
EUROGRAPHICS 2010 / H. P. A. Lensch and S. Seipel Short Paper

Segmental Brush Synthesis with Stroke Images

Ryoichi Ando1 and Reiji Tsuruno2

1Graduate School of Design, Kyushu University, Japan
2Faculty of Design, Kyushu University, Japan

Abstract

We present a new approach for synthesizing realistic brush strokes exploiting recent works of texture synthesis

from stroke images. (See Figure 1). In our method, stroke images are automatically decomposed into a sequence

of quad segments and stitched together along the path of user’s input to produce final image. Numbers of methods

using textures on digital painting have been explored; our usage of texture is novel in that the source image is

typically a photo and the synthesis is fast enough to achieve realtime feedback. In contrast to previous methods,

our approach allows a large variety of artistic brushes to be interactively simulated fairly so that unique media

which haven’t caught attention yet such as lipsticks or finger paint, are well reproduced. We shall show some

artworks created using our method and demonstrate feasibility of our algorithm.

Categories and Subject Descriptors (according to ACM CCS): Feature Measurement [I.4.7]: Texture—Learning
[I.2.6]: Analogies—Picture/Image Generation [I.3.3]: Display algorithms—

1. Introduction

Digital painting with textures has become one of the main-
stays for simulating characteristics of artistic media. The ad-
vantages of using textures are its versatile flexibility and a
reliability for authoring realistic results. Today, many com-
mercial softwares such as Photoshop or Painter use tex-
tures for brush stroke representation. Nevertheless, model-
ing of specific media with textures is still not an easy task;
it often involves programmers to develop individually engi-
neered algorithm and designers to adjust sensible parame-
ters. In the present contribution we offer a solution for the
tedious task which allows designers to create stylish brushes
instantly. With our method, only several example photos will
be enough to learn the styles of a stroke and dynamically
simulate them at realtime rate.

Physical methods may be attractive, however, they are
only designed for one particular media. Some other related
works of texture synthesis and early works addressed the
use of images and textures to simulate visual styles of a
brush; though, these methods are unlikely to be able to ful-
fill our goal because those methods are slow and limited
to cover small variation of media. In the present contribu-
tion we exploit recent techniques of patch-based texture syn-
thesis [EF01, KSE∗03] and extend them to generate brush
stroke images.

Figure 1: Given a set of example strokes, our algorithm gen-

erates realistic strokes in response to the user’s input of a

brush, reproducing the characteristics of source examples.

2. Related work

Hsu introduced Skeletal Strokes that abstracts arbitrary im-
ages into the path to render naturally deformed silhouettes
[HL94]. They experienced successful results on illustra-
tion and calligraphy, however, the detail of texture is also
stretched or shrunk with the length of the path. Ritter, et al
[RLA∗06] employed a pixel-based texture synthesis to sim-
ulate broad range of media. Based on “Texure-by-Numbers”
[HJO∗01] they embedded a novel energy function and sim-
ulated various media. Even though they devised method to
achieves interactive rate, it takes few seconds to several

c© The Eurographics Association 2010.

http://www.eg.org
http://diglib.eg.org


Ryoichi Ando, Reiji Tsuruno / Segmental Brush Synthesis with Stroke Images

minutes for each stroke to synthesize full-resolution image.
There is a GPU accelerated technique for general texture
synthesis [LH05]; the technique is not directly extendable
for our purpose. For charcoal brushes, the bitmaps of look-
up table are statically stamped based on the pressure and the
tilt of stylus [BSM88]. For ink-washed brushes perpendic-
ular vectors along the spine were used to compose triangle
strips and texture mapped [NM00]. These methods perform
fast and are straightforward to do; though, the source tex-
tures should be created in a considerable manner depending
on artist’s aesthetic and intuition.

