning process. In addition,
surface normal information generally has to be inferred.

Finally, Hoppe has described a technique for mesh opti-
mization [HDD∗93]. This method has inspired the one used
in Section 5.

3. From Layered Depth Images to Signed Distance
Fields

A layered depth image (LDI) is a stack of images where each
pixel in each image contains a depth value. A pixel in a depth
image generated from a given direction contains the distance
from the near plane of the projection to a surface in the ob-
served object. The depth image stored in the first layer con-
tains the depths to the first (the visible) surface. The second
layer contains the distances to the layer obscured only by the
visible layer, etc. The basic idea is illustrated in Figure 1.
One may also construe an LDI as a run-length encoded vol-
ume: A first-layer pixel contains the length of a span from
the front plane to the object, and the first and second layers
together define a span which is interior to the object, pro-
vided that the LDI has been generated from a closed mani-
fold object.

Layered Depth Images can be generated by a method for
rendering, i.e. ray casting or rasterization. However, it is pos-
sible to generate LDIs using the graphics card if a method
called depth peeling [Eve01] is used. Two depth buffers are
used to perform depth peeling. The first layer is created by
rendering and using the first depth buffer to reject fragments
behind the first visual layer. The contents of the first depth
buffer is then moved to the auxiliary depth buffer. During the
second rendering, the first depth buffer works as before, but

Figure 2: Illustration of the grid traversal. The long arrow
indicates the direction of a ray corresponding to runs ex-
tracted from an LDI pixel. After the two interior intersec-
tions have been removed, two spans remain; The entry and
exit points of these spans are shown as filled circles. All grid
points at the corners of cells pierced by the ray are marked if
they project onto the LDI pixel and lie between the entry and
exit points (the projected area is demarcated by the dotted
lines).

the auxiliary depth buffer is used to reject anything on or in
front of the first surface. In this way, the second visual layer
is obtained. This process is repeated until nothing is drawn.

Apart from the depth values it is possible to extract any
number of attributes for each layer. However, in this context,
only depth values and normals need to be extracted, and this
can be done in one pass per layer. The triangle face normals
are drawn to the colour channel and both colour and depth
are read back from the framebuffer after each pass. Like
Nooruddin and Turk [NT03], I render from the 13 directions
defined by face midpoints, edge midpoints, and vertices. For
more details on the implementation of the LDI generation,
see Section 6 and [BA05].

3.1. Extracting Spans

The goal of the next step of the algorithm is to extract a set of
spans. A span is a line segment between an intersection point
where a ray enters and an intersection point where the same
ray exits an object. The ray in question is the one passing
through the centre of an LDI pixel in the direction of projec-
tion, i.e. the ray that would have been used if ray casting had
been used for LDI creation.
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To extract these spans, consider the depth values of each
LDI pixel. Each depth value corresponds to an intersection
of the ray and a surface. From the sign of the dot product of
the ray direction and the normal associated with each depth
value, it is possible to determine whether the ray is entering
or exiting. These intersection points are processed in order,
using a counter to keep track of whether we are inside or
outside.

Initially, the counter is zero, and it is incremented when
entering and decremented when exiting. Only intersections
which correspond to counter changes from 0 to 1 or 1 to 0
are kept. Thus, if an object consists of two intersecting ob-
jects as shown in Figure 2, only intersections on the union
are recorded. It is not assumed that the objects processed are
manifold. Hence, it is possible that the result is an uneven
number of intersections, e.g. due to a ray which exits an ob-
ject through a hole. As suggested in [NT03] the entire set of
intersections is discarded in this case. Since multiple LDIs
are used, it will be possible to fill in the missing parts from
another LDI. For valid rays, the output is a set of spans where
each span contains two intersection points (an entry and an
exit point) and their respective surface normals.

The method is clearly very similar to the one used in
[NT03], but there are important differences. Since normal in-
formation is used, it is possible to handle multiple intersect-
ing objects. The same is not true of the parity count method
used in [NT03] where it is implicitly assumed that intersec-
tions alternately correspond to entry and exit points. Noorud-
din and Turk solve the problem of objects that intersect by
only using the first and last value (ray stabbing) but this has
obvious limitations. On the other hand, the present method
requires that the triangles have normals that are consistently
oriented. This requirement seems justified, since if normals
cannot be consistently assigned, it is questionable whether it
makes sense to generate a signed distance field.

