Show simple item record

dc.contributor.authorLiu, Yangen_US
dc.contributor.authorJun, Euniceen_US
dc.contributor.authorLi, Qishengen_US
dc.contributor.authorHeer, Jeffreyen_US
dc.contributor.editorGleicher, Michael and Viola, Ivan and Leitte, Heikeen_US
dc.date.accessioned2019-06-02T18:27:22Z
dc.date.available2019-06-02T18:27:22Z
dc.date.issued2019
dc.identifier.issn1467-8659
dc.identifier.urihttps://doi.org/10.1111/cgf.13672
dc.identifier.urihttps://diglib.eg.org:443/handle/10.1111/cgf13672
dc.description.abstractLatent spaces-reduced-dimensionality vector space embeddings of data, fit via machine learning-have been shown to capture interesting semantic properties and support data analysis and synthesis within a domain. Interpretation of latent spaces is challenging because prior knowledge, sometimes subtle and implicit, is essential to the process. We contribute methods for ''latent space cartography'', the process of mapping and comparing meaningful semantic dimensions within latent spaces. We first perform a literature survey of relevant machine learning, natural language processing, and scientific research to distill common tasks and propose a workflow process. Next, we present an integrated visual analysis system for supporting this workflow, enabling users to discover, define, and verify meaningful relationships among data points, encoded within latent space dimensions. Three case studies demonstrate how users of our system can compare latent space variants in image generation, challenge existing findings on cancer transcriptomes, and assess a word embedding benchmark.en_US
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.subjectHuman
dc.subjectcentered computing
dc.subjectVisualization
dc.subjectVisual analytics
dc.titleLatent Space Cartography: Visual Analysis of Vector Space Embeddingsen_US
dc.description.seriesinformationComputer Graphics Forum
dc.description.sectionheadersAnalysis Applications and Systems
dc.description.volume38
dc.description.number3
dc.identifier.doi10.1111/cgf.13672
dc.identifier.pages67-78


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

  • 38-Issue 3
    EuroVis 2019 - Conference Proceedings

Show simple item record