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Abstract
This paper presents a novel and automatic approach for aligning range-scan data of objects exhibiting non-rigid,
articulated motion using a cage-driven reduced deformable model. Reduced deformable models have previously
been used for non-rigid registration. However, these approaches usually assume a model apriori or determine one
in step with the registration which adds complexity. We choose a cage-based space deformation mapping as the
reduced deformable model and formulate the scan alignment problem as a space deformation problem. This cage-
based deformation mapping provides a compact deformation model which is inherently geometric. We seek the
deformation of a source cage (and embedded geometry) that results in the best alignment of the source and target
scans. The main advantage of our approach is that the reduced deformable model is constructed automatically
from the underlying object geometry and is independent of the alignment procedure as it does not require explicit
partitioning of the object into parts or the establishment of joints. Our alignment algorithm is completely automatic
and does not require initial correspondences between the surfaces to be aligned.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric Algorithms

1. Introduction

Acquired time-varying 3D geometry is becoming more and
more prevalent as 3D acquisition and reconstruction tech-
nologies continue to advance. Solving the 3D registration
problem is a fundamental first step towards the processing
and higher level analysis of this emerging data type. This
work addresses the registration problem for range-scan data
of non-rigid articulated real world objects.

Non-rigid registration methods can be categorized by how
the underlying object’s motion is modeled. A number of ap-
proaches seek to model or track the motion of each point
[ARV07]. Alternatively, global approaches solve for a regis-
tration that conforms to a single global deformation model
[BM92, JV05]. The thin-plate spline is a popular global
model which forces the deformation to be globally smooth.
However, due to the global smoothness constraint it is unable
to effectively capture large or piecewise rigid deformations
which are common in many real world objects.

Recently, reduced deformable models (RDM) have been
used in the context of non-rigid registration. RDM ap-
proaches model motion using a few deformation parameters

Figure 1: Cage-Driven Alignment. Left: Source (blue), tar-
get (red) and initial cage (black) enclosing source. Right:
Resulting alignment and corresponding deformed cage.

and have been shown to be well suited for modeling deform-
ing articulated shapes [CZ09]. However, automatically de-
termining an appropriate RDM for registration is not a trivial
task. Recent approaches either assume a deformable model
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apriori or find a model in step with the registration which
adds additional complexity to the already difficult registra-
tion problem.

In this paper, we present a non-rigid registration ap-
proach using a cage-based space deformation mapping as
the reduced deformable model, which has not been pre-
viously considered. We leverage recent space deformation
techniques [JMD∗07, BCWG09] and formulate the registra-
tion problem as a cage-based deformation problem in which
the deformation parameters of the chosen RDM is a func-
tion of the geometry of a closed 3D mesh enclosing the ob-
ject in space. Figure 1 illustrates an example cage and align-
ment using our framework. This geometric interpretation of
a RDM allows us to automatically construct an appropriate
model directly from the underlying object geometry, simpli-
fying both model construction and the alignment problem
formulation.

1.1. Related Work

Recently, reduced deformable models (RDM) have become
popular for non-rigid registration of real world objects due
to their ability to model object motion using a compact set of
deformation parameters. In general, a RDM provides a low
parameter model for modeling object motion by partitioning
an object into parts where each part moves together as a unit
and the set of parts compose an object’s deformation. RDMs
have been extensively used to model surface and free-form
deformation [JT05, DSP06], which is not the same problem
addressed in this paper, since in this work no correspondence
or motion information is known.

Work by Huang et al. [HAWG08] obtains a deformation
by clustering the motion of the surface into parts which
can be described by a single rigid transformation. In Li et
al. [LSP08] a rigid transformation is assigned to each node
in a deformation graph serving as the RDM. Most recently
Chang et al. [CZ09] use a linear blend skinning model and
explicitly solve for skinning weights to determine which
points move together. A grid based approach allows the
weights to be dynamically determined as part of the op-
timization formulation resulting in more realistic deforma-
tions.

Different from previous approaches, we consider a cage-
based space deformation mapping as our RDM which en-
ables us to automatically construct the model from the un-
derlying object geometry independent of registration. The
resulting model takes on a simple geometric form which is
able to express natural as-rigid-as-possible shape deforma-
tions. As shown in the next section, the cage-based RDM can
be easily incorporated into a non-rigid registration frame-
work and can also be used to provide an initial alignment in
place of other methods which require a sparse initial set of
correspondences.

