Computational Assemblies:
Analysis, Design, and Fabrication

Peng Song Ziqi Wang Marco Livesu

SlUii=l ETHzurich @ imati

SINGAPORE UNIVERSITY OF
TECHNOLOGY AND DESIGN



Timetable

SULR=

Peng Ziqi Marco
Introduction ~20 mins X
Computational analysis of assemblies ~ 50 mins X
Computational design of assemblies ~50 mins X
Computational fabrication of assemblies ~ 50 mins X
Q&A ~10mins X X X
ETH:zirich @imati Peng Song  Zigi Wang

Marco Livesu



Computational Design of Assemblies

» Our goal is to design assemblies to achieve users’ required objectives with the help of
computational methods.

Puzzle Furniture Architecture
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Case Study

 Geometry: The assembly’s geometry is determined by several design parameters.
* Objectives: The goal is to make the assembly equilibrium under gravity.
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Forward Design Framework

« Manually tune the design parameters until the assembly can stay in equilibrium under gravity.
» More design iterations are required if the current design is not stable.

l Loop Until Equilibrium

Forward Design
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Forward Design Framework

» The forward design framework is challenging and demands expertises.

l Loop Until Equilibrium
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Challenges of Forward Design

» The problem can have an enormous design space but finding one feasible solution is non-trivial.
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Challenges of Forward Design

» The problem can have multiple design objectives.
» They might be contradicting.
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« Some evaluation processes are not time-efficient.
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Inverse Design Framework

 Design algorithms to generate assemblies that satisfy users’ specified objectives.
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Part Geometry

* Discrete Geometry: searching algorithm.
» Continuous Geometry: gradient-based algorithm.
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Objectives

Assemblability Fabricatility Stability Functionality
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Stability Optimization

* We mainly focus on designing structurally stable assemblies.
« Stability is the most fundamental requirement for all buildings.
 Designing stable structures that are glue/mortar free is very challenging.
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[Nara Todaiji] [MIT Sean Collier Memorial]
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Stability Spectrum

 Besides gravitational equilibrium, we will also cover other types of structural stability.
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Overview

» Part 1: General stability optimization framework using the gradient information.
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Overview

 Part 2: Stability optimization for gravitational equilibrium.
» Force-based equilibrium method
» Kinematic-based equilibrium method

* Friction
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Overview

» Part 3: Design for stability under other types of forces
- Lateral stability
 Scaffolding-free assembly
 Globally interlocking

[Wang et al. 2019] [Wang et al. 2021] [Wang et al. 2018]
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Part 1. General Stability Optimization Framework



Gradient-based Optimization

» Gradient-based optimization is the most common approach to solve the inverse design problem.

Strategy #1: Take a random downhill slope.  Slow
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Stability Optimization

By alternating the parts’ geometry, making the assembly stable under certain loading conditions.
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Gradient-based Stability Optimization

» Gradient-based stability optimization has four main components:
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Step #1 Geometrical Property

« Compute necessary geometrical properties for stability analysis.
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Step #2 Infeasibility Measurement

« Compute the infeasibility energy which measures how unstable the structure is.
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Step #3 Sensitivity Analysis

« Compute the infeasibility energy’s gradient/hessian with respect to the design parameters.
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Step #4 Numerical Optimization

« Various numerical optimization tools can be used to solve the inverse design problem.

- Gradient Hessian Gradient

Slow Fast Medium

Easy-to-implement Hard-to-implement Easy-to-implement
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Part 2. Stability optimization for gravitational
equilibrium



Assumptions

1. Parts are rigid body.
2. Frictionis ignored.

3. The bottom part (blue) is fixed.
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Recap: Rigid Body Equilibrium

» Rigid body equilibrium can check whether the internal and external forces/torque of a given
structure are balanced.
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Torque Balance: X F=0

Non-negative: F >0
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Recap: Gradient-based Stability Optimization

» The most critical step is to compute faithful infeasibility energy.
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Equilibrium Infeasibility Energy

» Two ways of computing infeasibility energy for equilibrium problems.

Force-based Equilibrium Method Kinematic-based Equilibrium Method
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Force-based Infeasibility Measurement

« Split each contact force F into the positive and negative parts F*, F~.

» The norm of the negative contact force is used to compute the infeasibility energy.

Minimizing tension: min Z || F~ | |2

F-I—A
@
Force Balance: Z F+2=0
F-
Y Torque Balance: X F=0
Non-negative: Ft. F~ >0
F=Ft—-F"~
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Quadratic Programming

» The infeasibility energy can be computed by a quadratic programming solver.

SiURIE

Minimizing tension: min Y [|F~|’

F- Force/Torque Balance: AgqF +w =0

Non-negative: F*,F~ >0
F=F"—-F~
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Gradient-based Stability Optimization

* The next challenging step is to compute gradient using sensitivity analysis.
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Chain Rule

» The chain rule help compute the gradient.
* However, the infeasibility energy’s gradient with respect to the QP's coefficients are missing.

g

(Contact Point) \

Aeq . o

/ (QP) .\"'\.
A

(Contact Normal) E

? Y
\ /(QP)

(Vqume)

S|UNnSl ETHZzUrich @ imati Peng Song  ZigiWang  Marco Livesu




Sensitivtiy Analysis of QP

 Local perturbation of the geometry will only change the resulting force slightly.
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Sensitivtiy Analysis of QP

 Local perturbation of the geometry will only change the resulting force slightly.
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Sensitivtiy Analysis of QP

* Applying region trust algorithm to replace inequalities with equalities.
* A closed-form solution is available for the QP problem with only equality constraints.

