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Wave equation



Wave equation

D



Wave equation

The wave equation for the height of the water at point (x,y) after time t:



Wave equation

The wave equation for the height of the water at point (x,y) after time t:

First-order approximation of the motions under consideration.

speed of sound
in the fluid



Vibrating membrane equation

The wave equation for the normal motion of a vibrating membrane («drum»):

speed of sound
in the membrane

First-order approximation of sounds in a flat object.





Why the eigenvalue problem?

To solve for f, we need only consider product functions:

spatial component temporal component



Why the eigenvalue problem?

Laplacian eigenfunction oscillating functions
with frequency 



Stationary waves
Physically, the product motions are stationary.

Video: Chua Kah Hean, 2016



Stationary waves
Physically, the product motions are stationary.

Video: Chua Kah Hean, 2016



Whispering galleries
Behavior is not always easy to grasp even on simple domains.

Example:
On the disk, there is high concentration along the boundary («whispering gallery effect»)

Figure: Sarnak, 1995
Voltone del Podestà, Bologna (Italy)



Computing eigenvalues

Very few examples where the spectrum can be determined explicitly.

«As a shocking example of our ignorance, we know nothing
about regular hexagons, not even the first eigenvalue.» 

[Marcel Berger, 2002]

?



Our drums



Direct and inverse problems

Given the (approximate) shape of a domain D, 
what can I deduce about its spectrum?

(spectral geometry)

Given the (approximate) spectrum of a domain D, 
what can I deduce about its shape?

(inverse spectral geometry)



Direct problems
• Asymptotic expansion of the counting function: 

• Tight estimates of

• Relation between eigenvalues of       and those of a
sub-domain 

[Moschella et al 2021]



Inverse problems

• Compute the area, perimeter, and number of holes in a shape from its eigenvalues.



Inverse problems
• Compute the area, perimeter, and number of holes in a shape from its eigenvalues.

• Recover a 3D shape from its eigenvalues and eigenfunctions.



Isospectral domains

Except for notable exceptions (disks, spheres), in general, shapes are not fully 
characterized by their spectrum.

Are eigenvalues enough?

• Conjecture: yes! [Gel’fand, 1962]

• Counterexample: no! [Milnor, 1964; Gordon et al, 1992]



Can it still be useful in practice?

Mathematically, the problem is beyond reach today.

Yet, in the Middle Ages, bell makers detected invisible cracks by tolling the bell.

“This is a complex trade 
that involves precise 
understanding of 
mathematics, physics, 
geometry and music”

Antonio Delli Quadri, whose family is in the bell-
making business since the 14th century
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Can it still be useful in practice?
Mathematically, the problem is beyond reach today.

“This is a complex trade that involves precise understanding 
of mathematics, physics, geometry and music”
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Forward

Spectrum / eigenvalues

eigenfunctions
application

application

application

LBO

∆



Forward

Spectrum / eigenvalues

𝑂
eigenfunctions

application

application

application



Shape Retrieval



Given a collection of shapes

Reuter et al. «Laplace–Beltrami spectra as ‘Shape-DNA’ of surfaces and solids», 2005.

Shape DNA
Subdivide them in the 
groups of most similar

humans

animals

http://reuter.mit.edu/papers/reuter-shapeDNA06.pdf


The set of eigenvalues:

Reuter et al. «Laplace–Beltrami spectra as ‘Shape-DNA’ of surfaces and solids», 2005.

Shape DNA

Λ = [𝜆1, … , 𝜆𝑘] ∈ ℝ
𝑘

A global signature 
of the shape

Spectrum

Spectrum

hard to compare easy to compare 
(Euclidean)

http://reuter.mit.edu/papers/reuter-shapeDNA06.pdf


For each shape in the collection:
1. Compute the LBO
2. Compute the set of the first 𝑘 eigenvalues of the LBO
3. Compare the shapes by comparing the vectors of the eigenvalues

Shape DNA algorithm

• normalizations
• choices of 𝑘



Geometry filtering



Frequency filtering

Vallet and Levy: «Spectral Geometry Processing with Manifold Harmonics», 2008.

