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Reducing Model Uncertainty in Crossing Fiber Tractography

J. Gruen'”, G. van der Voort'®, and T. Schultz

University of Bonn, Bonn, Germany

Figure 1: Left to right: A manually curated reference of the corpus callosum, a reconstruction using our proposed model averaging strategy,
and two baseline reconstructions from the same seeds in the mid-sagittal plane, using tensor approximation with model selection, or standard
constrained spherical deconvolution. Results from our novel approach are closest to the reference, both visually and quantitatively.

Abstract

Diffusion MRI (dMRI) tractography permits the non-invasive reconstruction of major white matter tracts, and is therefore
widely used in neurosurgical planning and in neuroscience. However, it is affected by various sources of uncertainty. In this
work, we consider the model uncertainty that arises in crossing fiber tractography, from having to select between alternative
mathematical models for the estimation of multiple fiber orientations in a given voxel. This type of model uncertainty is a
source of instability in dMRI tractography that has not received much attention so far. We develop a mathematical framework to
quantify it, based on computing posterior probabilities of competing models, given the local dMRI data. Moreover, we explore
a novel strategy for crossing fiber tractography, which computes tracking directions from a consensus of multiple mathematical
models, each one contributing with a weight that is proportional to its probability. Experiments on different white matter tracts
in multiple subjects indicate that reducing model uncertainty in this way increases the accuracy of crossing fiber tractography.
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1. Introduction

Diffusion Magnetic Resonance Imaging (dMRI) [LBL*86] is a
vital method for non-invasive imaging of the human brain. It is
widely used in surgery planning [YYPC21] as well as in large-scale
scientific studies [SJX*13; TSH*18], where it helps to learn more
about the structure of healthy brains, as well as about neurological
disease.
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In particular, diffusion MRI is unique in its ability to non-
invasively reconstruct the trajectories of major white matter tracts,
using tractography algorithms [JDML19]. They are based on in-
ferring the orientation of fiber tracts from the Brownian motion of
water molecules, which is constrained by white matter microstruc-
ture such that stronger molecular motion remains possible along
the tract than orthogonal to it.
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Streamline-based techniques remain the most popular and
widely used approach to dMRI tractography. They build on mathe-
matical models that recover the local orientation of fiber tracts from
dMRI measurements, which amounts to an ill-conditioned inverse
problem [TCCO07]. Diffusion tensor imaging [BML94], which esti-
mates just one direction per voxel, is not sufficient to recover more
complex fiber geometry like crossing, bending and kissing. There-
fore, newer models recover multiple directions from high angular
resolution diffusion imaging (HARDI). The fiber directions that
are estimated by many such methods, including the ball-and-stick
model [BBJ*07], or low-rank approximation of higher-order f{ODF
tensors [SS08; ALGS17], depend on the number of distinct fibers
that are assumed to be present in a voxel.

Setting the number of fibers in such a model too low will miss
relevant directions, and can introduce a bias in the remaining ones.
On the other hand, setting it to a number that is higher than the
actual number of fibers in a voxel can lead to overfitting, i.e., the
estimation of spurious fiber compartments, and an increased effect
of measurement noise on the remaining ones. Unfortunately, the
ideal number depends on the location within the brain and is not
known a priori. Rather, it has to be estimated from the data along
with the tracking directions, and it is often uncertain what is the
locally optimal choice.

To our knowledge, our current work is the first one to explicitly
study the effect that the uncertainty that is implied by having to
make this choice has on multi-fiber tractography. Within this con-
text, we make two main contributions. The first one is in Section 4,
where we derive a mathematical framework to quantify the uncer-
tainties in fiber rank prediction based on Bayesian model compari-
son. This includes a visualization of model uncertainty in crossing-
fiber tractography that is, to our knowledge, the first of its kind.