2. Cage-Driven Alignment

Before we present our algorithm for cage-driven registra-
tion, a brief overview of space deformation techniques is
provided. Space deformation methods deform the ambient
space in which an object is embedded. Specifically, we use a
cage-based approach which deforms an object by position-
ing a coarse closed triangular mesh (i.e. a cage) around the
object. The object is then represented in terms of the cage
vertices and face normals by computing a weight at each
cage vertex and face at the position of every object point,
thus forming an embedding of the object with respect to the
cage. As the cage vertices are moved to new locations, new
object point positions can also be determined. These embed-
ding and deformation properties can be expressed as the lin-
ear combination

p = F(p;V ;N) = ∑
i∈IV

φi(p)vi + ∑
j∈IT

ψ j(p)n(t j) (1)

where p is a point on the object and φ(p) and ψ(p) are the
coordinates for p which are a function of the point location
and cage vertices and normals, respectively. The cage mesh
vertices and triangles are denoted by V = {vi}i∈Iv and T =
{t j} j∈IT , and N is the set of of triangle normals where n(t j)
denotes the outward normal of the triangle t j. Similarly, the
deformation as a result of a deformed cage C′ is expressed
as

p′ = F(p;V ′;N′) = ∑
i∈IV

φi(p)v′i + ∑
j∈IT

ψ j(p)n(t′j) (2)

where p′ is the new point location. As shown in Ben-Chen et
al. [BCWG09], we use Variational Harmonic Maps for coor-
dinate construction over other methods [JMD∗07,LLCO08],
due to their ability to produce well behaved as-rigid-as-
possible deformations for complex shapes as well as the ex-
istence of closed form expressions.

Using a cage-based space deformation mapping as a RDM
for non-rigid registration has many benefits due to the prop-
erties of space deformation models. First, they are general
as the deformation model is independent of the underlying
object representation. Second, the computational complex-
ity of deforming the cage is independent of the complexity
of the underlying object geometry. Third, the expressiveness
of the deformation model can be controlled by changing the
detail and resolution of the cage. As a result, relatively sim-
ple cages can be used to model the deformation of complex
shapes regardless of the shapes genus or surface geometry
representation. Given this background on space deformation
methods we present our cage-driven alignment algorithm in
detail.

2.1. Alignment Algorithm

We propose to align 3D range scans of a moving object
by modeling the motion of the object using a reduced de-
formable model (RDM). Due to the many attractive proper-
ties of space deformation techniques we choose a cage-based
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space deformation mapping for the RDM where the cage de-
scribes the deformation implicitly without the need for par-
titioning, clustering, or transformation and joint assignment.

Let X and Y denote the source and target 3D point set data
and let C denote a source closed polygonal cage mesh posi-
tioned around point set X . The deformation of the source
cage, C′ is sought which aligns the source point set X with
the target point set Y . Unlike the user-driven cage defor-
mation problem formulation in [BCWG09], we do not have
any source and target point position correspondences and in-
stead must solve for these as part of our optimization prob-
lem. Therefore, two terms are incorporated into the objective
function which measure the local and global accuracy of the
alignment. Thus, the goal is to find the deformed cage C′

defined by vertices V and normals N, which are denoted for
convenience as the stacked matrix Z, which minimizes the
cost function given by

E(Z) = α||F(X ,Z)−Y ||2 +β|| fz−g||2 +λ||ĤZ||2F (3)

where the first term ||F(X ,Z)−Y ||2 measures the accuracy
of the point set alignment at a fine scale. This term evaluates
the closest point distance between the deformed point set
F(X ,Z) and the target set Y .

The second term measures the accuracy of the registration
at a more global level by considering the registration as the
alignment between two Gaussian Mixture Models (GMM),
where each of the point sets are the GMM centroids given
by f (x) = ∑

m
i=1 αiφ(x|ui,∑i) and g(x) = ∑

n
j=1 β jφ(x|v j,Γ j),

respectively [JV05]. The l2 distance between the trans-
formed source distribution and target distribution is given
by fZ(x) = ∑

m
i=1 αiφ(x|F(ui,Z)), where F(ui,Z) deforms the

object point pi associated with centroid ui with respect to the
cage with vertices and normals equal to Z.