3. Our Approach

A brief workflow of our algorithm is as follows. We first
compute the contour and the spines from source strokes and
decompose them into a series of thin quad segments. Next,
when a user input the track information of a brush, we re-
combine those precomputed segments into the form of a tar-
get stroke along the track of input. (See Figure 2) To mea-

Figure 2: Workflow of our method: We first decompose

source strokes into a sequential quad segments and ran-

domly recombine them into a new stroke image.

sure an unnaturalness at the very local point, we introduce
a visual cost function E(xxxi). The function takes one multi-
dimensional vector “xxxi” which indicates “i th segment from
the beginning of a stroke along the spine.” We describe math-
ematical details in latter section. We consider the problem as
a minimization problem as

min
s

l

∑
i=1

E(xxxi) (1)

where s and l denotes the segment array of a target stroke, the
length of stroke, respectively. The problem can be intuitively
translated to graph theory of finding optimal length of path
that connects l points. The problem is known to be efficiently
solved by dynamic programming [SYJS05]. Suppose E(xxxi)
consists of two static and dynamic terms

E(xxxi) = Es(xxxi)+ ∑
j∈N

Ed(xxxi,xxx j) (2)

where Es(xxxi) only depends on static environment and
doesn’t get influenced to marginal features and Ed(xxxi,xxx j)
depends on marginal features where N = (i− 1, i + 1). We

abuse notation ∑ j Ed(xxxi,xxx j) to be Ed(xxxi) for simplicity. The
minimization problem can be reduced to a recursive format

Mi(xxxi) = Es(xxxi)+min
xi−1
{Ed(xxxi)+Mi−1(xxxi−1)} (3)

M1(xxx1) = Es(xxx1) (4)

where Mi(xxxi) denotes a cumulative minimum energy from
1 to i. With the dynamic programming, the optimal combi-
nation of minMl(xxxl) is then efficiently computed in O(n2)
time by memorizing previously computed Mi(xxxi) for each
iteration. Even though the problem is solved in polynomial
time, O(n2) time is still costly for realtime synthesis. In our
approach, we exploit the character of feature vector distribu-
tion that features are plotted together. In other word, the fea-
ture cloud forms just as snake-like shape. This yields a more
simplified iterative scheme that approximates min-energy as

Mi(xxxi)≈ Es(xxxi)+Ed(xxxi)+min
i−1

Mi−1(xxxi−1). (5)

In contrast to dynamic programming approach, this method
is far from optimal; though, it maintains local optimality and
the computation is done only in O(logn) time when search
is accelerated with ANN [AMN∗98]. This approach works
fine since the static energy term constrains the search around
its perimeter.

3.1. Segmental Decomposition

To extract spine we firstly extract a branched provincial
spine. Secondly, starting from every edge of the branched
spine, we iteratively shrink the spine while the number of
edge more than two. To decompose a stroke into the sequen-
tial quad segments, we firstly discretize the spine path into a
series of points with an arbitrary space. Next, for each point
we compute a perpendicular vector and slice the region. We
show an example of our decomposed stroke in Figure 3.

Figure 3: The decomposition of a hairy brush: The photo of

a hairy brush stroke (a) was automatically decomposed into

sequential thin segments (b).

3.2. Features

The selection of specific component feature is an open prob-
lem though, we heuristically picked features as follows: 1)
color value at the neighboring segments 2) distance from
head and tail 3) width of the both side of the segment 4)
curvature. Each of those 4 features is a multi-dimensional
feature vector; for example, width feature is 2 dimensional
feature vector and color feature is 50 dimensional in our
implementation. In total, the feature vector per segment is

c© The Eurographics Association 2010.