Our second main contribution is introduced in Section 5, a novel
approach to estimating tracking directions that reduces model un-
certainty by fusing information from multiple candidate models.
This new approach is compared to two previous ones that do not
explicitly account for model uncertainty in Section 6. We conclude
that model uncertainty has a significant impact on crossing fiber
tractography that has so far not received sufficient attention, and
that reducing it via model averaging can improve tractography.

To provide the required context for this main part of our work, we
will start by reviewing related work on quantifying and visualizing
uncertainty in dMRI tractography in Section 2, followed by some
general background on the multi-fiber model that will be used in
our work in Section 3.

2. Related Work

Diffusion MRI tractography is affected by various sources of un-
certainty [SVBK14; SV19; GSWS21]. Among them, the propaga-
tion of measurement noise through the modeling and visualization
pipeline has been studied in greatest detail. Its effect on tractogra-
phy is usually quantified with probabilistic models that infer a dis-
tribution of fiber directions using Bayesian modeling [BBJ*07] or
bootstrapping [CLHO6]. The resulting fiber distributions have been
visualized using hyperstreamlines [JTE*05; WSSS14] or illustra-
tive confidence intervals [BPtHV 13]. Bootstrapping causes consid-

erable computational effort, but progressive visualization can re-
duce the resulting delay [SHV21].

A second type of uncertainty arises from the fact that tractog-
raphy algorithms have several parameters that require user adjust-
ment, including tract termination thresholds. It has been addressed
by a visual tool for systematically exploring the impact of such pa-
rameters [BVPtH09].

In this work, we investigate a third source of uncertainty, which
has received little attention so far. It arises from the fact that a wide
range of mathematical models have been proposed for estimating
fiber directions from dMRI data [PSS*12], and can lead to different
results. Which model is the most suitable depends on the anatom-
ical location [BKNO04; FOK*07], and the uncertainty from having
to choose between them based on the dMRI data has been referred
to as model uncertainty [SVBK14].

Estimating how many distinct fibers are contained in a given
voxel is a special case of model selection, and the resulting un-
certainty is at the center of our work. Most algorithms for crossing
fiber tractography include some mechanism for making this choice,
such as ad-hoc thresholds [QRO*(09], statistical tests [ABA02],
Automatic Relevance Determination [BBJ*07], or data-driven ap-
proaches [Sch12].

Recently, the use of supervised machine learning has shown
a strong potential to increase the accuracy of fiber tractography
[PJID19]. This is, in part, due to their ability to exploit prior knowl-
edge about the expected position and shape of bundles. Relying on
such priors is questionable when we have to expect deviations from
the norm, e.g., due to displacements from brain tumors. There-
fore, our work focuses on traditional streamline-based tractogra-
phy, which still remains the most widely used approach in practice.

3. Background: Crossing Fiber Tractography

The earliest algorithms for dMRI tractography were based on the
diffusion tensor model [MCCvZ99; BPP*00]. However, they were
limited to following a single dominant fiber orientation per voxel.
Meanwhile, there is a consensus that the majority of white mat-
ter voxels in dMRI contain significant contributions from multiple
bundles [JLT*12], and that accounting for this improves the quality
of dMRI tractography [NDH*15].

Constrained spherical deconvolution [TCCO7] is a widely used
mathematical model that accounts for multiple fiber orientations.
It estimates an antipodally symmetric non-negative fiber orienta-
tion distribution function (fODF), i.e., a function on the sphere that
captures the fraction of fibers in any given direction. Crossing fiber
tractography can then be performed by tracking in the directions
of local fODF maxima. However, it has been demonstrated that
the interference between fODF peaks that represent different fiber
orientations limits the angular resolution, and introduces a bias in
crossing angles that are estimated with this approach [SS08].