Given an input shape Modify its geometry
Avoiding the direct editing of 

the vertex positions

https://hal.inria.fr/inria-00331894/document


+ +

The Fourier basis functions = eigenfunctions of the Laplacian

Sorted w.r.t. the frequecncies = the square root of the 

Laplacian eigenvalues

Fourier



The synthesis:

The analysis:

Given a signal:

Fourier analysis and synthesis



LBO eigenvectors ≈ Fourier basis for the functions on the mesh 

Fourier on surfaces

Levy B., «Lapalce-Beltrami eigenfunction towards an algorithm that understands geometry», 2006.

https://members.loria.fr/Bruno.Levy/papers/Laplacian_SMI_2006.pdf


Fourier representation



Fourier operations on surfaces

The synthesis:

The analysis:

Given a signal:



Slide credits to M. Ovsjanikov

the 3 coordinates 𝑋, 𝑌 and 𝑍 as functions
we reconstruct the geometry exploiting Fourier:

෨𝑋 = σ𝑖=1
𝑘 𝛼𝑖𝜑𝑖 , where 𝛼𝑖 = 𝜑𝑖 , 𝑋 𝒳 = 𝜑𝑖

𝑇Ω𝒳𝑋 = 𝜑𝑖
†𝑋

The same for 𝑌 and 𝑍 and then plot ෨𝑋, ෨𝑌, ෨𝑍

𝑘 = 10 𝑘 = 40 𝑘 = 100 𝑘 = 200

Coordinates approximation



frequency/eigenvalue
index1 𝑘
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Frequency filtering

Α = [𝛼1, ⋯ , 𝛼𝑘]

𝐺 = [𝑔1, ⋯ , 𝑔𝑘]

Α𝐻 = [ℎ1 ∙ 𝛼1, ⋯ , ℎ𝑘 ∙ 𝛼𝑘]

𝐹 = [𝑓1, ⋯ , 𝑓𝑘]

𝐻 = [ℎ1, ⋯ , ℎ𝑘]

Α𝐹 = [𝑓1 ∙ 𝛼1, ⋯ , 𝑓𝑘 ∙ 𝛼𝑘] Α𝐺 = [𝑔1 ∙ 𝛼1, ⋯ , 𝑔𝑘 ∙ 𝛼𝑘]



Geometry filtering

frequency/eigenvalue
index1 𝑘
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Vallet and Levy: «Spectral Geometry Processing with Manifold Harmonics», 2008.

https://hal.inria.fr/inria-00331894/document


Laplacian Smoothing



Levy and Zhang: «Spectral Mesh processing», 2009.

𝑣𝑖

𝑣𝑖−1

𝑣𝑖+1

Smoothing

Given a discrete manifold
(a 1D curve, or a surface)

Find a smoother version
that approximate it

෤𝑣𝑖,𝑖−1 =
1

2
𝑣𝑖 +

1

2
𝑣𝑖−1

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.229.4191&rep=rep1&type=pdf


𝑣𝑖

𝑣𝑖−1

𝑣𝑖+1

෤𝑣𝑖 =
1

2
𝑣𝑖 +

1

4
𝑣𝑖+1 +

1

4
𝑣𝑖−1

Levy and Zhang: «Spectral Mesh processing», 2009.

Laplacian smoothing

S =
1/2 1/4⋯0⋯0 ⋯ 0 1/4
⋮ ⋱ ⋮

1/4 0⋯0⋯0 ⋯1/4 1/2

Smoothing operator:

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.229.4191&rep=rep1&type=pdf


Graph Laplacian:

∆=
2 −1⋯0⋯0 ⋯ 0 − 1
⋮ ⋱ ⋮
1 0⋯0⋯0 ⋯− 1 2

𝑆 = 𝐼𝑑 − 0.5(𝛼)∆

𝑣𝑖

𝑣𝑖−1

𝑣𝑖+1

෤𝑣𝑖 =
1

2
𝑣𝑖 +

1

4
𝑣𝑖+1 +

1

4
𝑣𝑖−1

𝑓𝑜𝑟 𝛼 =
1

2

Laplacian?