The last term, ||ĤZ||2F ensures that the cage deforms in an
as-rigid-as-possible fashion by enforcing that nearby points
sampled on the cage boundary undergo similar transforma-
tions [BCWG09]. Finally, the scalars α,β,λ are weight co-
efficients for each term respectively.

Implementation Details: In order to minimize the cost
function in (3), an unconstrained optimization problem is
solved. An initial deformation is obtained by matching
source and target cages using the robust non-rigid point reg-
istration method described in [CR03]. We compute the co-
ordinates (φ,ψ) for the points belonging to X and Y and
the Hessians for the boundary sample points once. Addi-
tionally, not all the points need to be considered if only a
sparse correspondence is sought. The distributions f and g
are constructed from points uniformly sampled from X and
Y , respectively and are assumed to be spherical GMMs with
uniform scale.

Cage Construction: Cages for interactive deformation ap-
plications have traditionally been constructed manually. As
a result, we developed a simple automatic cage construction

method for use in our alignment procedure. We construct a
watertight cage mesh by sampling a set of balls uniformly
from the range-scan data and using the union-of-balls recon-
struction method of [ACK01]. We manually choose a fixed
radius for all balls which determines the tightness of the re-
constructed mesh. Simplification is then performed on the
reconstructed mesh to obtain the cage at the desired resolu-
tion.

Source, Target Deformed Source Final
& Cage & Cage Alignment

Figure 2: Alignment of frames from the shoulder, car, and
walk datasets. The source object is denoted in blue, the tar-
get in red, and cage denoted by the black wireframe.

3. Results & Discussion

Examples of aligned scans from the shoulder, car, and syn-
thetic walk sequences are shown in Figure 2. Alignment of
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both adjacent and non-adjacent frames were evaluated. In
these examples, each frame averaged 80K, 5.7K, and 5.4K
points for the shoulder, car, and man sequences. Similarly,
the source cage meshes averaged 150, 200, and 150 vertices,
respectively. All cages were constructed automatically from
the range-scan data. However, for some frames in the car se-
quence a single unified cage was not generated due to the
large amounts of missing data. We manually joined the sep-
arate pieces into a single cage in these instances as shown
in Figure 2. Other less severe instances of missing data and
occlusions such as in the torso and hand of the shoulder
scans did not present a problem for our cage construction
and alignment algorithms. However, the synthetic walking
sequence proved to be more challenging as shown in Figure
3, due to the stretching of the extremities. In this case, cages
which more closely mirrors the articulated joints of the un-
derlying object should produce better alignments.

The tests were performed on an Intel Core Duo 2.4GHz
laptop with 4GB of RAM. The alignment time is dominated
by the time for coordinate construction which is a function of
the cage resolution and number of points in the range-scan.
However, if a sparse correspondence is sought, the total time
can be reduced by constructing coordinates for a smaller
subset of the points in the source scan. Further, when align-
ing a sequence of shapes it may be possible to reuse coordi-
nates over subsequent frames. Finally, our approach assumes
that the source and target cages enclose similar shapes. As a
result, partial matching of objects due to missing parts or
large occlusions is a challenge for our approach.

Figure 3: An example of a misalignment from the synthetic
walk dataset due to the stretching in the extremities. Left:
Source, Target & Cage. Middle: Deformed Source & Cage.
Right: Final Alignment.

4. Conclusion

This work introduces a method for automatically aligning
range scans of deforming objects by using a space deforma-
tion mapping as the reduced deformable model. We show
that a cage-based deformation mapping provides a compact
deformation model that is inherently geometric and as a re-
sult can be easily manipulated in terms of its geometry. We
demonstrate that our alignment framework can match artic-
ulated shapes with significant occlusions and missing data

automatically without requiring an initial correspondence.
Finally, we present a simple approach for constructing cage-
based RDMs automatically from the underlying object ge-
ometry which does not depend on explicit object partition-
ing or joint modeling. Investigating automatic cage building
techniques which provide consistent multi-resolution cages
and support for partial registration will be considered in
future work. Further, we believe our cage-driven approach
holds large potential for use in existing robust registration
methods.
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