Our work builds on a variation of spherical deconvolution that
represents the fODF as a symmetric fourth order tensor 7, and es-
timates r fiber directions from it via a rank-r approximation

T(r) = Z}\,ivi®Vi®Vi®Vi> (1)
i=1
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where the scalar A; represents the volume fraction of the ith fiber,
the 3D unit vector v; its direction, and ® the outer product. The pa-
rameters are chosen to minimize the Frobenius norm of the resid-
ual |7 = 7)|. It has been demonstrated that, compared to peak
extraction, this optimization increases the angular resolution, and
reduces the bias in estimated directions by accounting for the inter-
ference between crossing fibers [SS08; ALGS17].

However, it introduces the need to select the number r of fibers
that should be reconstructed in a given voxel. Setting r too low will
miss relevant directions, and can introduce a bias in the remaining
ones. Setting it too high can lead to overfitting, so that measure-
ment noise can give rise to spurious fiber estimates. It is known
that » varies across the brain [JLT*12], so it has to be adapted for
each voxel. The uncertainty in which choice of r is the locally most
suitable one is the type of model uncertainty that is considered in
our work.

4. Quantifying Uncertainty in Fiber Rank Prediction

Most existing approaches to crossing fiber tractography include
some rule for selecting the local fiber rank r = {1,2,3}, or some
corresponding parameter in their respective mathematical model
for the estimation of fiber directions. Several such approaches are
surveyed in Section 2.

The first contribution of our work is a probabilistic framework
that, instead of merely selecting a single value of r, allows us
to quantify the posterior probability with which different poten-
tial values can be considered to be suitable given the local fODF.
This framework will allow us to quantify the resulting model uncer-
tainty. It will also serve as the basis of our novel tracking approach,
which determines the local direction via a weighted sum of esti-
mates from different models, and which will be described in more
detail in Section 5.

4.1. Bayesian Model Comparison

We follow a Bayesian model comparison approach, i.e., we com-
pute the posterior probability p(H,|T ), where H, denotes the hy-
pothesis that rank r is the optimal rank for extracting tracking di-
rections from fODF 7. According to Bayes’ theorem of conditional
probability, it is given as

p(Hr|T) o< p(T|Hr)p(Hr) )

where p(H,) is our prior belief that rank r is suitable, without con-
sidering the fODF. If we had reliable prior information concerning
the overall fraction of white matter voxels that contain r significant
tracts, it could be reflected in this factor. However, even though
there is a consensus that multi-fiber configurations are very com-
mon, there is no clear agreement among estimates of the exact frac-
tion of two- or three-fiber voxels [BBJ*07; JLT*12; Sch12]. Using
various literature values as priors, we found that their effect on our
posteriors were minor. Therefore, we decided to simply use a non-
informative prior that assigns equal prior probability to the values
of r € {1,2,3} that are widely used in crossing fiber tractography.
Note that the case » = 0 can be excluded since we limit tracking to
a white matter mask.

The remaining term, p(7 |Hy), is the probability of the fODF T
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given an r-fiber model. In Bayesian model comparison, it is referred
to as model evidence. It is derived from p(7|#,0;), the posterior
probability of 7~ given an r-fiber model with a specific parameter
vector 0,. In our context, 6, = (Ay,vy,...,Ar,V,) contains the pa-
rameters of the low-rank tensor approximation 7" ") from Eq. (1).
In Section 4.2, we propose a parametric form of p(7|H,,0,) that
assigns a high probability if 7 is well-approximated by 7).

The overall model evidence does not depend on any particu-
lar values for the model parameters. Rather, the specific choice of
model parameters 0, is marginalized out:

p(TIHr) = /p(T\Hr,er)p(ermr)de, 3)

Intuitively, p(7|H,) should depend on the fODF shape: An
fODF 7T, with multiple peaks is unlikely to arise from a single
fiber. Eq. (3) respects this because there is no set of single fiber pa-
rameters 0; that yield a high value of p(7,|#;,6;). On the other
hand, an fODF 7 with a single dominant peak should not sup-
port multiple fiber compartments. Eq. (3) achieves this because a
greater r corresponds to a larger parameter space 6,, which includes
many crossing fiber configurations that do not approximate 7 well.
Given that p(8,|#) is normalized over this larger parameter space,
the contribution of parameters that fit the data well decreases in
Eq. (3). This naturally penalizes unnecessarily complex models.