Levy and Zhang: «Spectral Mesh processing», 2009.

S =
1/2 1/4⋯0⋯0 ⋯ 0 1/4
⋮ ⋱ ⋮

1/4 0⋯0⋯0 ⋯1/4 1/2

Smoothing operator:

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.229.4191&rep=rep1&type=pdf


෤𝑣𝑖 = 𝑤𝑖𝑖𝑣𝑖 + ෍

𝑗=1,𝑗≠𝑖

𝑛

𝑤𝑖𝑗𝑣𝑗 𝑠. 𝑡. ෍

𝑗=1

𝑛

𝑤𝑖𝑗𝑣𝑗 = 1

𝑤𝑖𝑗 ≠ 0 ⟺ 𝑒𝑖𝑗 ∈ 𝐸

Obtain a smoothing operator from ∆

Smoothing operator:

𝑆 = 𝐼𝑑 − 0.5(𝛼)∆

We need to set 𝛼

Levy and Zhang: «Spectral Mesh processing», 2009.

Laplacian smoothing and meshes

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.229.4191&rep=rep1&type=pdf


𝑉0 = 𝑉 = 𝑋, 𝑌, 𝑍 ∈ ℝ𝑛×3 = the 3D coordinates
the LBO ∆ ∈ ℝ𝑛×𝑛

Compute iteratively ∀𝑡: 𝑉𝑡 = 𝑉𝑡−1 − 𝐿𝑉𝑡−1

for 𝐿 = α ∆ = 𝑑𝑖𝑎𝑔(∆ )−1 ∆

source 5 iterations 20 iterations

An example



Mesh simplification



Mesh simplification

Given a discrete manifold Reduce the vertices used to 
resprent it preserving its geometry



Lescoat et al.: «Spectral Mesh simplification», 2020.

Spectral mesh simplification

Slide credits to M. Ovsjanikov

The edges (and vertices) to remove are selected w.r.t. a spectral energy

The simplification process should preserve the LBO and its eigedecomposition

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.229.4191&rep=rep1&type=pdf


Non Rigid Matching

Pointwise descriptors



Non-rigid correspondence
Given a non-rigid

deformation between
2 shapes

Find a point-to-point
correspondence between

the 2 shapes



𝒳 𝒴

Non-rigid matching



Non-rigid matching



ℝ𝑄

⋮

⋮

Pointwise descriptor



ℝ𝑄

How can we find the most similar point?

Pointwise descriptor



Pointwise descriptor



From physics the heat diffusion is governed by the 

heat equation:

𝑢(𝑥, 𝑡) solution of the heat equation is a function of  𝑥 ∈ 𝒳 and time 𝑡 ∈ ℝ

which satisfies the heat equation for a given initial condition 𝑢0 𝑥 = 𝑢(𝑥, 0).

The LBO 
= 

derivatives in space

derivative in time

Heat diffusion

Δ𝒳𝑢 𝑥, 𝑡 = −
𝜕𝑢(𝑥, 𝑡)

𝜕𝑡



the heat kernel

Heat kernel

ℎ𝑡 𝑥, 𝑦 = ෍

𝑙=1

+∞

𝑒−𝑡𝜆𝑙 𝜙𝑙(𝑥)𝜙𝑙(𝑦)

For a delta heat source 𝛿𝑥 in the point 𝑥 ∈ 𝒳, the heat kernel ℎ𝑡(𝑥, 𝑦)
measures how much heat passes from 𝑥 to 𝑦 in a time interval 𝑡



the heat kernel

Heat kernel
For a delta heat source 𝛿𝑥 in the point 𝑥 ∈ 𝒳, the heat kernel ℎ𝑡(𝑥, 𝑦)
measures how much heat passes from 𝑥 to 𝑦 in a time interval 𝑡