90



Ryoichi Ando, Reiji Tsuruno / Segmental Brush Synthesis with Stroke Images

around 60 dimensional. We illustrate those components in
Figure 4. Note that in order to evaluate them fairly, those 4
features are normalized per group beforehand. We ascribe
those selections to the following observations. The neigh-
boring segments should be consistent; therefore, to make the
boundaries of segments less artificial, we should place the
segments in such a way that the neighboring color matches
better. And the same explanation for the width of a segment.
Taking those rationales into account, we design our feature
metric as follows:

L
i, j
2 (vc) = (vi

c− v
j
c)

2 (6)

Ed(xxxi,xxx j) =
Z

S
L

i, j
2 (vcolor)dS+L

i, j
2 (vwidth) (7)

Es(xxxi) = G(vdhead ,σ)L2(vdhead)+ (8)

G(vdtail ,σ)L2(vdtail)+L2(vcurvature) (9)

E(xxxi) = Es(xxxi)+ ∑
j∈N

Ed(xxxi,xxx j) (10)

where Ed(xxxi) and Es(xxxi) denotes dynamic and static term
of E(xxxi) as described in equation 2. N is the neighboring

segments at i where N = (i− 1, i + 1). L
i, j
2 (·) and S de-

notes L2 norm with neighboring segments i, j or input path
and overlapping region with neighboring segments, respec-
tively. Segment colors are sampled uniformly by transform-
ing quads into square shapes. vcolor , vwidth, vdhead , vdtail ,
vcurvature and G(x,σ) denotes the multi-dimensional compo-
nent in xxxi and gaussian function.

3.3. Stitching

At the core of our method is stitching of decomposed seg-
ments together into a target form of stroke along user’s input
of path. In the first loop, we begin synthesis from a blank
space and concatenate a segment which E(xxxi) is very small
to the end of stroke body with the backward induction of a
perimeter. In the second loop, for every segment, we further
search for one with better matching with back and forward
perimeter and replace with it if energy goes lower. We illus-
trate the pseudo code of this scheme below.

Function : SYNTHESIZESTROKE(segments, path)

Allocate blank segment array x

// First loop
for each i ∈ x from head to tail

xi← argmini E(xxxi, 000, xxxi−1,segments, path)
// Second loop
for each i ∈ x from head to tail

xi← argmini E(xxxi,xxxi+1,xxxi−1,segments, path)
return (x)

Typically, this search term is accelerated with ANN
[AMN∗98] when xdtail and xdhead component is large
enough. Overrall, our computation time is O(logn).

Figure 4: Features of a segment: To represent the features of

a segment, 1) neighboring color 2) distance from head and

tail 3) width of the both side of the segment 4) curvature are

used.

3.4. Quilting

Barely stitched strokes often leaves artifacts around its
boundaries. To blur this artifact, we employ Image Quilt-
ing technique [EF01]. Decomposed segments have inher-
ent rectangle seams. When they’re stitched randomly, those
neighboring seams are often visible; this gap produces arti-
facts on its boundaries. By Image Quilting, we search for an
optimal unnoticeable seam within overlapping region as il-
lustrated in Figure 5. Instead of quilting in full-resolution,

Figure 5: Image Quilting: Two adjacent segments were

stitched together in such a way that SSD goes smaller.

we downsample pixels to accelerate approximate path. In
our implementation, overlapping region is reduced to around
between 5×10 and 10×20 pixels for each pair.

4. Results

Figure 6 shows brief examples of generated strokes and cor-
responding source photos. The cost of our overall algorithm
largely depends on the number of segments of source strokes
and is less subject to the resolution of source images. This is
because feature vectors are defined per segment but per pixel
and the rendering is done by texture-mapping on a graphic
hardware. Figure 7 shows a performance of our method.
As seen from the figure, our method allows users to create
highly detailed strokes without consuming lots of computa-
tional cost, which is often hard for conventional texture syn-
thesis. Figure 8 shows an artwork illustrated by our method.

5. Limitation

The proposed method includes two innate limitations.
Firstly, the produced image quality heavily depends on the
number of source images and its variance. For instance, if

c© The Eurographics Association 2010.