Even though Bayesian model evidence provides a well-founded
framework for model uncertainty, the computational effort of evalu-
ating Eq. (3) directly is unfortunately prohibitive, since it would re-
quire the numerical solution of a high-dimensional integral. There-
fore, we use a popular approximation via the Bayesian Information
Criterion (BIC) [Sch78]:

BIC = kIn (n) —2In (p(T|Hr.6/)),

where p(T|H,,8,) corresponds to the likelihood of the rank-r
model with the parameters 8, that best fit the fODF T, k is the num-
ber of parameters in 6,, and n denotes the number of data points to
which the model was fitted. Note that, for a given number of data-
points, the BIC gets smaller if the number of parameters increases
while the likelihood is not growing sufficiently. Under certain con-
ditions, the BIC relates to p(7|#,) in the following way [KKO08]:

p(T|Hr) = exp(—BIC/2) @

This provides us with an estimate of model evidence that is simple
and efficient to compute, and that we will use in our framework.

4.2. From Model Likelihood to Model Uncertainty

In order to apply the Bayesian framework, we still need to provide
an equation for p(7|Hy,8;), i.e., the likelihood of a given model
H, with a fitted set of parameters B,. We propose to compute it
from the relative magnitude of the corresponding low-rank approx-
imation residual:

17 =79

R0 =
IR Eal

(6))

This quantity is bounded within [0, 1], with zero indicating a
crossing fiber model that perfectly explains the observed fODF.
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(a) Color coded main diffusion directions as an
anatomical reference.

(b) The most likely number of fibers in each
voxel, according to our model.

3
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(¢) Certainty of the selected model. Low values
indicate regions with high uncertainties.

Figure 2: Visualization of the selected model and the certainty of the model for a = 1 and b = 20.
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Figure 3: We use the Kumaraswamy PDF with parameters a = 1
and b = 20 to compute the model likelihood based on the relative
magnitude of the fitting residual. With these parameters, fits that re-
sult in a relative error above 20% are considered to be implausible.

In practice, measurement noise and effects that our crossing fiber
model does not account for, such as continuous fiber spread or vari-
ations in the single fiber response function, will lead to non-zero
residuals. Unfortunately, it would be extremely challenging to ex-
plicitly model those effects. Therefore, we use the Kumaraswamy
Probability Density Function (PDF) [Kum80] as an ansatz. It is de-
fined as

Flra,b) =abx® ' (1—x)""" forxe (0,1),a,b>0 (6)

The Kumaraswamy PDF has the benefits of being supported
on the suitable interval, being computationally more efficient than
the related B-distribution, and providing considerable flexibility
through its parameters a and b which allows us to adapt it to our
application.

It is clear that @ and b should be chosen so that the probability
decreases monotonically as the relative residual ||R")|| increases.
However, it is important to select a suitable slope: Parameters that
strongly penalize even small residuals would encourage overfitting,
and lead to an overrepresentation of the three fiber model. Vice
versa, if we assign high probabilities even to models that fit poorly,

the penalization of high model complexity in the Bayesian model
comparison approach would dominate and always prefer the model
with the lowest number of fibers.

In our experiments, we set p(7|H,8,) = f(||R"|);1,20). The
corresponding shape of the Kumaraswamy PDF is shown in Fig. 3.
For the data used within our current study, these settings agree well
with the observed distribution of relative residual norms within a
white matter mask, and resulted in anatomically plausible choices
for the most likely number of fibers, as shown in Fig. 2b. In particu-
lar, these settings select a single fiber compartment within the cen-
ter of the corpus callosum (CC) and parts of the corticospinal tract
(CST) that are commonly used to estimate the single fiber response
function in spherical deconvolution [TCCO07], while permitting two
or three compartments within well-known crossing regions, such as
between CC and CST. These values also lead to an overall fraction
of two- and three-fiber voxels that is within the range of estimates
from the literature [JLT*12; Sch12].