ℎ𝑡 𝑥, 𝑦 = ෍

𝑙=1

𝑘

𝑒−𝑡𝜆𝑙 𝜙𝑙(𝑥)𝜙𝑙(𝑦)



For an initial delta distribution of heat

ℎ𝑡 𝑥, 𝑥 is the amount of heat remaining at 𝑥 after time 𝑡

𝐇𝐊𝐒 𝑥 is the heat kernel signature at the point  𝑥 ∈ 𝒳

HKS: Heat kernel signature
𝛿𝑥 , 𝑥 ∈ 𝒳

For any 𝑡 ∈ ℝ+ in the set of time scales 𝑡1, 𝑡2, … , 𝑡𝑄

ℎ𝑡 𝑥, 𝑥 = ෍

𝑙=1

𝑘

𝑒−𝑡𝜆𝑙 𝜙𝑙(𝑥)𝜙𝑙(𝑥)

=𝐇𝐊𝐒 𝑥 ⋯ℎ𝑡1(𝑥, 𝑥) ⋯ℎ𝑡2(𝑥, 𝑥) ℎ𝑡𝑄(𝑥, 𝑥)

Sun et al., «A Concise and Provably Informative Multi-scale Signature Based on Heat Diffusion», 2009.

http://www.lix.polytechnique.fr/~maks/papers/hks.pdf


missing a minuspresence of the 𝒊

It encodes oscillation rather than dissipation as done by the heat equation

The wave kernel signature: A quantum mechanical approach to shape analysis, Aubry et al., 2011.

Heat equation:

Wave equation:

The wave equation (Schrodinger)

Δ𝒳𝑢 𝑥, 𝑡 = −
𝜕𝑢(𝑥, 𝑡)

𝜕𝑡

𝑖Δ𝒳𝑢 𝑥, 𝑡 =
𝜕𝑢(𝑥, 𝑡)

𝜕𝑡

https://vision.informatik.tu-muenchen.de/_media/spezial/bib/aubry-et-al-4dmod11.pdf


For an initial quantum particles probability distribution over 𝒳 depending

on the the energy 𝐸 ∈ ℝ in the set of energy scales 𝐸1, 𝐸2, … , 𝐸𝑄

𝑘𝐸 𝑥, 𝑥 is the average probability over the time to find a particle in 𝑥
given the initial energy 𝐸.

W𝐊𝐒 𝑥 is the wave kernel signature at the point  𝑥 ∈ 𝒳

WKS: Wave kernel signature

𝑘𝐸 𝑥, 𝑥 = ෍

𝑙=1

𝑘

𝑒
−
(log 𝐸 −log(𝜆𝑙))

2

2𝜎2 𝜙𝑙(𝑥)𝜙𝑙(𝑥)

=𝐖𝐊𝐒 𝑥 ⋯𝑘𝐸1(𝑥, 𝑥) ⋯𝑘𝐸2(𝑥, 𝑥) 𝑘𝐸𝑄(𝑥, 𝑥)

The wave kernel signature: A quantum mechanical approach to shape analysis, Aubry et al., 2011.

https://vision.informatik.tu-muenchen.de/_media/spezial/bib/aubry-et-al-4dmod11.pdf


the spectral descriptors 𝐇𝐊𝐒 and 𝐖𝐊𝐒 share a common structure

A set of filters on the frequencies
=

functions of the eigenvalues

The square of each
dimension of the 

spectral embedding

“Learning spectral descriptors for deformable shape correspondence”, Litman et al., 2014.

