Show simple item record

dc.contributor.authorRubio-Sánchez, Manuelen_US
dc.contributor.authorSanchez, Albertoen_US
dc.contributor.authorLehmann, Dirk J.en_US
dc.contributor.editorHeer, Jeffrey and Ropinski, Timo and van Wijk, Jarkeen_US
dc.date.accessioned2017-06-12T05:22:53Z
dc.date.available2017-06-12T05:22:53Z
dc.date.issued2017
dc.identifier.issn1467-8659
dc.identifier.urihttp://dx.doi.org/10.1111/cgf.13196
dc.identifier.urihttps://diglib.eg.org:443/handle/10.1111/cgf13196
dc.description.abstractRadial axes plots are multivariate visualization techniques that extend scatterplots in order to represent high-dimensional data as points on an observable display. Well-known methods include star coordinates or principal component biplots, which represent data attributes as vectors that de ne axes, and produce linear dimensionality reduction mappings. In this paper we propose a hybrid approach that bridges the gap between star coordinates and principal component biplots, which we denominate adaptable radial axes plots . It is based on solving convex optimization problems where users can: (a) update the axis vectors interactively, as in star coordinates, while producing mappings that enable to estimate attribute values optimally through labeled axes, similarly to principal component biplots; (b) use different norms in order to explore additional nonlinear mappings of the data; and (c) include weights and constraints in the optimization problems for sorting the data along one axis. The result is a exible technique that complements, extends, and enhances current radial methods for data analysis.en_US
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.subject[Human
dc.subjectcentered computing]
dc.subjectVisualization
dc.subjectVisualization techniques [Probability and statistics]
dc.subjectStatistical paradigms
dc.subjectStatistical graphics [Human
dc.subjectcentered computing]
dc.subjectVisualization
dc.subjectVisualization theory
dc.subjectconcepts and paradigms [Probability and statistics]
dc.subjectStatistical paradigms
dc.subjectExploratory data analysis
dc.titleAdaptable Radial Axes Plots for Improved Multivariate Data Visualizationen_US
dc.description.seriesinformationComputer Graphics Forum
dc.description.sectionheadersMulti and High Dimensional Visualization
dc.description.volume36
dc.description.number3
dc.identifier.doi10.1111/cgf.13196
dc.identifier.pages389-399


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

  • 36-Issue 3
    EuroVis 2017 - Conference Proceedings

Show simple item record