3.2. Voxelization

The next task is to convert the LDI representation to a voxel
grid. This is split into two tasks: First, we count for each
voxel the number of LDIs that consider it to be interior.
Subsequently, distances are computed for each voxel as ex-
plained in the next section.

Previous authors [NT03, KJ01] have elected to perform
the counting by projecting each voxel into each LDI to pull
information from the LDIs. Here the opposite is done. For
each span produced by the method above, the volume is tra-
versed along the line segment connecting its end points. This
choice is motivated by two objections against the projection-
based method: First of all, many voxels are empty, but would
still have to be projected into all LDIs to ascertain this fact.
Moreover, it would be necessary to introduce a new interme-
diate LDI representation.

For each span, the cells pierced by the line segment be-

tween the entry point and the exit point are enumerated (the
enumerated cells are shown shaded in Figure 2). For each
voxel which is a corner of an enumerated cell, it is tested
whether the voxel projects onto the depth pixel under con-
sideration and whether the voxel lies between the entry and
exit point. If the voxel belongs to this rectangular paral-
lelepiped (shown as a dotted rectangle in Figure 2), it is con-
sidered seen, and the reference count is increased for that
voxel (shown as a filled box).

The enumeration is done using the six-connected 3DDDA
algorithm proposed by Cohen-Or and Kaufman [CoK97].
However, due to its use of integer arithmetic, this algorithm
is constrained to produce lines that begin and end on grid
points. Using floating point arithmetic, on the other hand,
would make it very hard to guarantee that the discrete ray
terminates in the correct cell. A solution is to use integer
arithmetic but to specify the end points of the line on a finer
grid. This can be done with few changes to the algorithm and
no loss of efficiency in the central loop.

It should be argued that voxels which project onto an LDI
pixel are not missed by the above procedure. Observe that
only a voxel which is a corner of a cell pierced by a given
line can be closer to that line than one voxel unit. Since the
lines associated with spans pass through the center of the
LDI pixel and the point farthest from the center of the pixel

is at a distance of
√

1
2 < 1 from the center, one may con-

clude that all voxels projecting onto the pixels belong to cells
pierced by the line connecting the two intersection points.

When all spans have been processed, all voxels are re-
visited, and those with a reference count strictly greater than
half the number of LDIs are marked as interior. Exterior vox-
els are assigned distance

√
3 and interior voxels are assigned

distance −
√

3.

It is pertinent to ask whether the result of this voxel label-
ing is always what one would expect. While it is difficult to
rule out that some contrived input could produce counterin-
tuitive results, it should be noted that since the spans begin
and end in intersection points, the interior voxels must lie
within the convex hull of the input triangles.

3.3. Distance Estimation

At this point a distance estimate is computed for all voxels
that belong to cells containing an intersection point. An esti-
mate of the distance can be computed by projecting the voxel
onto the plane defined by the position and normal of the clos-
est intersection point. Let the voxel be at p and the closest
point at p0 with normal n. The distance is simply computed
using

d = n · (p−p0) . (1)

For each voxel that belongs to a cell containing at least one
point, the distance is estimated. This is done by finding the
intersection point closest to the voxel and applying (1).
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p
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Figure 3: The voxel p is erroneously classified as being out-
side since it is behind the plane of p0, its closest point.

However, the distance is not necessarily correct; in fact,
even the sign may be wrong, if the closest intersection point
was not sampled from the closest surface. This problem is
illustrated in Figure 3. A simple idea is to use the fact that
voxels have already been assigned values corresponding to
whether they are interior (−

√
3) or exterior (

√
3). If the sign

of the existing voxel value agrees with the sign of the dis-
tance estimate, the distance estimate is assigned to the voxel.
Unfortunately, this method is too crude: The exterior, inte-
rior labelling is not exact either.

However, there is a remedy: If the initial volume, initial-
ized to distance values of ±

√
3, is smoothed, a more plau-

sible volume is obtained (the zero level iso-surface contains
less pronounced staircase artefacts) and it seems more likely
that the distance estimates will agree with the smoothed
voxel values. Moreover, this can be iterated, producing the
loop illustrated in pseudocode below:

c o m p u t e _ d i s t a n c e ( Volume V , P o i n t S e t P )
{

L : l i s t o f ( v o x e l pos , v o x e l v a l u e )
f o r each p o i n t p i n P
{

c = c e l l c o n t a i n i n g p ;
For each v o x e l v b e l o n g i n g t o c

i f v has n o t been v i s i t e d
{

d = d i s t a n c e _ e s t ( v ) ;
L . a d d _ t o _ l i s t ( v , d ) ;

}
}
f o r 1 5 i t e r a t i o n s
{

Smooth (V ) ;
f o r each e l e m e n t ( v , d ) o f L
{

i f ( s i g n ( d ) = = s i g n (V[ v ] ) )
V[ v ] = d ;

}
}
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Figure 4: The optimal damping was found empirically by
observing the effect on the average gradient length. At k =
0.5 the gradient length appears to converge to a value close
to 1.