Spectral descriptors

𝑑𝑒𝑠𝑐𝑞 𝑥 = ෍

𝑙=1

𝑘

𝑔𝑡𝑞 𝜆𝑙 𝜙𝑙 𝑥 𝜙𝑙 𝑥 , ∀𝑞 ∈ 1,… , 𝑄

We can learn the filters as functions o the eigenvalues to obtain better
descriptors!

https://ieeexplore.ieee.org/iel7/34/4359286/06579600.pdf?casa_token=H0Bfo5ELAR0AAAAA:toIILgZ05MTaDLNdGt_lhs6wLut_EnDwHfPCs6JC_0Q_9AK8pB80ocowfM_2gdeG9S-V4kE


Non Rigid Matching

Functional Maps



is a point-to-point map

Ovsjanikov at al., “Functional maps: a flexible representation of maps between shapes”, 2012

Functional maps

http://www.lix.polytechnique.fr/~maks/papers/obsbg_fmaps.pdf


We write 𝑇 as a binary matrix

Functional maps

Ovsjanikov at al., “Functional maps: a flexible representation of maps between shapes”, 2012

00
0
0

00
0

0 00

0
1𝑖

𝑗

… … …

…
…

𝑖

𝑗

http://www.lix.polytechnique.fr/~maks/papers/obsbg_fmaps.pdf


The transfer is defined as:

Ovsjanikov at al., “Functional maps: a flexible representation of maps between shapes”, 2012

Functional maps

or

http://www.lix.polytechnique.fr/~maks/papers/obsbg_fmaps.pdf


Functional maps

Ovsjanikov at al., “Functional maps: a flexible representation of maps between shapes”, 2012

Explicit formula: Constraint:

http://www.lix.polytechnique.fr/~maks/papers/obsbg_fmaps.pdf


𝐹 =
, … , , … ,

𝐺 =
, … , , … ,

𝑓1 (delta) 𝑓𝑙 (region) 𝑓𝑞 (descriptor) 𝑔1 (delta) 𝑔𝑙 (region) 𝑔𝑞 (descriptor)

෠𝐹 = [𝜶1, …, 𝜶𝑙, …,𝜶𝑞] ෠𝐺 =[𝜷1, …, 𝜷𝑙, …,𝜷𝑞]

𝑪 = argmax
𝑪∈ℝℎ×𝑘

𝑪 ෠𝐹 − ෠𝐺 2 +ℛ(𝑪)

The matrix 𝑪 should align the coefficients of all the given probe functions

Functional maps optimization

Ovsjanikov at al., “Functional maps: a flexible representation of maps between shapes”, 2012

http://www.lix.polytechnique.fr/~maks/papers/obsbg_fmaps.pdf


Δℳ

Functional maps regularization

Ovsjanikov at al., “Functional maps: a flexible representation of maps between shapes”, 2012

𝑪 = argmax
𝑪∈ℝℎ×𝑘

𝑪 ෠𝐹 − ෠𝐺 2 + ℛ(𝑪)

ℳ

Δ𝒩 Δℳ𝑇 = 𝑇Δ𝒩 ⇔𝑪Λℳ = Λ𝒩𝑪Λ𝒩

ℛ 𝑪 = 𝑪Λℳ − Λ𝒩𝑪 2

ℳ

𝒩

𝒩

𝑇

𝑇

𝑪

𝑪

Λℳ

The map 𝑇 is an isometry ⇔ it commutes 
with the LBOs, that is: Δℳ𝑇 = 𝑇Δ𝒩

http://www.lix.polytechnique.fr/~maks/papers/obsbg_fmaps.pdf


𝛿𝑥 𝑝 = ቊ
1 𝑖𝑓 𝑥 = 𝑝
0 𝑖𝑓 𝑥 ≠ 𝑝

𝛿𝑦
𝑚
∈ 𝐹(𝒩,ℝ)

𝑦1 , … , 𝑦, … , 𝑦𝑚 ∈ 𝒩

𝛿𝑦
1
, … , 𝛿𝑦, … ,

𝜶𝑥
Β =[𝜷1, …, 𝜷, …,𝜷𝑚]