This concludes our first important result, a framework that allows
us to quantify model uncertainty. The probability of the selected
model that is estimated with our approach is visualized in Fig. 2c.
In a few small regions, including the central part of the CC, this
value is close to one, indicating very little model uncertainty. In
most other parts of the white matter, this value is clearly below one,
indicating considerable model uncertainty. In the next section, we
propose an approach for crossing fiber tractography that accounts
for this uncertainty.

5. Crossing Fiber Tractography With Reduced Model
Uncertainty

The main novelty in this section is the model averaging approach
that is introduced in Section 5.1. Section 5.2 provides further detail
on the tractography algorithm in which we compared this strategy
to two previous ones. Section 5.3 explains the post-processing that
was required in our experiments.
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5.1. Computing Local Tracking Directions

Tractography based on the low-rank tensor approximation model
in Eq. (1) has considered three candidate models at each step, cor-
responding to the fiber counts r € {1,2,3}. The strategy in previ-
ous work has been to determine an optimal rank r in each integra-
tion step, and to use the resulting set of directions v; for tracking
[ALGS17]. However, it ignores the model uncertainty, which arises
in cases in which multiple models have a non-negligible probabil-
ity, but lead to different estimates of tracking directions. We refer
to this approach as model selection, and use it as a baseline in our
experiments. To enable a direct comparison to our newly proposed
model averaging strategy, in our current experiments, model selec-
tion uses the value of r with the largest probability p(H,|T) ac-
cording to the framework from the previous section.

An important contribution of our current work is to explore
model averaging as an alternative strategy for computing local
tracking directions from multi-fiber models. The idea is to reduce
the model uncertainty by fusing the information from the candidate
models, rather than relying on one of them alone, similar to how
Bretthorst et al. [BKNO04] took the expectation of scalar invariants
over different models. Our implementation derives an overall esti-
mate of directions v; and volume fractions A; as a weighted sum of

the corresponding parameters Vl(r> and lgr) from the different r-fiber
models, where the weights are given by the respective probabilities

Computing the weighted sums as such is straightforward. How-
ever, implementing model averaging requires establishing a corre-
spondence between the directions from the different r-fiber models,
so that the direction VEU from the single fiber model corresponds

to the first directions V(lz) and V(13) of the two- and three-fiber mod-

o) 3)

els. Moreover, the second directions A2} and vy of the two- and
three-fiber models need to agree. Among the 2! x 3! = 12 possible
assignments, we select the one that minimizes the overall sum of
angles between the resulting weighted means v;, and their corre-

(r)

i

sponding v

As another baseline in our experiments, we consider estimates
from a standard state-of-the-art multi-shell multi-tissue constrained
spherical deconvolution approach [JTD*14], which uses peak find-
ing on order-8 spherical harmonics to estimate the v; and A;. This
amounts to an implicit model selection approach, where fiber com-
partments are included if they are strong enough to result in a dis-
tinct local fODF maximum.

5.2. Probabilistic Streamline-Based Tractography

Our work refines the widely used idea of probabilistic streamline-
based tractography. Streamlines are started at a given seed point,
and are iteratively grown in both directions using Euler integration.
A set of r local tracking directions v; are extracted according to
one of the three methods described in the previous subsection. We
handle the ambiguity in the sign of v; by re-orienting it to have a
non-negative inner product with the current tracking direction w. If
the crossing fiber model results in r candidate directions, we select
one of them according to a probabilistic model.
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Figure 4: Probability on the y axes of selecting a direction based
on the angle in degrees between current direction and possible next
direction - on the x axes - for unit length direction vectors.

Our algorithm selects the unit direction v; with volume fraction
Ajfori € {1,...,r} with probability

3 2\?
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where 0; denotes the angle between the current curve tangent di-

rection w and the possible new direction v;. Fig. 4 illustrates the
enumerator of this equation as a function of 6;, with A; = 1.

