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Abstract
This paper reports on the development of a real-time voice interface for navigation purposes of electric wheelchairs. To this
end, we employ a convolutional neural network trained and fine-tuned using a small dataset that consists of Greek commands.
Furthermore, the study explores a highly quantized version of the network to achieve computational efficiency while maintain-
ing high accuracy on an edge device. The experimental results confirm the effectiveness of the model in accurately detecting
keywords in real time with minimal misclassifications.

CCS Concepts
• Computing methodologies → Speech recognition; Supervised learning by classification; Transfer learning; • Computer
systems organization → Real-time system architecture; • Hardware → Hardware accelerators;

1. Introduction

Keyword spotting (KWS) plays a crucial role in enabling speech-
based user interactions in smart devices, especially in assistive
technologies such as electric wheelchairs. It requires a real-time
response, high accuracy, and efficient implementation on resource-
constrained edge devices. Several studies have addressed the devel-
opment of voice-controlled wheelchairs using speaker-dependent
voice recognition modules on microcontrollers to navigate the
wheelchair [Abe15], [HYC20]. Also, speaker-independent systems
using artificial intelligence have been employed, achieving high
accuracy rates but necessitating significant computing resources.
Consequently, these systems often utilize devices such as An-
droid mobile phones or laptops to handle the speech recognition
part [Bak22], [KSZB22]. The application of KWS in the context
of IoT and edge devices with limited memory and computation
resources has been studied in [Dha21], [SAL∗22]. Efforts have
been made to study and optimize KWS solutions for energy ef-
ficiency, considering both hardware [MW22] and neural network
architectures [ZSLC18], [SZK∗20], [ZT21]. Recent advances in
wheelchairs have proposed obstacle detection systems [TKF∗22].
Such systems can be used in conjuction with the method proposed
in this paper and other interfaces for an integrated, safe, low power
consumption intelligent wheelchair. This study extends existing re-
search by introducing the integration of a Convolutional Neural
Network (CNN) for real-time keyword spotting on an edge device,
for navigating intelligent wheelchairs.

2. Methodology

The implementation of a real-time voice interface holds great po-
tential in enhancing the overall user experience for individuals us-

ing electric wheelchairs. In this research, we demonstrate the ef-
ficiency of the method on voice commands from the Greek lan-
guage without loss of generality. To establish a Greek dataset, a set
of three words was recorded from several users. Subsequently, a
keyword-spotting classifier was pre-trained using a broader set of
classes from the English language. It was then fine-tuned on our
dataset and quantized so that it can be deployed on a hardware ac-
celerator integrated within the wheelchair.

2.1. Google Speech Commands

Google Speech Commands (GSC) v0.01 [War18] is a widely used
and publicly available dataset designed for keyword spotting and
speech recognition tasks. Version 0.01 consists of a collection of
short audio recordings, each containing a single spoken word. The
dataset comprises 30 different categories of words and includes a
total of 64,727 files in 16-bit PCM WAV format, with a sample rate
of 16 kHz and a total duration of approximately 18 hours. For this
particular study, two specific classes from the dataset were selected:
‘Marvin’ which represents a name used for activation/deactivation,
and ‘Stop’ which has universal usage. The remaining classes in the
dataset were used to pre-train the network.