91



Ryoichi Ando, Reiji Tsuruno / Segmental Brush Synthesis with Stroke Images

lots of source images are imported, we can generate unpre-
dictable plausible strokes while some remarkable artifacts
are often produced. Contrarily, if few sources are given, such
artifacts will not be present; though, the generated strokes
tend to be trivial. Secondly, segment synthesis involves re-
peats occasionally. Such repeats should be suppressed by
static energy term and only visible locally; though, the re-
peats are inevitable with segments which static energy term
takes similar values.

6. Conclusion

In this paper, we presented a new framework that generates
new realistic brush strokes from source stroke images. The
fundamental idea of our approach was to discretize source
strokes into a sequence of quad segments and recombine
them into the new form of a target stroke. At the part of
synthesizing strokes, we formulated the problem as a min-
imization energy problem and designed an iterative solver
to tackle the problem. In future work, we would like to add
special post effects such as fluid dynamics to increase reality
in watercolor or sumie paintings.

Figure 6: Various simulated stokes: Left column: hairy

brush, lipsticks. Right column: sumie, fingers along with

scanned images.

Figure 7: Performance of our algorithm: the horizontal axis

represents the stroke length and vertical axis the synthesis

time on Core2Quad 2.66GHz machine.

Figure 8: Painting of triceratops: To paint this painting,

one example charcoal brush shown under the figure was

scanned. To depict the skin of the dinosaur, artist changed

color interactively for each stroke.

References

[AMN∗98] ARYA S., MOUNT D. M., NETANYAHU N. S., SIL-
VERMAN R., WU A. Y.: An optimal algorithm for approxi-
mate nearest neighbor searching fixed dimensions. J. ACM 45,
6 (1998), 891–923.

[BSM88] BLESER T. W., SIBERT J. L., MCGEE J. P.: Char-
coal sketching: returning control to the artist. ACM Transaction.

Graphics. 7, 1 (1988), 76–81.

[EF01] EFROS A. A., FREEMAN W. T.: Image quilting for tex-
ture synthesis and transfer. Proceedings of SIGGRAPH 2001

(August 2001), 341–346.

[HJO∗01] HERTZMANN A., JACOBS C. E., OLIVER N., CUR-
LESS B., SALESIN D. H.: Image analogies. In SIGGRAPH

’01: Proceedings of the 28th annual conference on Computer

graphics and interactive techniques (New York, NY, USA, 2001),
ACM, pp. 327–340.

[HL94] HSU S. C., LEE I. H. H.: Drawing and animation us-
ing skeletal strokes. In SIGGRAPH ’94: Proceedings of the 21st

annual conference on Computer graphics and interactive tech-

niques (New York, NY, USA, 1994), ACM, pp. 109–118.

[KSE∗03] KWATRA V., SCHÖDL A., ESSA I., TURK G., BO-
BICK A.: Graphcut textures: image and video synthesis using
graph cuts. In SIGGRAPH ’03: ACM SIGGRAPH 2003 Papers

(New York, NY, USA, 2003), ACM, pp. 277–286.

[LH05] LEFEBVRE S., HOPPE H.: Parallel controllable texture
synthesis. ACM Trans. Graph. 24, 3 (2005), 777–786.

[NM00] NORTHRUP J. D., MARKOSIAN L.: Artistic silhouettes:
a hybrid approach. In NPAR ’00: Proceedings of the 1st interna-

tional symposium on Non-photorealistic animation and render-

ing (New York, NY, USA, 2000), ACM, pp. 31–37.

[RLA∗06] RITTER L., LI W., AGRAWALA M., CURLESS B.,
SALESIN. D.: Painting with texture. In 17th Eurographics Sym-

posium on Rendering, Nicosa, Cyprus (2006).

[SYJS05] SUN J., YUAN L., JIA J., SHUM H.-Y.: Image com-
pletion with structure propagation. In SIGGRAPH ’05: ACM

SIGGRAPH 2005 Papers (New York, NY, USA, 2005), ACM,
pp. 861–868.

c© The Eurographics Association 2010.

92


