

Computational Assemblies: Analysis, Design, and Fabrication

Peng Song

Ziqi Wang

Marco Livesu

Timetable

		Peng	Ziqi	Marco
Introduction	~20 mins	X		
Computational analysis of assemblies	~ 50 mins	X		
Computational design of assemblies	~50 mins		X	
Computational fabrication of assemblies	~ 50 mins			X
Q & A	~ 10 mins	X	X	X

Computational Design of Assemblies

• Our goal is to design assemblies to achieve users' required objectives with the help of computational methods.

Furniture

Architecture

Case Study

- **Geometry**: The assembly's geometry is determined by several design parameters.
- **Objectives**: The goal is to make the assembly equilibrium under gravity.

Forward Design Framework

- Manually tune the design parameters until the assembly can stay in equilibrium under gravity.
- More design iterations are required if the current design is not stable.

Forward Design Framework

The forward design framework is challenging and demands expertises.

Challenges of Forward Design

• The problem can have an enormous design space but finding one feasible solution is non-trivial.

Challenges of Forward Design

- The problem can have multiple design objectives.
- They might be contradicting.

Easy-to-Assemble Non-stable

Hard-to-Assemble Stable

Challenges of Forward Design

Some evaluation processes are not time-efficient.

Inverse Design Framework

Design algorithms to generate assemblies that satisfy users' specified objectives.

Part Geometry

- Discrete Geometry: searching algorithm.
- Continuous Geometry: gradient-based algorithm.

Discrete Geometry
[Luo et al. 2015]

Continous Geometry
[Wang et al. 2019]

Objectives

Assemblability

[Parascho et al. 2017]

Fabricatility

[Cignoni et al. 2014]

Stability

Functionality

[Wang et al. 2021]

Stability Optimization

- We mainly focus on designing structurally stable assemblies.
- Stability is the most fundamental requirement for all buildings.
- Designing stable structures that are glue/mortar free is very challenging.

[Nara Todaiji]

[MIT Sean Collier Memorial]

Stability Spectrum

• Besides gravitational equilibrium, we will also cover other types of structural stability.

Overview

Part 1: General stability optimization framework using the gradient information.

Step 3

Overview

- Part 2: Stability optimization for gravitational equilibrium.
 - Force-based equilibrium method
 - Kinematic-based equilibrium method
 - Friction

[Whiting et al 2009, 2012]

[Wang et al. 2021]

[Yao et al. 2017]

Overview

- Part 3: Design for stability under other types of forces
 - Lateral stability
 - Scaffolding-free assembly
 - Globally interlocking

[Wang et al. 2021]

[Wang et al. 2018]

Part 1: General Stability Optimization Framework

Gradient-based Optimization

• Gradient-based optimization is the most common approach to solve the inverse design problem.

Slow **Strategy #1**: Take a random downhill slope.

Fast Strategy #2: Take the *steepest slope*!

Stability Optimization

• By alternating the parts' geometry, making the assembly stable under certain loading conditions.

Gradient-based Stability Optimization

• Gradient-based stability optimization has four main components:

Step 4 Numerical Optimization

Step #1 Geometrical Property

Compute necessary geometrical properties for stability analysis.

- **Contact Points** 2. Contact Normals
- 3. Parts' Centroids
- 4. Parts' Volumes

Step #2 Infeasibility Measurement

Compute the infeasibility energy which measures how unstable the structure is.

Infeasbility Energy

$$E = \left\| - - \right\|^2$$
$$= (0.7 - \theta)^2$$

Step #3 Sensitivity Analysis

• Compute the infeasibility energy's gradient/hessian with respect to the design parameters.

Gradient:
$$\frac{\partial E}{\partial \theta_1}$$

Chain Rule:
$$\frac{\partial E}{\partial \theta_1} = \frac{\partial E}{\partial c_1} \frac{\partial c_1}{\partial \theta_1}$$

Step #4 Numerical Optimization

Various numerical optimization tools can be used to solve the inverse design problem.

	Gradient Descent	Netwon Method	Quasi-Netwon Method
Data	Gradient	Hessian	Gradient
Speed	Slow	Fast	Medium
Code	Easy-to-implement	Hard-to-implement	Easy-to-implement

Part 2: Stability optimization for gravitational equilibrium

Assumptions

- Parts are rigid body.
- Friction is ignored.
- The bottom part (blue) is fixed.

