_ P
“i")/

%8 Time series AMR data representation for out-of-core interactive visualization

W. ALEXANDRE-BARFF! , H. DELEAUY, ). Sarton3, F. LEboux? and L. Lucas?

1. Université de Reims Champagne-Ardenne, LICIIS, LRC DIGIT, France
2. CEA, DAM, DIF, LRC DIGIT, F-91297 Arpajon, France
3. Université de Strasbourg, ICube, UMR-CNRS 7357, France

2 LR A,
PROBLEM METHODOLOGY

End-user Application Out-of-core Architecture
3D Numerical simulation > massive AMR time series

data size >>>> current GPUs memory Voxel
Interactive visualization of AMR data is not trivial grids

oL : : Bricking , .
Ad hoc decomposition of input data in ordered blocks \ ‘ e.g. Viz ﬁ TS-BAT
or

BS-AMR

Blocks management between ROM / RAM / VRAM -

SFC indexing Processing BAT\_;

Data Cache

BAT,

RELATED WORK * - |

Y
Level 0 Level1 Level (MaxLevels - 1)

Adaptive Mesh Refinement

(AMR): Introduced by [1] it Figure 2: Overview time series AMR data pipeline

seeks to combine the
simplicity of structured grids Our conversion scheme (see Fig. 3) is Finally, we store each AMR brick data scalars into individual binary

with the advantages of local largely derived from the work of [3], files in addition to a supplementary JavaScript Object Notation

refinement to obtain a multi- which produces a set of AMR bricks (JSON) files at the top level of the hierarchy. We can see an

resolution hierarchy of cells containing the same number of voxels overview of the organization in figure 5.

called Block-Structured AMR with different spatial resolutions but

) Figure 1: Three refinement the same memory footprint. (See Fig. | TS-BAT

(B5-AMR) SR B 4 for BS-AMR topology with % the S

union of 4 subgrids and A,! grid of

refinement level 1)

Once all the AMR brick data is obtained, we use a Space-Filling

Curve (SFC) path to adress them uniquely and individually. Defined

in a unit cube, this 3D SFC allows us to convert 3D position into a i
[1]
1010

A
single Id. We chose Hilbert’s curve for locality preservation [4]. o1* 1010 i 1010

(See Fig. 4 (b) (c) (d) for SFC indexing example) T1-L0-B1 T1-Lm-Bxx Th-LO-B1 Tn-Lm-Bxx
AMR brick AMR brick AMR brick AMR brick
binary file binary file binary file binary file

Out-of-core approaches which address entire massive Figure 3: Bricking stage
datasets, like Sarton et al. Proposition [2], introduce a
data structure based on a caching strategy with a virtual
memory addressing system coupled to efficient parallel
management on GPU to provide efficient access to data
In interactive time.

Our method proposes to extend this approach in a
general-purpose framework allowing us to visualize and

process interactively time-dependent AMR datasets on -« <\ | oI
the GPU SKDPG ekl Figure 5: Produced data organization

O , Then our integrating method called Brick Addressing Table (BAT)

VERVIEW which is an AMR bricks array from a single step couple with our
Card(l,%-3) ={1,3,11,57} (b) A,* 3 brick N,% 11 bricks (d) A,357 brick . : :

(a) Card{o™) =1 H{b) A" 3 bricks (c) Mg ricks {d) Ao " out-of-core approach called Time Step Brick Addressing Table

, , , R Figure 4: Four refinement level BS-AMR topology of a unique binary volume : , ,
We propose in this poster — illustrated in figure 2 —a 3D of 188 x 136 x 85 voxels. Illustrates for each level the corresponding 3D (TS-BAT) which handles the collection of BAT alongside data

time-dependent AMR data representation for out-of- Hilbert’s curve traversal in red. cache management for the whole visualization stage.
core ready approach interactive volume visualization.

Our preprocessing step converts the time series of RESU LTS
regular voxel grid into indexed Hilbert’s curve path-based
BS-AMR blocks.

Dataset 1: 269 volumes of 460 x 280 x 240 voxels on 128bits Dataset 2: 311 volumes of 1000 x 1000 x 1000 binary voxels
Preprocessing time: 9min for 133Go memory size Preprocessing time: 2,5hours for 1,2To memory size
Average single step processing: 2s for 184Mo Average single step processing: 30s for 1,8Go

We also introduce an integrating method of our data
representation into virtual addressing data structure on

GPU. To validate our approach initially on CPU, we have integrated our code in the OpenVKL [5] AMR volume rendering engine.

CONCLUSION

Our preprocessing shows potential for in-situ
visualization as it averages a 30s time for a single step
from - our biggest — dataset 2, as well as interactive

volume visualization of an entire time series dataset.

(See Fig. 8)
(a) Card(r.%2) = {1,4,19} (b) Card(r..0-2) = {1,4,24} (a) A%, Card(r,,*?) = {1,8,20}

! Il / ,
« @MW 2T .
/90 7

ey /«'/ /
B o o !g’; /

.\‘ 5 .
& N
\ b v y
L “‘ ) [
A T
» o~ - .
3N - 4
[ ) £
L
)
a f
v i

(c) Card(r°-%) ={1,4,22} (d) Card(r,.9) = {1,4,16} (b) A°, Card(r,%%) = {1,8,30}

Figure 8: Time series AMR interactive volume visualization Figure 6: Visualization of the four scalar fields at time step A%,,, from dataset 1 ~ Figure 7: Scalar visions of two separate time steps with their AMR hierarchy

at around 4,2fps from dataset 2 at around 2fps .—

Rl [\

@]j REFERENCES B

UNIVERSITE

DE REIMS
CHAMPAGNE-ARDENNE [1] Marsha J Berger and Joseph Oliger, « Adaptive mesh refinement for hyperbolic partial differential equations », Journal of Computational

Physics, vol.53, no. 3, pp. 484-512, 1984.

[2] Jonathan Sarton, Nicolas Courilleau, Yannick Remion, and Laurent Lucas, « Intractive Visualization and On-Demand Processing of Large Volume
Data: A Fully GPU-based Out-of-Core Approach », IEEE Transactions on Visualization and Computer Graphics, vol. 26, no. 10, pp. 3008-3021,
Oct. 2020.

[3] D.T. Graves J.N. Johnson N.D. Keen T.J. Ligocki D.F. Martin PW. McCorquodale D. Modiano P.O. Schwartz T.D. Sternberg . Adams, P. Colella and
B. Van Straalen, « Chombo software package for amr applications — design document », Report LBNL-6616F, Lawrence Berkeley National
Laboratory Technical Report, 2015.

[4] Revital Dafner, Daniel Cohen-Or and Yossi Matias, « Context-based space filing-curves », Computer Graphics Forum, vol.19, 05 2000.

[5] Intel, « Openvkl high performance volume kernels », https://www.openvkl.org/, 2020, Accessed: 2022-02-15.



https://www.openvkl.org/