As shown above, the distance is estimated once for all
voxels adjacent to cells carrying points. For each iteration,
the estimated distance value is assigned to a voxel if the signs
agree. The smoothing is performed only on voxels that have
a six-neighbour with a differing sign, and the smoothing is
performed simply by taking a weighted average of the voxel
and its six neighbours.

In areas where there is an interface between interior and
exterior due to the closing of a hole, the surface will auto-
matically be smoothed. In areas where there is information
from intersection points, many voxels will be assigned esti-
mated distances in each iteration and thus prevent the surface
from drifting.

3.4. Correcting and Extending the Distance Field

The volume produced by the distance estimation above will
contain many voxels with correct distances but also areas
(near holes in the original surface) where the voxel values are
produced only by the smoothing. This means that the volume
is smooth, but not all voxel values correspond to distances.

To ameliorate this problem, a final step of reestimating the
distance values is performed. If we assume that the smoothed
voxel values depend approximately linearly on the distance
to the surface, we can simply divide the voxel value d with
the length of the gradient to get a distance estimate. More
precisely, we can estimate the distance

dest =
d
‖∇d‖

where dest is the new estimated distance value based on the
current voxel value d. To understand this intuitively, think
of a step of the Newton-Raphson root finding method. How-
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ever, simply dividing distances by the length of the gradient
leads to oscillating distance values. A good solution is to re-
compute the distance value d using a damping factor k

d← (1− k)d + k
d
‖∇d‖ (2)

where the optimal k is close to 0.5 as witnessed by Figure 4.
Ten iterations appears to be sufficient.

The gradient must be computed using upwind differences,
i.e. for a given voxel the derivative estimate depends only
on neighbours that are either closer to the surface or on the
other side. This is a technique commonly used when imple-
menting level set methods. In that context the rationale is
that upwinding prevents blending information from collid-
ing fronts [Set99b]. Here it is necessary for a practical rea-
son, namely that the transition region, in general, consists
only of voxels which belong to cells that are intersected by
the surface.

Note that by design, this correction step ensures that the
voxel values are distances in the sense that if we estimate the
gradient its lenght will be close to one. However, some dif-
fusion can also be introduced near sharp edges and corners
which are not well represented in the distance field. This is-
sue is discussed in the next section.

After hole smoothing and distance correction, the only re-
maining problem is that distances have only been computed
in a narrow range. For many applications, e.g. morphologi-
cal operations, a broader range of distances is required. Us-
ing the fast marching method [Set99b] it is easy to extend a
distance field to a set maximum limit. It is worthwhile using
the high accuracy version [Set99a]. For a discussion of the
implementation of the fast marching method on 3D lattices,
the reader is referred to [Bær01].

4. Results

Table 1 contains timings performed on a variety of models.
Clearly, the voxelization (Section 3.2) and the distance com-
putation (Section 3.3) are much slower than LDI generation
(Section 3) and distance correction (Section 3.4) steps. It is
also apparent that voxelization is quite output sensitive; the
time it takes is highly dependent on the volume of the pro-
duced model. The easiest way to evaluate the result is by tes-
sellating the zero-level isocontour of the distance field. Tes-
sellated iso-contours of all the models in Table 1 are shown
in Figure 6. Notice that the mermaid model (Figure 6a1) con-
tains both missing polygons, spurious polygons and ambi-
guity, i.e. in some places the same surface is represented by
two different patches. The model is a scan of a figurine per-
formed with a partially defect scanner. Using the presented
method, the spurious parts are removed and the holes are
filled when the distance field shown in Figure 6a2 is gener-
ated. However, the input is so bad that some artefacts are un-
avoidable in regions where the algorithm must, essentially,
choose between the two surfaces.

error Torus Cube

uncorr. corrected uncorr. corrected

max 0.328534 0.230868 1.16095 1.96335
min -0.724344 -0.113973 -1.53404 -1.53404
avg 0.00950544 0.0028777 0.0164621 0.0313922

Table 2: Error measurements. For the two synthetic mod-
els, Torus and Cube, the maximum, minimum and average
errors were computed. The error measurements were per-
formed both with and without the correction procedure dis-
cussed in Section 3.4.