2.2. Main Dataset

Three specific words were collected as they indicate basic instruc-
tions about the direction of movement for an electric wheelchair.
The collection process involved the Greek words: ‘Αριστερά’
(aristerá), for ‘left’, ‘Δεξιά’ (dexiá), for ‘right’, and ‘Πάμε’
(páme), for ‘go’. To record the corresponding audio signals from
multiple users, an audio recording application was developed and
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compiled as a standalone executable to allow participants to use
it without any installation process. The recording application was
distributed to 25 participants, including 9 women and 16 men aged
22 to 68 years. Each participant received detailed instructions to
record each word approximately 20 to 25 times, ensuring a diverse
and comprehensive dataset. In total, the dataset consisted of 550
samples for the word ‘aristerá’, 553 samples for the word ‘dexiá’
and 557 samples for the word ‘páme’. This distribution ensured a
balanced representation of each keyword. The logging properties of
the GSC dataset were retained to maintain consistency and compat-
ibility. Each recorded sample had a duration of 1 second with a fre-
quency of 16kHz and was stored in 16-bit PCM WAV format. This
integrated set, combined with the ‘Stop’ and ‘Marvin’ classes (930
and 1,146 samples respectively), was used for the overall training
and evaluation of the model. Also, a class with ‘Undefined’ signals
was added, which contains ambient sounds [SJB14] of cafeterias,
metro stations, traffic, and meetings. To enhance the network abil-
ity to detect unknown sounds in a continuous signal stream during
real-time keyword spotting, the ‘Undefined’ category was popu-
lated with a larger number of samples (1,929 samples) as compared
to the other categories (see Table 1). The test set comprises samples
from users who were not part of the training set.

Aristerá Dexiá Marvin Páme Stop Undefined
Training 467 467 996 471 780 1794
Testing 83 86 150 86 150 135

Table 1: Train and Test set population.

2.3. Preprocess

During the preprocess all signals are normalized in the interval [-1,
1]. To enhance the robustness and generalization capability of the
trained network, augmentation techniques were applied to the three
classes derived from the Greek data collection. For each class, 100
samples were randomly selected from the training set, and one of
the four augmentation procedures described below was randomly
applied to each one of them.

The first technique involved adding Gaussian noise to the origi-
nal sound signal. The intensity of the noise was kept small enough
to avoid significant alterations to the signal of interest. The second
technique was pitch shifting, where the signal was shifted upwards
by 2 semitones, achieving a different tonal variation of the sound
signal. The third technique was speed perturbation in the time do-
main, which shortened the duration of the original signal without
losing any part of it. Lastly, the fourth technique involved adding
random ambient sounds to the signal of interest, enriching it with
additional contextual information without sacrificing valuable data.

The subsequent preprocessing step was applied to each signal
in the dataset. To prepare the signals for the convolutional net-
work, the Short-Time Fourier Transform (STFT) was employed
[NNK22]. STFT breaks down the longer signal into shorter seg-
ments using overlapping windows and applies Fourier Transform to
each segment. The resulting magnitude spectra from each segment
are combined to form a spectrogram, which captures the frequency
content variations over time. In this study, the spectrograms have
final dimensions 124 and 129 on X-axis and Y -axis respectively on
one channel.

2.4. Model Architecture
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Figure 1: ResNet 18

ResNet18 is a convolutional neural network architecture consist-
ing of 18 layers (Figure 1). It utilizes the concept of residual learn-
ing [HZRS16], incorporating shortcut connections to aid the learn-
ing of input information and extraction of features. The network
starts with a convolutional layer with 64 filters and a kernel size of
7x7. The ReLU activation function and batch normalization are ap-
plied after each convolutional layer. The network further includes
eight residual blocks consisting of two convolutional layers and a
skip connection. All residual blocks use a kernel size of 3x3, while
the filters are of size 2x64, 2x128, 2x256, and 2x512. A global av-
erage pooling layer reduces the dimension and passes the result to a
fully connected layer. Finally, there is an output layer with SoftMax
activation function.

2.5. Training and Transfer Learning

For training, we use the Adam optimizer and Categorical Crossen-
tropy as the loss function. Initially, the ResNet18 was pre-trained
on 28 out of the 30 classes from the GSC dataset for 50 epochs with
a learning rate of 0.001. Thus, it learned to extract useful features
from a complex and large training set, similar to ours. The accuracy
of the network reached approximately 95% for the validation set,
and the validation loss converged to a low value. These results in-
dicate a well-trained network capable of accurately classifying data
in the 28 categories. Subsequently, transfer learning was employed
using the pre-trained model. The weights of the input layer and con-
volutional layers were retained, while the fully connected layer and
output layer were replaced. A new fully connected layer and two
dense layers were added, consisting of 128 and 6 neurons respec-
tively, with ReLU and SoftMax activation functions. The network
was then trained for an additional 100 epochs with a learning rate
of 0.0001. This time, the focus was on adjusting only the weights of
the newly added layers. This approach allowed us to fine-tune the
network effectively for classifying correctly items in our 6-class
dataset, reaching up to 99% accuracy for the validation set. For
both training processes, 80% of the training set was used for train-
ing, while the remaining 20% was allocated for validation.

