
LATEX TikZposter

Multi-Display Ray Tracing Framework
Luciano A. Romero Calla1, Bipul Mohanto2, Renato Pajarola1, and Oliver Staadt2

1University of Zurich, Switzerland
2University of Rostock, Germany

This project has received funding from the European Union’s

Horizon 2020 research and innovation program under the Marie

Sk lodowska-Curie grant agreement No 813170.

Multi-Display Ray Tracing Framework
Luciano A. Romero Calla1, Bipul Mohanto2, Renato Pajarola1, and Oliver Staadt2

1University of Zurich, Switzerland
2University of Rostock, Germany

Summary

We have developed a framework for multi-display render-
ing using advanced technologies such as MPI (Message
Passing Interface), CUDA (Compute Unified Device Ar-
chitecture), CUDA IPC (Inter-Process Communication),
OptiX 7.6, and the C++ programming language.

Related Work
We can divide the related work into rasterization and ray-
tracing based approaches. Among the latest rasterization
works, we find [1], which extend [2] to handle load balanc-
ing and LOD compared to Equalizer [3]. Equalizer [3]
is a framework for scalable, parallel rendering and data
distribution for large scale visualizations. Another rele-
vant work is [4], which extends OpenGL to implement a
distributed framework for high-performance visualization
systems.
Our framework belongs to the second group of ray-
tracing-based approaches. In this group, we find [5] that
presents a framework for rendering large tiled display
walls as a display service. [6] proposed a distributed frame
buffer approach and extended the API from OSPRay [7].
Finally, not related to multi-display rendering but in the
scope of distributed rendering, in [8] a data-distributed
solution to path-tracing massive scenes across multiple
GPUs has been proposed.

Overview
Figures 1, 2, and 3 shows our framework running in a
2 × 3 display wall.

Fig. 1: Ray Tracer: primary and shadows rays, Sponza scene.

Fig. 2: Ray Tracer: primary and shadows rays, San Miguel scene.

Fig. 3: Ray Tracer: Variable Rate Path Tracer, custom scene.

Framework

The Display processes run the multi-display module. Its
implementation extends the OpenGL-based viewer from the
gproshan framework [9] to handle multi-display using MPI
and CUDA IPC. An RT & Display process initialize and run
a ray-tracer implementation per GPU. It handles all the ren-
der tasks for the process running on the same GPU and their
respective displays.

GPU 0 GPU 1 GPU 2 GPU 3

MPI: group node 0 MPI: group node 1

Node 0 Node 1

MPI: all (MPI COMM WORLD)

Fig. 4: Framework architecture

Display
Process

OpenGL

Display
Process

OpenGL

Display
Process

OpenGL

RT & Display
Process

OpenGL

GPU 1

GPU 2

GPU 3

CUDA IPC/MPI: group GPU 0

User/Mouse
Interaction

Display Process

OpenGL

GPU 0

N
o
d
e
0

N
o
d
e
1

Fig. 5: Framework architecture

The setup to run our experiments for the general framework
consists of two nodes with an Intel Core i7-10700K processor,
32GB of RAM, and NVIDIA GeForce RTX 3090 with 24GB
of memory and a GeForce RTX 3080 with 10GB of memory,
respectively in each node. The setup includes four monitors
on the first node and three on the second one, all with a res-
olution of 2160× 1440 pixels. Table in Figure 6 shows basics
results.

Scene Triangles Monitors GPU Memory GPU usage % FPS Rendering

San Miguel 9980699 4 5719 MiB 72 % 68 per gpu
San Miguel 9980699 4 18171 MiB 70 % 73 per process

Sponza 262267 4 2410 MiB 66 % 67 per gpu
Sponza 262267 4 4933 MiB 67 % 72 per process

San Miguel 9980699 4, 3 3968 MiB, 3382 MiB 69 %, 55 % 74 per gpu
San Miguel 9980699 4, 3 exceeds memory on second node per process

Sponza 262267 4, 3 2411 MiB, 1825 MiB 64 %, 50 % 64 per gpu
Sponza 262267 4, 3 4939 MiB, 3375 MiB 66 %, 49 % 76 per process

Fig. 6: FPS for a ray tracer with primary and shadow rays.

Variable Rate Path Tracer

Fig. 7: Foveated, intermediate, and peripheral regions.

We have used 4 SPP (sample-per-pixel) for the unbiased path
tracer and 4 SPP in the foveated, 2 SPP in the intermediate,
and 1 SPP in the peripheral region for the variable rate path
tracer. The ray bounces are limited to three. In addition,
we used Reinhard Tone Mapping [10] for post-processing.
Figure 8 illustrates the results. The average framerate for
uniform sample path tracer is 3.72fps, whereas the variable
rate path tracing achieved framerate on average 16.62fps ;
that is 4.45× faster.

Fig. 8: The rendering results compare uniform (left) and our variable (right) numbers of radiance rays. The green box (right) marks the foveated region. In the lower right

corner, a 3× zoom inset view of the area is displayed.

References

[1] Yangzi Dong and Chao Peng. “Multi-GPU multi-display rendering of extremely large 3D environments”. In: The Visual Computer (Dec. 2022).
issn: 1432-2315. doi: 10.1007/s00371-022-02740-7.

[2] Yangzi Dong and Chao Peng. “Screen Partitioning Load Balancing for Parallel Rendering on a Multi-GPU Multi-Display Workstation”. In:
Eurographics Symposium on Parallel Graphics and Visualization. Ed. by Hank Childs and Steffen Frey. The Eurographics Association, 2019.
isbn: 978-3-03868-079-6. doi: 10.2312/pgv.20191111.

[3] Stefan Eilemann, David Steiner, and Renato Pajarola. “Equalizer 2.0 - Convergence of a Parallel Rendering Framework”. In: IEEE Transactions
on Visualization and Computer Graphics 26.2 (Feb. 2020), pp. 1292–1307. doi: 10.1109/TVCG.2018.2870822.

[4] Kai-Uwe Doerr and Falko Kuester. “CGLX: A Scalable, High-Performance Visualization Framework for Networked Display Environments”. In:
IEEE Transactions on Visualization and Computer Graphics 17.2 (Mar. 2011), pp. 320–332.

[5] Mengjiao Han et al.“A Virtual Frame Buffer Abstraction for Parallel Rendering of Large Tiled Display Walls”. In: IEEE Visualization Conference
(VIS). 2020, pp. 11–15. doi: 10.1109/VIS47514.2020.00009.

[6] Will Usher et al. “Scalable Ray Tracing Using the Distributed FrameBuffer”. In: Computer Graphics Forum 38.3 (2019), pp. 455–466. doi:
10.1111/cgf.13702.

[7] I Wald et al. “OSPRay - A CPU Ray Tracing Framework for Scientific Visualization”. In: IEEE Transactions on Visualization and Computer
Graphics 23.1 (2017), pp. 931–940. doi: 10.1109/TVCG.2016.2599041.

[8] Milan Jaroš et al. “GPU Accelerated Path Tracing of Massive Scenes”. In: ACM Transactions on Graphics 40.2 (Apr. 2021). issn: 0730-0301.
doi: 10.1145/3447807.

[9] Luciano Arnaldo Romero Calla and Lizeth Joseline Fuentes Perez. gproshan: geometry processing and shape analysis framework. url:
https://github.com/larc/gproshan.

[10] Yasir Salih et al. “Tone mapping of HDR images: A review”. In: 2012 4th International Conference on Intelligent and Advanced Systems
(ICIAS2012). Vol. 1. 2012, pp. 368–373. doi: 10.1109/ICIAS.2012.6306220.


