Show simple item record

dc.contributor.authorShao, Linen_US
dc.contributor.authorMahajan, Aishwaryaen_US
dc.contributor.authorSchreck, Tobiasen_US
dc.contributor.authorLehmann, Dirk J.en_US
dc.contributor.editorHeer, Jeffrey and Ropinski, Timo and van Wijk, Jarkeen_US
dc.date.accessioned2017-06-12T05:22:27Z
dc.date.available2017-06-12T05:22:27Z
dc.date.issued2017
dc.identifier.issn1467-8659
dc.identifier.urihttp://dx.doi.org/10.1111/cgf.13176
dc.identifier.urihttps://diglib.eg.org:443/handle/10.1111/cgf13176
dc.description.abstractData analysis often involves finding models that can explain patterns in data, and reduce possibly large data sets to more compact model-based representations. In Statistics, many methods are available to compute model information. Among others, regression models are widely used to explain data. However, regression analysis typically searches for the best model based on the global distribution of data. On the other hand, a data set may be partitioned into subsets, each requiring individual models. While automatic data subsetting methods exist, these often require parameters or domain knowledge to work with. We propose a system for visual-interactive regression analysis for scatter plot data, supporting both global and local regression modeling. We introduce a novel regression lens concept, allowing a user to interactively select a portion of data, on which regression analysis is run in interactive time. The lens gives encompassing visual feedback on the quality of candidate models as it is interactively navigated across the input data. While our regression lens can be used for fully interactive modeling, we also provide user guidance suggesting appropriate models and data subsets, by means of regression quality scores. We show, by means of use cases, that our regression lens is an effective tool for user-driven regression modeling and supports model understanding.en_US
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.subjectG.3 [Computer Graphics]
dc.subjectPROBABILITY AND STATISTICS
dc.subjectCorrelation and regression analysis
dc.titleInteractive Regression Lens for Exploring Scatter Plotsen_US
dc.description.seriesinformationComputer Graphics Forum
dc.description.sectionheadersPlots, Plots, Plots
dc.description.volume36
dc.description.number3
dc.identifier.doi10.1111/cgf.13176
dc.identifier.pages157-166


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

  • 36-Issue 3
    EuroVis 2017 - Conference Proceedings

Show simple item record