E(Aeg.w) =min ) ||F~||?

AeqF +w=0 > Closed-Form Solution
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» Kinematic-based method measures infeasibility in the motion space.
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Infinitesimal Rigid Motion

Rotation @

&

R ‘ ‘ Translation v
Infinitesimal rigid motionv = (v, )
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Motion Space

The motion space V of green part
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{collision-free infinitesimal rigid motions ¥}
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Non-collision constraints

Infinitesimal motion ¥ = (v, w)

v.-n >0

Non collision constraints
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Motion Cone of Contacts
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Physically Feasible Motion

* Not every motion in the motion cone is physically plausible.

The translation along +y direction is not physically achievable.
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Feasible Motion Space

Infinitesimal motion ¥ = (v, ®)
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Feasible Motions

Assembly is in equilibrium when

Y pw>0

=

Motion Cone

does not have solutions.

Infinitesimal motion ¥ = (v, ®)
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Feasible Motion Space

Motion Cone

=

Infinitesimal motion ¥ = (v, ®)
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Infeasibility Measurement
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Infeasibility Measurement for Assembly

s P4 Infeasibility Measurement
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Static-Kinematic Duality

» The correctness of the kinematic-based method is due to the static-kinematic duality.

Statics Kinematics
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Static-Kinematic Duality

* The kinematic-based method can be reformulated using forces.

Force-based Equilibrium Method Kinematic-based Equilibrium Method
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Reformulate: Non-negative Condition Force/Torque Balance Condition
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Structural Stability Optimization

» Modifying the assembly for improved structural stability.

P4
P3 P,

P;
/7 7 7 777 7 77 777
Unstable Assembly Stable Assembly

What is a good representation for structural stability optimization?
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* Both representations have their own drawbacks.
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Representation for Stability Analysis
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Geometric-based Representation

» Geometric-based Representation may have redundancy.
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Graph-based Representation

» Graph-based representation is not adequate for structural stability analysis.
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Motion-based Representation

» We propose a motion-based representation which is a condensed representation for measuring

structural stability of assemblies.

Part Graph Graph-based Representation
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Motion-based Representation

» Our motion-based representation is an augmented part graph with motion cones at its edges.
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Motion-based Representation

» Because of the duality between statics and kinematics, our motion-based representation can test
for equilibrium.

P
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Kinematic-Geometric Design Framework

* Decoupling motion and geometry.
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Friction



Friction

* Friction prevents the relative movement of adjacent parts if compression forces exist between
them.

« Many assemblies that use snap joints need friction to stay stable.

Cavity
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Coulomb Friction

* The widely used Coulomb friction model.
* The resultant force must be within the friction cone.

Friction Cone
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Friction for LEGOs

* For Legos, the normal forces are constant.

 The friction forces must be within a precomputed range.
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Limitations of Coulomb Friction

* The Coulomb friction may produce unrealistic force configurations.
* The most well-known failure case is the sliding issue.
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Additional Physical Principles

« Adding more constraints to regulate the friction helps avoid unrealistic cases.
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Lateral Stability



Lateral Stability

» Assemblies with later stability are in equilibrium for a cone of gravity direction.

[Wang et al. 2019]
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Feasible Gravitational Cone

A gravity direction for which the
structure is in equilibrium Q Convex feasible cone
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Recap: Gradient-based Stability Optimization

« Come up with new infeasibility energy for lateral stability.
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Lateral Infeasibility Measurement

Structural Infeasibility
EC/)=0
E( j ) > 0

Gravity Direction
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Lateral Infeasibility Measurement

minE(/)+E(!)+ E( \‘)+E(\)

Contact Area > User defined value
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Lateral Infeasibility Measurement

Due to the convexity of the feasible cone
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Lateral Infeasibility Measurement

The new feasible cone
will cover the pyramidal shape

pyramidal shape

S|UNnSl ETHZzUrich @ imati Peng Song  ZigiWang  Marco Livesu




Scaffold-free Assembly



Scaffold-free Assembly

» Making the assembling process stable.
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Infeasibility Energy

* The infeasibility energy is the summation of all the infeasibility energy of the structure at each
assembling stage.
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Globally Interlocking Assemblies



Recap: Globally Interlocking

Once the key and a part of the reset are fixed, no parts can be taken out from the assembly.
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Recap: Globally Interlocking

Once the key and a part of the reset are fixed, no parts can be taken out from the assembly.
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Classic method examines every subset of parts, which has exponential time complexity.
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Recap: Classic Interlocking Test
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Shape Decomposition

* When the input is a target shape, computational design of interlocking assemblies can be
formulated as a shape decomposition problem.

(b)
[Song et al. 2012]
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Joint Planning

* Fu et al. computed an interlocking joint configuration following the LIG-based approach.

o 7\ . 0 Assembly order
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[Fu et al. 2015]
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DBG-based Interlocking Design

 The DBG approach allow exploring the full search space of interlocking
configurations.

e
Design Space

40-part Bunny
[Song et al. 2012]

DBG Space
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[Wang et al. 2018]
[Wang et al. 2018]
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DBG-based Interlocking Design

* Wang et al. use the base DBG to test and design interlocking assemblies.

[ The 3D assembly is interlocking
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