𝑦 = argmin
𝑦∈𝒩

(𝑑𝑖𝑠𝑡ℝℎ(𝑪𝜶𝑥 − 𝜷𝑦))

𝑪 maps 𝜶𝑥 in the space of coefficients of Β

∀𝑥 ∈ ℳ

𝛿𝑥 ∈ 𝐹(ℳ,ℝ)

Ovsjanikov at al., “Functional maps: a flexible representation of maps between shapes”, 2012

Matching from Functional maps

… …
𝑦1

𝑦𝑚
𝑦

http://www.lix.polytechnique.fr/~maks/papers/obsbg_fmaps.pdf


Ovsjanikov at al., “Functional maps: a flexible representation of maps between shapes”, 2012

Matching from Functional maps

𝑦 = argmin
𝑦∈𝒩

(𝑑𝑖𝑠𝑡ℝℎ(𝑪𝛷ℳ(𝑥) − 𝛷𝒩(𝑦))) ;
𝛷ℳ 𝑥 = [𝜙1 𝑥 ,… , 𝜙𝑘(𝑥)]

𝛷𝒩 𝑦 = [𝜓1 𝑦 ,… , 𝜓ℎ(𝑦)]

𝛿𝑥 𝑝 = ቊ
1 𝑖𝑓 𝑥 = 𝑝
0 𝑖𝑓 𝑥 ≠ 𝑝

𝛿𝑦
𝑚
∈ 𝐹(𝒩,ℝ)

𝑦1 , … , 𝑦, … , 𝑦𝑚 ∈ 𝒩

𝛿𝑦
1
, … , 𝛿𝑦, … ,

𝜶𝑥
Β =[𝜷1, …, 𝜷, …,𝜷𝑚]

𝑪 maps 𝜶𝑥 in the space of coefficients of Β

∀𝑥 ∈ ℳ

𝛿𝑥 ∈ 𝐹(ℳ,ℝ)

… …
𝑦1

𝑦𝑚
𝑦

http://www.lix.polytechnique.fr/~maks/papers/obsbg_fmaps.pdf


Ovsjanikov at al., “Functional maps: a flexible representation of maps between shapes”, 2012

Spectral ICP refinement

min
𝐶,𝑇

𝐶𝑇𝐶=𝐼

Φ𝒩𝑪 − Φℳ 𝑇, : 𝐹
2

Optimize for 𝑪 as a rotation in the spectral domain as the best rotation to 
align Φℳ and Φ𝒩:

𝑦 = 𝑇 𝑥 = argmin
𝑦∈𝒩

𝑑𝑖𝑠𝑡ℝℎ 𝑪𝛷ℳ 𝑥 − 𝛷𝒩 𝑦 , ∀𝑥 ∈ ℳ

Iteratively solve for 𝑪 and 𝑇 (𝑪 with fixed size = 𝑘)

http://www.lix.polytechnique.fr/~maks/papers/obsbg_fmaps.pdf


Dataset provided by the Natural History Museum in Paris

ZoomOut: Spectral Upsampling for Efficient Shape Correspondence, Melzi et al., 2019

Spectral Upsampling

http://www.lix.polytechnique.fr/~maks/papers/SGA19_zoomOut_reduced.pdf


• Progressively registering the eigenfunctions

• Exploiting the connection between functional and point-to-point map

ZoomOut

• 5 lines of code

• Similar complexity to ICP

ZoomOut: Spectral Upsampling for Efficient Shape Correspondence, Melzi et al., 2019

ZoomOut idea

http://www.lix.polytechnique.fr/~maks/papers/SGA19_zoomOut_reduced.pdf


𝜱𝒊
𝒌 are the first 𝒌

eigenfunctions of 𝑺𝒊

1. Input: an initial map Π and an integer 𝑘

2. Solve 𝐶𝑘 = argmin
𝐶

Φ1
𝑘𝐶 − Φ2

𝑘 Π, :
𝐹

2

3. Update Π = argmin
Π

Φ1
𝑘𝐶𝑘 −Φ2

𝑘 Π, :
𝐹

2

4. Update 𝑘 = 𝑘 + 1

5. Return to step 2.

ZoomOut: Spectral Upsampling for Efficient Shape Correspondence, Melzi et al., 2019

