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Summary

We have developed a framework for multi-display render-
ing using advanced technologies such as MPI (Message
Passing Interface), CUDA (Compute Unified Device Ar-
chitecture), CUDA IPC (Inter-Process Communication),
OptiX 7.6, and the C++ programming language.

Related Work
We can divide the related work into rasterization and ray-
tracing based approaches. Among the latest rasterization
works, we find [1], which extend [2] to handle load balanc-
ing and LOD compared to Equalizer [3]. Equalizer [3]
is a framework for scalable, parallel rendering and data
distribution for large scale visualizations. Another rele-
vant work is [4], which extends OpenGL to implement a
distributed framework for high-performance visualization
systems.
Our framework belongs to the second group of ray-
tracing-based approaches. In this group, we find [5] that
presents a framework for rendering large tiled display
walls as a display service. [6] proposed a distributed frame
buffer approach and extended the API from OSPRay [7].
Finally, not related to multi-display rendering but in the
scope of distributed rendering, in [8] a data-distributed
solution to path-tracing massive scenes across multiple
GPUs has been proposed.

Overview
Figures 1, 2, and 3 shows our framework running in a
2 × 3 display wall.

Fig. 1: Ray Tracer: primary and shadows rays, Sponza scene.

Fig. 2: Ray Tracer: primary and shadows rays, San Miguel scene.

Fig. 3: Ray Tracer: Variable Rate Path Tracer, custom scene.

Framework

The Display processes run the multi-display module. Its
implementation extends the OpenGL-based viewer from the
gproshan framework [9] to handle multi-display using MPI
and CUDA IPC. An RT & Display process initialize and run
a ray-tracer implementation per GPU. It handles all the ren-
der tasks for the process running on the same GPU and their
respective displays.
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Fig. 4: Framework architecture
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Fig. 5: Framework architecture

The setup to run our experiments for the general framework
consists of two nodes with an Intel Core i7-10700K processor,
32GB of RAM, and NVIDIA GeForce RTX 3090 with 24GB
of memory and a GeForce RTX 3080 with 10GB of memory,
respectively in each node. The setup includes four monitors
on the first node and three on the second one, all with a res-
olution of 2160× 1440 pixels. Table in Figure 6 shows basics
results.

Scene Triangles Monitors GPU Memory GPU usage % FPS Rendering

San Miguel 9980699 4 5719 MiB 72 % 68 per gpu
San Miguel 9980699 4 18171 MiB 70 % 73 per process

Sponza 262267 4 2410 MiB 66 % 67 per gpu
Sponza 262267 4 4933 MiB 67 % 72 per process

San Miguel 9980699 4, 3 3968 MiB, 3382 MiB 69 %, 55 % 74 per gpu
San Miguel 9980699 4, 3 exceeds memory on second node per process

Sponza 262267 4, 3 2411 MiB, 1825 MiB 64 %, 50 % 64 per gpu
Sponza 262267 4, 3 4939 MiB, 3375 MiB 66 %, 49 % 76 per process

Fig. 6: FPS for a ray tracer with primary and shadow rays.

Variable Rate Path Tracer

Fig. 7: Foveated, intermediate, and peripheral regions.

We have used 4 SPP (sample-per-pixel) for the unbiased path
tracer and 4 SPP in the foveated, 2 SPP in the intermediate,
and 1 SPP in the peripheral region for the variable rate path
tracer. The ray bounces are limited to three. In addition,
we used Reinhard Tone Mapping [10] for post-processing.
Figure 8 illustrates the results. The average framerate for
uniform sample path tracer is 3.72fps, whereas the variable
rate path tracing achieved framerate on average 16.62fps ;
that is 4.45× faster.

Fig. 8: The rendering results compare uniform (left) and our variable (right) numbers of radiance rays. The green box (right) marks the foveated region. In the lower right

corner, a 3× zoom inset view of the area is displayed.
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