To account for the limited angular resolution of spherical decon-
volution [TCCO7], the probabilities for angles below 30 degrees are
set to be almost equal. In streamline-based tractography, it is very
common to limit the maximum angular deviation that is permitted
in each step. This is accounted for by assigning probability zero to
all angles greater than 60 degrees. By also accounting for the vol-
ume fraction A;, we prefer the more significant contributions that
yield more reliable tracking directions.

In our experiments, we perform Euler integration with a stepsize
of 0.9mm and terminate the streamline if no valid tracking direc-
tion is found, or if the overall white matter density drops below 0.3.
For simplicity, we pre-compute the multi-vector fields at the dMRI
voxel resolution and use nearest neighbor interpolation, as in FACT
[MCCvZ99].

5.3. Postprocessing

Diffusion MRI tractography in general is known to be able to re-
construct large parts of many well-known white matter tracts, but
is also notorious for generating false positives that, at the current
state of the art, have to be removed based on anatomical knowl-
edge [WCP*07; MNH*17]. Moreover, probabilistic tractography
algorithms generate a certain fraction of outliers with low overall
probability that should be removed from their output.

Therefore, we filter all tracking results in two ways. First, we
use exclusion filters, which exclude streamlines if they enter certain
regions, which are defined according to anatomical knowledge. For
example, if a streamline from the left or right CST enters the other
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hemisphere, it is excluded. In our experiments, all exclusion filters
are manually calibrated for one reference subject. Then, a linear
registration of all other subjects to the reference is done [JBBS02],
and the linear transformation is used to map the exclusion regions
to all other subjects.

Second, a density filter is used. A density map is created by
counting the number of streamlines intersecting each voxel. Based
on this map, the density filter cuts off streamlines when they first
enter a low density region, starting at their seed point. The thresh-
old for a low density region is set for one subject and transferred to
all others by scaling it with the ratio of seed points for a tract in the
reference, compared to the seed points of the tract in the target.

6. Results
6.1. Data

To evaluate the benefit of the proposed model uncertainty re-
duction, we compare the three above-described tractography ap-
proaches on data from the Human Connectome Project (HCP)
[VSB*13]. The corresponding diffusion MR images have a reso-
lution of 1.25 mm isotropic with 145 x 174 x 145 voxels.

As a reference, we used high-quality tractography results that
were published along with the learning-based tractography method
TractSeg. Details on how this reference data was created can be
found in the corresponding publication [WNM18]. Briefly, stream-
lines belonging to several major white matter tracts were extracted
automatically from a generously seeded whole brain tractography,
followed by a careful manual cleanup in which wrongly excluded
streamlines were added and falsely included ones were removed.

We ran our experiments on 12 HCP subjects for which such ref-
erence tractography results were available. For each method, we
evaluated the extent to which it managed to reconstruct the full bun-
dle from the intersection of the reference curves with a single plane.
To account for cases in which seeds fall into regions of fiber cross-
ings, the tangent direction of the reference curve was stored and
used as the prior direction when starting the tracking. This should
mimic a directional region of interest as it might be placed for seed-
ing by an expert on brain anatomy [GRNM16].

6.2. Qualitative Comparison

In a first experiment, we tried to track the right Corticospinal Tract
(CST) from the seed region that is indicated with a dashed black
line in Fig. 5. This tract has a large lateral spread in the upper part.
Visually, our novel model averaging approach manages to recon-
struct that spreading part more completely compared to the model
selection strategy, which results in a lower density in that region,
or to constrained spherical deconvolution, which has problems to
cover parts of the spread at all.

A potential explanation for this is that individual voxels in which
model selection prefers a model with fewer fibers, despite consider-
able model uncertainty, could prevent a reconstruction of the spread
at that point. Figure 6 investigates this further by showing the esti-
mated fiber directions in the crucial part of the right CST, in which
the streamlines have to split to achieve the desired lateral spread.