Recap: Rigid Body Equilibrium

 Rigid body equilibrium can check whether the internal and external forces/torque of a given structure are balanced.

Force Balance:
$$\sum \mathbf{F} + \mathbf{g} = 0$$

Torque Balance:
$$\sum r \times F = 0$$

Non-negative:
$$F \geq 0$$

Problems: only provides a binary result (yes/no).

Recap: Gradient-based Stability Optimization

The most critical step is to compute faithful infeasibility energy.

Step 3

Equilibrium Infeasibility Energy

Two ways of computing infeasibility energy for equilibrium problems.

Force-based Equilibrium Method

Kinematic-based Equilibrium Method

Force-based Infeasibility Measurement

- Split each contact force $m{F}$ into the positive and negative parts $m{F}^+, m{F}^-$.
- The norm of the negative contact force is used to compute the infeasibility energy.

Minimizing tension: $\min \sum ||F^-||^2$

Force Balance: $\sum F + g = 0$

Torque Balance: $\sum r \times F = 0$

Non-negative: $F^+, F^- \ge 0$

 $F = F^+ - F^-$

Quadratic Programming

The infeasibility energy can be computed by a quadratic programming solver.

Minimizing tension: $\min \sum ||F^-||^2$

Force/Torque Balance: $A_{eq}F + w = 0$

Non-negative: $F^+, F^- \ge 0$

$$F = F^+ - F^-$$

Gradient-based Stability Optimization

The next challenging step is to compute gradient using sensitivity analysis.

Chain Rule

- The chain rule help compute the gradient.
- However, the infeasibility energy's gradient with respect to the QP's coefficients are missing.

Sensitivtiy Analysis of QP

Local perturbation of the geometry will only change the resulting force slightly.

$$F^+ = 1.0$$

$$F^- = 1.5$$

Sensitivtiy Analysis of QP

Local perturbation of the geometry will only change the resulting force slightly.

$$F^+ = 1.01$$

$$F^- = 1.49$$

Sensitivtiy Analysis of QP

- Applying region trust algorithm to replace inequalities with equalities.
- A closed-form solution is available for the QP problem with only equality constraints.

$$E(A_{eq}, w) = \min \sum ||F^-||^2$$

$$A_{\mathsf{eq}}F + w = 0$$

Closed-Form Solution

$$F^+,F^- \geq 0$$

$$\boldsymbol{F}_{i}^{+} = 0, \quad \boldsymbol{F}_{j}^{-} = 0$$

Kinematic-based Equilibrium Method

Kinematic-based method measures infeasibility in the motion space.

Force-based Equilibrium Method

Kinematic-based Equilibrium Method

Infinitesimal Rigid Motion

Infinitesimal rigid motion $\hat{v} = (v, \omega)$

Motion Space

The motion space ${\it V}$ of green part

{collision-free infinitesimal rigid motions \hat{v} }

Non-collision constraints

$$v_r \cdot n \ge 0$$

Non collision constraints

Motion Cone of Contacts

Physically Feasible Motion

Not every motion in the motion cone is physically plausible.

The translation along +y direction is not physically achievable.

Feasible Motion Space

Infinitesimal motion $\hat{v} = (v, \omega)$

Velocity v_c at part's centre of mass

decreases its gravitational potential

$$v_c \cdot g > 0$$

$$\hat{v} \cdot w > 0$$

Feasible Motions

Assembly is in equilibrium when

$$\begin{cases} \hat{\mathbf{v}} \cdot \mathbf{w} > 0 \\ \\ \hat{\mathbf{v}} \in \\ \\ \text{Motion Cone} \end{cases}$$

does not have solutions.

Infinitesimal motion $\hat{v} = (v, \omega)$

Feasible Motion Space

Infeasibility Measurement

$$\max \quad \boldsymbol{w} \cdot \hat{\boldsymbol{v}} - \frac{1}{2} \hat{\boldsymbol{v}} \cdot \hat{\boldsymbol{v}}$$

Infeasibility Measurement for Assembly

$$\hat{\mathbf{v}} = \begin{bmatrix} \hat{\mathbf{v}}_2 \\ \hat{\mathbf{v}}_3 \\ \hat{\mathbf{v}}_4 \end{bmatrix}$$

$$\hat{m{g}} = egin{bmatrix} \hat{m{g}}_2 \\ \hat{m{g}}_3 \\ \hat{m{g}}_4 \end{bmatrix}$$

