Y. Sun, H. Wang, Z. Zhang, C. Diels, A. Asadipour / RESenv: A Realistic Earthquake Simulation Environmentbased on Unreal Engine

Appendix A.

Image segmentation comparison and score calculation for four frames of the path planning task.

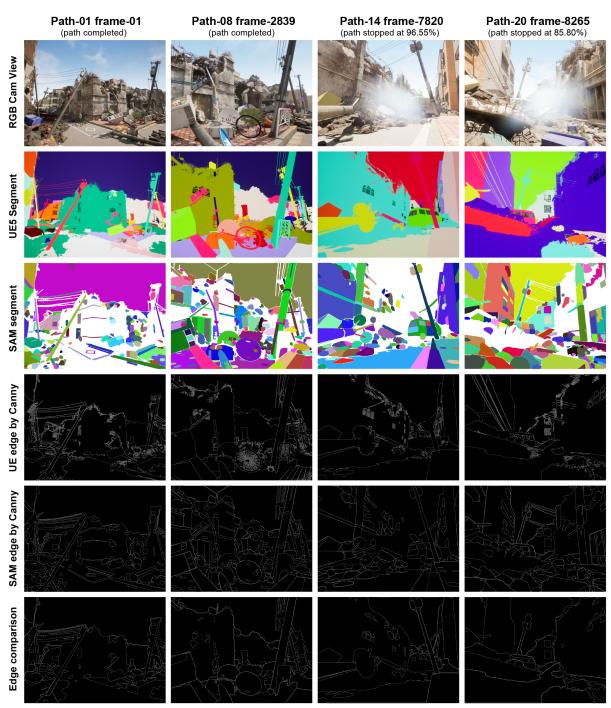


Figure 8: Comparison of image segmentation and score calculation for 4 typical paths. Row 1: Synthetic RGB camera shot. Row 2: Object image segmentation using UE5 built-in camera post-processing material (ground truth). Row 3: Image segmentation of the RGB shot image using the SAM model. Row 4: UE segmentation edge map calculated using the Canny algorithm with edge dilation. Row 5: SAM segmentation edge map calculated using the Canny algorithm with edge dilation of the proportion of overlapping edge pixels to the total edge pixels in the UE segmentation.

© 2023 The Authors. Proceedings published by Eurographics - The European Association for Computer Graphics. Y. Sun, H. Wang, Z. Zhang, C. Diels, A. Asadipour / RESenv: A Realistic Earthquake Simulation Environmentbased on Unreal Engine

Appendix B.

Algorithm 1 Constraint Force Implementation in UE using C++

- 1: Inputs: Building model, Virtual terrain, Earthquake waveform data ("BH1", "BH2", "BHZ")
- 2: Output: A simulated environment where buildings are anchored to moving terrain based on real earthquake data.
- 3: **procedure** ANALYZEFOUNDATION(Building model)
- 4: Extract the building model's foundation shape.
- 5: Compute planar geometry to represent the foundation.
- 6: Identify edge transitions and major inflection points on the planar shape.
- 7: return List of identified points for PCA placement
- 8: end procedure
- 9: procedure BINDBUILDINGTOTERRAIN(Building model, Virtual terrain)
- 10: Load building model and virtual terrain into UE environment.
- 11: Initialize "Physics Constraint Actor" (PCA) based on UE physics system.
- 12: foundationPoints = ANALYZEFOUNDATION(Building model)
- 13: Set initial PCA at the first point from foundationPoints.
- 14: **for** each subsequent point in foundationPoints **do**
- 15: **if** distance to previous PCA exceeds threshold **then**
- 16: Set a new PCA at this point.
- 17: end if
- 18: end for
- 19: Estimate building volume distribution.
- 20: Create a foundation weight map based on volume distribution.
- 21: Determine anchor force magnitudes for each PCA based on the weight map.
- 22: Bind building foundation to virtual terrain using PCA.
- 23: end procedure
- 24: procedure SIMULATETERRAINMOVEMENT(Earthquake waveform data)
- 25: Map earthquake waveform data ("BH1", "BH2", "BHZ") to "X", "Y", and "Z" axes of terrain movement.
- 26: Set waveform frequency (e.g., 40 Hz from IRIS database).
- 27: Implement three different frame rates in UE (40 FPS, 90 FPS, and 240 FPS).
- 28: For 90 and 240 FPS, generate data using the wavelet interpolation algorithm.
- 29: Execute terrain movement simulation based on mapped waveform data.
- 30: end procedure

Y. Sun, H. Wang, Z. Zhang, C. Diels, A. Asadipour / RESenv: A Realistic Earthquake Simulation Environmentbased on Unreal Engine

Appendix C.

Tgt.	Path	Edges Acc.			
Pt.	Plan.	UE Segment		UE + SAM	
		Ker. 25	Ker. 50	Ker. 25	Ker. 50
1	Complete	81.2%	91.9%	89.9%	96.0%
2	Complete	76.3%	86.7%	88.6%	93.5%
3	Complete	79.2%	89.8%	87.9%	94.2%
4	Complete	75.6%	85.9%	86.8%	92.6%
5	Complete	82.5%	92.7%	90.8%	97.5%
6	Complete	71.8%	82.4%	85.0%	91.3%
7	85.4%	70.4%	81.1%	84.7%	90.8%
8	Complete	7k6.9%	87.3%	96.4%	99.1%
9	Complete	79.9%	90.1%	89.5%	96.7%
10	Complete	81.0%	91.4%	90.6%	96.3%
11	Complete	80.2%	91.6%	90.4%	96.4%
12	Complete	81.6%	91.5%	89.9%	96.5%
13	Complete	80.7%	92.2%	90.2%	96.6%
14	96.55%	78.8%	90.1%	87.9%	95.2%
15	Complete	81.3%	91.8%	90.0%	96.8%
16	Complete	80.9%	91.7%	90.5%	96.1%
17	92.21%	72.4%	85.0%	89.3%	94.9%
18	Complete	80.6%	91.4%	89.8%	96.7%
19	Complete	80.8%	91.9%	90.7%	96.3%
20	85.80%	74.2%	86.2%	90.4%	95.5%

 Table 3: Success Rates of DRL SLAM Path Planning and Accuracy of Image Segmentation edges for 20 Targets