Show simple item record

dc.contributor.authorHummel, Mathiasen_US
dc.contributor.authorJöckel, Lisaen_US
dc.contributor.authorSchäfer, Janen_US
dc.contributor.authorHlawitschka, Mark Werneren_US
dc.contributor.authorGarth, Christophen_US
dc.contributor.editorHeer, Jeffrey and Ropinski, Timo and van Wijk, Jarkeen_US
dc.date.accessioned2017-06-12T05:23:02Z
dc.date.available2017-06-12T05:23:02Z
dc.date.issued2017
dc.identifier.issn1467-8659
dc.identifier.urihttp://dx.doi.org/10.1111/cgf.13203
dc.identifier.urihttps://diglib.eg.org:443/handle/10.1111/cgf13203
dc.description.abstractEulerian Method of Moment (MoM) solvers are gaining popularity for multi-phase CFD simulation involving bubbles or droplets in process engineering. Because the actual positions of bubbles are uncertain, the spatial distribution of bubbles is described by scalar fields of moments, which can be interpreted as probability density functions. Visualizing these simulation results and comparing them to physical experiments is challenging, because neither the shape nor the distribution of bubbles described by the moments lend themselves to visual interpretation. In this work, we describe a visualization approach that provides explicit instances of the bubble distribution and produces bubble geometry based on local flow properties. To facilitate animation, the instancing of the bubble distribution provides coherence over time by advancing bubbles between time steps and updating the distribution. Our approach provides an intuitive visualization and enables direct visual comparison of simulation results to physical experiments.en_US
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.subjectI.3.8 [Computer Graphics]
dc.subjectPicture/Image Generation
dc.subjectApplications
dc.titleVisualizing Probabilistic Multi-Phase Fluid Simulation Data using a Sampling Approachen_US
dc.description.seriesinformationComputer Graphics Forum
dc.description.sectionheadersUncertainty
dc.description.volume36
dc.description.number3
dc.identifier.doi10.1111/cgf.13203
dc.identifier.pages469-477


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

  • 36-Issue 3
    EuroVis 2017 - Conference Proceedings

Show simple item record