ZoomOut Algorithm

http://www.lix.polytechnique.fr/~maks/papers/SGA19_zoomOut_reduced.pdf


𝐶: dim = 5𝐶: dim = 4 𝐶: dim = 8 𝐶: dim = 50

…… ……

ZoomOut: Spectral Upsampling for Efficient Shape Correspondence, Melzi et al., 2019

ZoomOut Visualization

http://www.lix.polytechnique.fr/~maks/papers/SGA19_zoomOut_reduced.pdf


• Simple demo on non-rigid matching

Live Demo

https://github.com/riccardomarin/EG22_Tutorial_Spectral_Geometry

https://github.com/riccardomarin/EG22_Tutorial_Spectral_Geometry


Inverse Computational 
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Outline

• The inverse eigenvalue problem

• Methods: optimization 

• Methods: data-driven approaches

• Applications

• Demo



The inverse eigenvalue problem

Chu M.T. Inverse eigenvalue problems. SIAM review. 1998.

Reconstruction of a matrix from prescribed spectral data:



«Can one hear the shape of the drum?»



x
y

«Can one hear the shape of the drum?»

Eigenfunctions Spectrum / eigenvalues

Wave equation



x
y

Our drum



Can we recover the shape from the 
eigenvalues?

Inverse problem

Forward problem

Solvability



…how?

Inverse problem

Forward problem

Computability



Isospectralization

Cosmo et al., Isospectralization, or how to hear shape, style and correspondence (CVPR 2019)

Target spectrumSpectrumOperator
Shape

Unknown

Optimization directly on the 3D coordinates:



Mickey from spectrum



3D: several local minima

symmetries and isometries

existence of several 

local minima in the 

isospectralization problem



Regularizers

To promote smoothness and maximize volume:



Isospectralization on surfaces

Cosmo et al., Isospectralization, or how to hear shape, style and correspondence (CVPR 2019)



Learning to hear shapes

We can use a cycle-consistent module to map latent vectors to spectra:

Marin et al., Instant recovery of shape from spectrum via latent space connections (3DV 2020)

Encoder Decoderx x'z



Learning to hear shapes

Marin et al., Instant recovery of shape from spectrum via latent space connections (3DV 2020)

Encoder Decoderx x'z

Shape from 
eigenvalues



Pros of data-driven approach

• Fast: instant recovery

• Accuracy

• No dependence from initialization

• Larger meshes and point clouds

• No need of regularizers

* Marin et al., Instant recovery of shape from spectrum via latent space connections (3DV 2020)

Isospec.Target AE*

Isospec.Target AE*



Pros of data-driven approach

Input: spectrum Output: shape

Marin et al., Instant recovery of shape from spectrum via latent space connections (3DV 2020)



Non-isometric shape

matching



Goal



Isospectralization

• Preprocessing step in Functional Map based matching algorithms

• Isospectralization induces isometry



Isospectralization

• Preprocessing step in Functional Map based matching algorithms

• Isospectralization induces isometry

Before isospectralizationAfter



Data-driven approach

Same connectivity and 
ordering



Results

Marin et al., Spectral Shape Recovery and Analysis Via Data-driven Connections (IJCV 2021)

https://link.springer.com/article/10.1007/s11263-021-01492-6


Results: segmentation and texture transfer

Marin et al., Spectral Shape Recovery and Analysis Via Data-driven Connections (IJCV 2021)

https://link.springer.com/article/10.1007/s11263-021-01492-6


Style transfer



Goal

Input: pose and style donors Output: new shape



Isospectralization

Cosmo et al., Isospectralization, or how to hear shape, style and correspondence (CVPR 2019)



Data-driven approach



Results

Marin et al., Instant recovery of shape from spectrum via latent space connections (3DV 2020)



Adversarial attacks



Adversarial attacks

Goodfellow et al., Explaining and harnessing adversarial examples, ICLR (2014).