2.6. Hardware Accelerator

To achieve our goal of real-time keyword spotting for navigation
purposes, we developed a complete system that can integrate into
a wheelchair. This system combines a microcomputer with a spe-
cialized hardware accelerator, specifically the Coral USB Accelera-
tor (https://coral.ai/products/accelerator) with an Edge
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TPU coprocessor. Coral USB is highly efficient and offers fast ex-
ecution of quantized models and is an ideal choice for convolu-
tional networks [SAL∗22]. For the microcomputer component, we
selected the Raspberry Pi 4, which features an ARM Cortex-A72
processor, 4GB RAM, and low power consumption. Our hardware
setup capitalizes on the strengths of the Coral USB Accelerator,
offloading demanding computational tasks and thereby achieving
notably low CPU and RAM usage on the Raspberry. This configu-
ration not only ensures the efficient execution of the voice interface
but also allows other operations to seamlessly run on the Raspberry.

Quantization is a technique used to reduce the requirements of
models and make them suitable for resource-constrained devices
[ZSLC18]. The size, memory usage, and computational require-
ments are reduced by representing the weights and activation func-
tions of the network with lower precision, using 8-bit integer rep-
resentations instead of 32-bit float. The reduction in the precision
may lead to a slight loss in accuracy compared to the original full-
precision model but the fast inference and the low power consump-
tion make it a proper choice for real-time operations in devices with
limited resources. The quantization of the ResNet18 was developed
using TF lite by Tensorflow library and the Edge compiler given by
Coral.

3. Results

3.1. ResNet18 Evaluation

Experiments were conducted to evaluate the network using both the
unquantized version running on an Nvidia RTX 2060 Super GPU
and the quantized version running on the Edge TPU. The reliabil-
ity of each network was assessed individually for each class and
collectively for all classes. The confusion matrices (Tables 2, 3) of
the two models indicate that the quantized model may have lower
accuracy compared to the original model. However, while there is
a decrease in accuracy for the ‘Undefined’ class in the quantized
model, the other critical categories show minimal or no misclassi-
fications.

Original ResNet18
Aristerá 82 0 0 0 0 1
Dexiá 0 86 0 0 0 0
Marvin 0 0 149 1 0 0
Páme 0 0 0 86 0 0
Stop 0 0 0 0 149 1
Undefined 0 0 0 1 0 134

Aristerá Dexiá Marvin Páme Stop Undefined

Table 2: Confusion Matrix of the testing set (ResNet18).

Quantized ResNet18
Aristerá 81 0 0 0 0 2
Dexiá 0 86 0 0 0 0
Marvin 0 0 148 0 0 2
Páme 0 0 3 82 0 1
Stop 0 0 0 0 148 2
Undefined 0 0 0 1 11 124

Aristerá Dexiá Marvin Páme Stop Undefined

Table 3: Confusion Matrix of the testing set (Quantized ResNet18).

Table 4 presents the F1-score based on the confusion matrices,
which is a metric that combines the Recall and Precision scores for

each class and provides a balanced measure of the model’s perfor-
mance. Additionally, the accuracy percentage of the test set shows
a small decrease of 2% for the quantized model, as expected. How-
ever, the smaller average inference time indicates fast processing in
a system with real-time operations in resource-constrained devices.