The hole in the bunny is also smoothly filled, and although
some diffusion is evident, there is little difference between
the zero-level iso-surface of the distance field representing
the bunny and the original.

Two of the models, a deformed torus and a noisy cube,
are known to be closed two-manifold models. This means
that it is possible to compute the distance using the method
presented in [BA05]. Since the method in [BA05] produces
exact distances for closed two-manifolds, it can be used to
generate ground truth for an evaluation of the results pro-
duced by the method in the present paper. The results are
shown in Table 2. Note that the average error is the average
of the absolute error. In the case of the torus model which is
smooth, the max and min errors are both less than one voxel
unit, and the average error is below one hundredth of a voxel
unit. The errors are somewhat larger for the cube. The reason
is that the cube model contains many sharp edges and cor-
ners where the distance is less reliably estimated than near
the smooth surface of the torus model.

The purpose of the correction step is to change voxel
values so that they reflect the actual distance to the zero-
level isosurface. However, as mentioned, this correction also
introduces a bit of diffusion which shifts the location of
the isosurface. In the case of the cube this effect is notice-
able which is why the corrected distance values are actually
worse than the uncorrected. In the case of the torus, the pro-
cedure is purely beneficial.

5. Mesh Generation and Optimization

For completeness, I briefly describe the methods used for
isosurface tessellation and mesh optimizaiton. To tessellate
isosurfaces of the distance field, a method which is essen-
tially a non–table driven marching cubes [LC87] is em-
ployed. Like in MC, vertices are placed on the zero crossings
along the grid line between two cells. However, the connec-
tivity of the mesh is computed by dualizing the mesh pro-
duced when cubes are associated with all interior voxels and
the faces shared by interior voxels are removed. If two such
cubes share an edge, the surfaces are separated to ensure
two-manifold connectivity. The desire to construct a mesh
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Info timings (seconds)

Name # Faces Vol. size # Layers LDI generation Voxelization Dist. computation Dist. correction

Torus 4096 256 8 1.4 14.4 34.3 0.8
Cube 768 256 14 2.2 40.9 39.4 1.4

Buddha 1087716 400 20 14.8 64.1 125 2.6
Bunny 69451 256 18 2.6 18.4 34.6 0.8

Mermaid 90812 300 21 6 20.9 84.3 1.5

Table 1: Model information and timings: For each model, the number of polygons, the size of the volume generated, and the
maximum number of LDI layers is stated in the left half of the table. In the right half is a list of timings of the various parts of
the algorithm.

with two-manifold connectivity is also the reason why dual
contouring is not employed [JLSW02].

Once vertices have been connected, the resulting polyg-
onal mesh is triangulated by iteratively splitting polygons.
When several choices are possible, I split along the edge
whose midpoint is closest to the isovalue. Finally, all edges
that connect two faces of the same cube are collapsed if
the mesh is still a valid manifold after the collapse. Conse-
quently, most voxels contribute precisely one vertex, which
causes almost all sliver-triangles to disappear.

The conversion of a triangle mesh to the distance field
representation will remove small features and soften sharp
edges. However, when a mesh is reconstructed from the dis-
tance field, it can be refitted to the intersection points gen-
erated in the LDI creation process. A method for mesh op-
timization has been described by Hoppe et al. [HDD∗93].
Hoppe et al. use an outer loop consisting of two steps: First,
an energy minimization that optimizes a given mesh to the
point cloud. Second, the mesh connectivity is changed to
further reduce the energy. I use a method that is similar in
structure but differs in many particulars. The optimization
loop consists of the following steps:

1. The intersection points from LDI generation are projected
onto the mesh using ray casting in the point-normal direc-
tion.

2. For each vertex, compute its optimal position by finding
the point that minimizes the sum of squared distances to all
of the plane equations (point, normal pairs) represented by
the points that project onto the triangles in its one ring.

3. An energy minimization step is then performed. The ver-
tex is moved towards its optimal position, but a spring term
is used to temper the motion.

4. The mesh is improved, by (a) splitting long edges, (b) re-
moving bad triangles (needles and caps [BK01]), (c) edge
flipping to minimize max angles (peformed only if the di-
hedral angle is very low). When performing these mesh
changes, it is important to change the geometry as little as
possible.