A

(b) Low-rank approximation with
proposed model averaging.

A

(¢) Low-rank approximation with (d) Standard constrained spherical
model selection. deconvolution.

(a) Manually curated reference.

Figure 5: Reconstructions of the right Corticospinal Tract from
seeds in an axial slice whose position is indicated by the dashed
line in (a).

There are some clear differences visible between model averaging
(left) and selection (right). At the first marker, we see that the selec-
tion model decided for the two fiber model with a high uncertainty.
At this location, the third fiber remains available in the averaging
model. We also observe that model averaging affected the direction
of the main fiber: It is straight up in the selection result, but ro-
tated in a way that is more similar to the local neighborhood after
averaging.

At the second marker, model selection decided for the single
fiber model. Again, model averaging permits an additional fiber
compartment, even though with a small volume fraction, which is
coherent with the local neighborhood and facilitates the continuous
tracking of crossing fibers.

However, when focusing on the boundaries of the bundle, we
also observe that it seems “fuzzier” in the model averaging and
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Figure 6: Model averaging and model selection in the upper right hemisphere. The left crop shows model averaging and the right shows

model selection.

CSD approaches compared to model selection, visually indicating
a larger number of streamlines that had to be cut off by the density
filter. Therefore, it seems that model averaging leads to an increase
in both the true and the false positive fibers.

6.3. Quantitative Comparison

To compare the different results objectively [SDM*19], we create a
binary mask out of the reference data (RD) and out of the tracking
results (TR). The overlap (OL) between the RD mask and the TR
is calculated via

[RDNTR)|
OL="———
|RD|
The overreach (OR) is calculated as
C
OR — |RDNTR|
IRD|

where RD€ is the complement of RD, and the Dice score is calcu-
lated as

Dice — 2|RDNTR|
|TR|+|RD|"

A high OL score indicates a high coverage of the RD, while a
high OR shows that there exist many streamlines which are not
within the GT, and are thus likely to be false positives. Hence, it is
desirable to achieve a high OL score with a low OR score, which
yields a high similarity between the tracts, and is reflected in a high
Dice score.

In Table 1, the numerical results for the right CST are shown,
averaged over all 12 subjects. It confirms our visual impression.
The average model has by far the highest OL score, followed by the
selection and the CSD models. The fuzzy boundaries correspond to
a high OR score for the averaging and CSD models, while the OR
score of the selection model is greatly reduced. The resulting Dice
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Model | OL OR Dice
Average 0.71 £ 0.034 0.5+£0.092  0.65 + 0.025
Selection | 0.66£0.029  0.4240.063  0.63+0.016
CSD 0.63£0.025  0.51£0.077  0.59+0.19

Table 1: Average of scores of all twelve patients for the right CST.
The best model of each score is marked bold.

score is largest for the averaging model, closely followed by the
selection model.

For a more representative experiment, we selected the corpus
callosum (CC), the cingulum (CG), the corticospinal tract (CST),
the inferior fronto-occipital (IFO) and the inferior longitudinal fas-
ciculus (ILF), the optic radiation (OR), and the superior longitu-
dinal fasciculus (SLF). In the reference tractography, the CC and
SLF tracts were divided into subtracts, which we joined into a sin-
gle tract (CC) or one per hemisphere (SLF) for our experiment.

The Dice scores of all tracts, averaged over all 12 subjects, are
shown in Fig. 7. In all cases, our novel model averaging strategy
achieved the best result. The margin towards the next best model
was large in some cases (such as the CC, shown in Fig. 1), but less
so in some others (such as the right OR). In most cases, low-rank
tensor approximation with model selection achieved better results
than CSD with peak finding, confirming previously published re-
sults [ALGS17]. An exception are the SLF tracts, which have been
reconstructed by that particular approach less completely. This can
be seen from Figs. 8 and 9, which report the overlap and overreach,
respectively.