Original ResNet18 Quantized ResNet18
F1 - score

Aristerá 0.99 0.99
Dexiá 1.00 1.00
Marvin 1.00 0.98
Páme 0.99 0.98
Stop 1.00 0.96
Undefined 0.99 0.93

Accuracy
Total Test set 99% 97%

Average Inference Time (seconds)
Total Test set 0.0405 0.0149

Table 4: F1-score of each class. Accuracy and Inference time for
the total test set.

3.2. Real-time Voice Interface

An application was developed to continuously listen to the user’s
audio signals and classify them using the quantized model. The
output vector given by the network has integer values in [0, 255]
which are normalized to [0, 1]. Each value of the output vector
defines the probability that the input belongs to the corresponding
class. For high accuracy and robustness, the lower bound of the
classification probability is initialized to 0.9. Anything categorized
with a lower probability or as ‘Undefined’ is considered by the ap-
plication as ‘Unclassified’. In real-time or near real-time signal pro-
cessing, a system has to continuously analyze the incoming audio
data and make immediate predictions. In this interface, a thread
continuously records and sends one-second audio signals captured
by the microphone to another thread that processes them. Overlap-
ping sliding windows [PGK∗09] are used to derive a decision for
each new sound signal. Thus, for example, a new signal Si is com-
bined with the last 8,000 values of the previous Si−1 (Figure 2).
This results in a vector of 20,000 elements where a window, span-
ning 16,000 elements, moves in steps of 1000 for five iterations.
The network makes predictions for each window, and if a class of
interest is identified in at least three out of the five windows, signal
Si is classified accordingly, and the wheelchair performs the corre-
sponding action. If not, Si remains unclassified, indicating that no
keyword was detected, and the wheelchair does not perform any
action.

The system’s usage guidelines involve the utilization of the
‘Marvin Páme’ and ‘Marvin Stop’ commands, which serve to en-
able and disable the voice interface, respectively as well as to start
and stop the wheelchair’s movement. When the interface is en-
abled, users have the capability to employ the keywords ‘Páme’,
‘Aristerá’, ‘Dexiá’ and ’Stop’ to control the intelligent wheelchair.
From the moment that the user speaks a word of interest to the
point where the wheelchair starts an action, it takes approximately
0.7 seconds (Figure 2). To assess the real-time performance of the
interface, a user was instructed to generate keywords based on the
mentioned usage rules. The user followed a specific routine consist-
ing of the following steps: ‘Marvin Páme’ → ‘Aristerá’ → ‘Dexiá’
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Figure 2: Real-time work flow.

→ ‘Stop’ → ‘Páme’ → ‘Aristerá’ → ‘Dexiá’ → ‘Marvin Stop’.
The procedure was repeated a total of 30 times (5 times per trial, 6
trials), and in cases where a keyword was not correctly classified,
the user was asked to repeat it. The experimental results demon-
strated successful real-time processing and accurate classification
of the sound signals, achieving a high accuracy score for each class
(Figure 3). Additionally, the findings indicated that the user gradu-
ally improved their interaction with the system over time, leading
to fewer or no errors.

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 60

25

50

75

100

Ac
cu

ra
cy

 (%
)

Aristerá
Dexiá
Marvin
Páme
Stop

Figure 3: Accuracy score of each class in 6 trials. Total accu-
racy: ‘Aristerá’ 96.67%, ‘Dexiá’ 100%, ‘Marvin’ 100%, ‘Páme’
96.67%, ‘Stop’ 95%.

4. Conclusions

This paper reports on the development and integration of a real-
time voice interface to an intelligent wheelchair. The interface is
designed to recognize five commands for navigation purposes. A
quantized network is employed so as to facilitate the deployment
of the voice interface on a hardware accelerator. The quantized
model demonstrates high accuracy while maintaining low infer-
ence speed, contributing to the efficiency and effectiveness of the
voice interface in real-time scenarios. In future work, the expansion
of the dataset and incorporation of additional classes will be ex-
plored to enhance system accuracy and adaptability. Our goal is to
seamlessly integrate the voice interface to the wheelchair controller
along with the other navigation options (brain computer interface,
joystick or smartphone app interface).
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