Infeasibility Measurement

$$\max \mathbf{w} \cdot \hat{\mathbf{v}} - \frac{1}{2}\hat{\mathbf{v}} \cdot \hat{\mathbf{v}}$$

$$\hat{\mathbf{v}}_2 \in V(C_{1,2})$$

$$\hat{\mathbf{v}}_3 - \hat{\mathbf{v}}_2 \in V(C_{2,3})$$

$$\hat{v}_3 - \hat{v}_2 \in V(C_{2,3})$$

 $\hat{v}_4 - \hat{v}_3 \in V(C_{3,4})$

Static-Kinematic Duality

• The correctness of the kinematic-based method is due to the static-kinematic duality.

Kinematics

Static-Kinematic Duality

The kinematic-based method can be reformulated using forces.

Force-based Equilibrium Method

Kinematic-based Equilibrium Method

Reformulate:

Non-negative Condition

Force/Torque Balance Condition

Structural Stability Optimization

Modifying the assembly for improved structural stability.

What is a good representation for structural stability optimization?

Representation for Stability Analysis

Both representations have their own drawbacks.

Part Graph

Geometric-based Representation

Geometric-based Representation may have redundancy.

The two assemblies have the same structural stability.

Graph-based Representation

• Graph-based representation is not adequate for structural stability analysis.

Motion-based Representation

 We propose a motion-based representation which is a condensed representation for measuring structural stability of assemblies.

Motion-based Representation

Our motion-based representation is an augmented part graph with motion cones at its edges.

*Arrow means P_2 is installed after P_1

Motion-based Representation

• Because of the duality between statics and kinematics, our motion-based representation can test for equilibrium.

Kinematic-Geometric Design Framework

Decoupling motion and geometry.

Unstable Input

Motion-based Representation

Stable Output

Friction

Friction

- Friction prevents the relative movement of adjacent parts if compression forces exist between them.
- Many assemblies that use snap joints need friction to stay stable.

[Lego]

Coulomb Friction

- The widely used Coulomb friction model.
- The resultant force must be within the friction cone.

Friction Cone

$$F_t \leq \mu F_n$$

Friction for LEGOs

- For Legos, the normal forces are constant.
- The friction forces must be within a precomputed range.

Limitations of Coulomb Friction

- The Coulomb friction may produce unrealistic force configurations.
- The most well-known failure case is the sliding issue.

Additional Physical Principles

Adding more constraints to regulate the friction helps avoid unrealistic cases.

$$\delta d = B_{\rm in} \hat{v}$$

Complementary Condition:

$$\delta d_{1,n} \cdot f_{1,n} = 0$$

Maximum Dissipation

$$f_{1,t} = -\alpha_1 \delta d_{1,t}$$

Lateral Stability

Lateral Stability

Assemblies with later stability are in equilibrium for a cone of gravity direction.

[Wang et al. 2019]

Feasible Gravitational Cone

Recap: Gradient-based Stability Optimization

Come up with new infeasibility energy for lateral stability.

Sensitivity Analysis

Numerical Optimization

Structural Infeasibility

$$E(/) = 0$$

$$E(\ /\)>0$$

$$\min E(/) + E(/) + E(/) + E(/)$$

Contact Area ≥ User defined value

Due to the convexity of the feasible cone

The new feasible cone will cover the pyramidal shape

Scaffold-free Assembly

Scaffold-free Assembly

Making the assembling process stable.

Infeasibility Energy

• The infeasibility energy is the summation of all the infeasibility energy of the structure at each assembling stage.

Globally Interlocking Assemblies

Recap: Globally Interlocking

Once the key and a part of the reset are fixed, no parts can be taken out from the assembly.

Recap: Globally Interlocking

Once the key and a part of the reset are fixed, no parts can be taken out from the assembly.

Interlocking

Recap: Classic Interlocking Test

Classic method examines every subset of parts, which has exponential time complexity.

· [Song et al. 2012]

Shape Decomposition

• When the input is a target shape, computational design of interlocking assemblies can be formulated as a shape decomposition problem.

Joint Planning

• Fu et al. computed an interlocking joint configuration following the LIG-based approach.

[Fu et al. 2015]

DBG-based Interlocking Design

 The DBG approach allow exploring the full search space of interlocking configurations.

DBG-based Interlocking Design

Wang et al. use the base DBG to test and design interlocking assemblies.