In all case, model averaging leads to the highest OL score. In the
CC and both IFO tracts, the score is around 0.1 higher than with
the next best model. Low-rank approximation with model selection
performs slightly better than the CSD model: It has a higher OL
score in 10 out of 13 tracts.
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Figure 7: Averaged Dice score over all patients tract wise for each
model.

The observation that model averaging reconstructs the bundles
most completely can be explained by that fact that, when it doubt,
it preserves additional fibers, even though with a reduced weight.
However, Fig. 9 shows that this also increases the overreach. In 11
out of 13 tracts, model averaging leads to the highest OR score,
while model selection and CSD split the second place: Both have
the highest OR score once, and the lowest one almost equally often.
Fig. 7 shows that, in terms of the Dice score, the benefits of model
averaging with respect to a more complete reconstruction outweigh
the slightly larger overreach.

6.4. Computational Effort

Experiments were computed on an Intel 19 with 3.3 GHz and 64 GB
RAM. All durations below are in min:s. The code is available at
https://github.com/MedVisBonn/bonndit.

Multi-threaded fODF estimation took 4:33 for the fourth-order
tensors, 16:09 for the order-8 spherical harmonics. Single-threaded
computation of directions via low-rank approximation took 1:30
with model averaging, 1:10 with model selection. Peak extraction
from standard CSD took 1:30. The tracking itself is mostly inde-
pendent from the pre-processing and took approximately 2:30 for a
bundle such as it is shown in Figure 5, again on a single CPU core,
and including post-processing.
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Figure 8: Averaged OL score over all patients tract wise for each
model.

In summary, when pre-computing the multi-vector fields for trac-
tography, model averaging only leads to a modest increase in com-
putational effort compared to an equivalent model selection strat-
egy. Compared to the widely used standard CSD, low-rank ap-
proximation of fourth-order tensor fODFs reduces the overall effort
[ALGS17]. This remains true when using model averaging.

7. Conclusion

While other sources of uncertainty in diffusion MRI tractography
have been studied widely, the aspect of model uncertainty has re-
ceived little attention so far. In this work, we proposed a novel
mathematical framework to quantify this type of uncertainty, based
on Bayesian model comparison. We applied it to the uncertainty
that results from having to choose the number of fibers in multi-
fiber models. However, this framework is more widely applicable.
We intend to use it to study other cases of model uncertainty in the
future, for example, the uncertainty resulting from deviations in the
single fiber response function that can arise in cases of neurodegen-
erative disease [SG13].

Our second main contribution is a strategy that reduces this type
of model uncertainty when estimating fiber directions for tractogra-
phy, by fusing information from multiple candidate models. We im-
plemented this idea in a probabilistic streamline-based tractography

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.


https://github.com/MedVisBonn/bonndit

J. Griin et al. / Reducing Model Uncertainty in Crossing Fiber Tractography 63

CCq

CG left A + °

CG right - + °

CST left 1 +29

CST right + xe0

IFO left - + e

IFO right + °

Seedfile

ILF left - 9+

ILF right +o

OR left + +

OR right A E

e Averaging Model
CSD Model
* Selection Model

SLF left q *o

SLF right4 #»

0.2 0.4 0.6 0.8 1.0 1.2
OR

Figure 9: Averaged OR score over all patients tract wise for each
model.

algorithm and demonstrated that, on a range of different tracts and
in twelve different subjects, it led to a more complete reconstruc-
tion compared to a comparable algorithm that uses model selection,
and to state-of-the-art constrained spherical deconvolution.

A limitation of our current approach is that the exact parame-
ters of the Kumaraswamy distribution that were used in our ex-
periments might not be universally applicable. Even though setting
them based on one patient and transferring them to eleven others
from the same cohort worked well, they may have to be changed
when using a different dMRI acquisition scheme, or when the spa-
tial resolution or level of noise in the data change drastically. In
the future, this might be addressed by a data-driven approach to
estimating model probabilities [Sch12].
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