Panda Gibbo
n



Universal adversarial attacks

Moosavi-Dezfooli et al. “Universal adversarial perturbations”. CVPR (2017)

+Flagpole Labrador



Universal attacks for deformable shapes

An extrinsic perturbation needs correspondence and can not be 
deformation-invariant.

spectral domain



Perturbation in the spectral domain

shape-specific
extrinsic perturbation

shape-agnostic
intrinsic perturbation

Rampini et al. "Universal Spectral Adversarial Attacks for Deformable Shapes" (CVPR 2021)



+
+

+

=
=

=

horse
horse horse

dog big cat

cow

Rampini et al., Universal Spectral Adversarial Attacks for Deformable Shapes (CVPR 2021)



Generalization to unseen shapes

Rampini et al., Universal Spectral Adversarial Attacks for Deformable Shapes (CVPR 2021)



Examples

cow cow cow

big cat big cat big cat

horse hippohorse

big cat big catbig cat

ID10

ID10

ID2

ID3



Partial shape localization



Subregion of a given shape



Motivation

Full shapePartial shape Mask

Interface / Non-interfaceProtein A Protein BScanTemplate Registration



Remark

• Spectral quantities can be used to analyze partialities of 3D objects

Rodolà et al., Partial functional correspondence (2017)



Which operator?

SpectrumOperator



Which operator?

Laplacian of the patch LMHHamiltonian
“Localized Manifold Harmonics 

for Spectral Shape Analysis”, 
S. Melzi et al. 2018.

“Computing Discrete Minimal 
Surfaces and Their Conjugates”, 

U. Pinkall et al. 1993.

“Hamiltonian operator for 
spectral shape analysis”, 
Y. Choukroun et al. 2018.

https://arxiv.org/pdf/1707.02596.pdf
http://page.math.tu-berlin.de/~pinkall/forDownload/preprint049.pdf
http://page.math.tu-berlin.de/~pinkall/forDownload/preprint049.pdf
https://arxiv.org/pdf/1611.01990.pdf
https://arxiv.org/pdf/1611.01990.pdf


The Hamiltonian operator

… …

Hamiltonian spectrum

Step potential



The Hamiltonian operator

… …

… …

Theorem: There exists a step potential for which the Hamiltonian on the 
full shape and the LBO on the partial shape share the same spectrum:



Optimization problem

Rampini et al., Correspondence-Free Region Localization for Partial Shape Similarity via Hamiltonian Spectrum Alignment (3DV 2019)

Target spectrum 
of partial shape

SpectrumHamiltonian
operatorMask

https://arxiv.org/pdf/2104.00514.pdf




Examples

0.90 0.950.85

0.96 0.99 0.98



Set operations





Typical pipeline

1. Find partial correspondence

2. Extract non-rigid transformation

3. Merge partial views into a 
consistent discretization



Spectrum

∪
Spectrum

Spectrum

Moschella et al., Spectral Unions of Partial Deformable 3D Shapes (EUROGRAPHICS 2022)



The spectrum is the right tool

• Invariant to isometries

• Invariant to different representations

• Does not require a correspondence



Results

Moschella et al., Spectral Unions of Partial Deformable 3D Shapes (EUROGRAPHICS 2022)



Shape generation

Pegoraro et al., Learning to generate shape from global-local spectra (2021)

https://arxiv.org/pdf/2108.02161.pdf


Hearing shapes with PyTorch

https://github.com/riccardomarin/EG22_Tutorial_Spectral_Geometry

https://github.com/riccardomarin/EG22_Tutorial_Spectral_Geometry


Thank you!

Special thanks to S. Melzi, E. Postolache and L. Moschella for some of these slides