The mesh optimization briefly outlined above is very effec-
tive at finding the features represented in the point cloud.
However, a vertex close to a feature, say an edge, is only
drawn to that feature if points on both sides of the feature
have been projected onto the triangles in its one ring. This
means that the point cloud should be dense with respect to
the mesh, and in the applications discussed below, a reso-
lution of twice the volume resolution has been used in LDI
generation to ensure a sufficient number of points.

5.1. Boolean Operations

The intersection counting scheme introduced in Section 3
removes the interior parts of intersecting or self-intersecting
solids, in effect computing the union for each pixel in the
LDI. The principle is simple: The counter keeps track of how
many surfaces have been crossed, i.e. how many solids the
ray is simultaneously inside. If there are two objects in the
scene, counter changes from 1 to 2 correspond to going from
one solid and into their intersection. Thus, intersection can
be implemented by issuing intersection points only when the
counter goes from 1 to 2 or vice versa. If there are more than
two objects, this method will produce the union of pairwise
intersections. Clearly, this generalizes to the intersection of
multiple solids.

It is also possible to compute differences. A difference is
just the intersection of one object with the complement of the
object being removed. One initializes the counter to 1 and in-
verts the sense of the normals of the object being removed.
Examples of intersection and difference are shown in Fig-
ure 5. Note that the sharp edge introduced by the boolean op-
eration were made fuzzy by the conversion to distance field
and reintroduced by the mesh fitting procedure.

5.2. Morphological Operations

It is well known that morphological operations can be per-
formed easily on distance volumes. Simply thresholding a
distance field corresponds to a dilation or erosion [Jon01].
By computing first a dilation and then an erosion, one may
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perform a morphological closing [Ser82]. Here a slightly dif-
ferent scheme is used. The model shown in Figure 5 (center
right) was dilated slightly by thresholding at a small positive
value in order to eliminate the canals. The points were then
offset by the same amount in the normal direction. The in-
terpolated distance value at the offset position must clearly
be identical to the threshold used for dilation if the offset
point lies on the dilation. If this is not true for a given point,
it should be removed before eroding. Thus, the points inside
the canals were removed. Erosion was performed simply by
shrinking the mesh. After that, fitting was used to match the
original model as closesly as possible. Without the point re-
moval, the fitting process would have failed.

6. Implementation Notes

The method was implemented in C++ using OpenGL, and
all tests were carried out on a Linux PC equipped with a
3GHz Intel Pentium IV, 1 GB RAM and a Geforce FX5900
XT graphics card.

The depth buffer precision used is 24 bits. Each compo-
nent of the normal is stored as an eight bit value in the colour
channel of the frame buffer. Entities were converted to float-
ing points during the glReadPixels calls made to acquire
depth and normal information.

Depth peeling is performed using a very simple class with
the interface shown below

c l a s s D e p t h P e e l e r {
/ / . . .
p u b l i c :
D e p t h P e e l e r ( i n t wid th , i n t h e i g h t ) ;
void d i s a b l e _ d e p t h _ t e s t 2 ( ) ;
void e n a b l e _ d e p t h _ t e s t 2 ( ) ;
void r e a d _ b a c k _ d e p t h ( ) ;

} ;

Occlusion queries were used to detect when to stop the
generation of new LDI layers.

OpenGL samples at pixel centres. This means that the
intersection spans would pass through the centre of cells.
To ensure that the intersection points are as close as pos-
sible to the grid points, all intersection points are shifted by
−(0.5,0.5,0.5).

7. Conclusions and Future Work

A straightforward method for generating distance fields from
triangle meshes has been presented. The method does not
produce exact distance fields, but the results indicate that the
average error is quite low and the zero-level iso-surfaces pro-
duced by the method correspond well with the input. More-
over, the method has been shown to produce reasonable dis-
tance fields even from a very degenerate model.

A central idea is to extract and utilize as much geometric
information as possible. In fact, even after an iso-surface has

been produced from the generated distance fields, the inter-
section points from the layered depth images can be used to
reconstruct sharp edges and corners. It has been shown that
with this post-processing, boolean and morphological oper-
ations can be performed on triangle meshes producing new
triangle meshes as output.

There is one particular avenue of future research which
looks especially promising, namely an even greater use of
the existing voxel value when updating voxel values. Cur-
rently, the sign of the existing voxel value is used to decide
whether to accept or reject the estimated distance value. One
might estimate several likely distances and use the stored
distance value and gradient to choose between these esti-
mates.

The simple smoothing used to propagate distance infor-
mation could also be replaced by a more judicious approach,
possibly using the Eikonal equation [Set99a].
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