Show simple item record

dc.contributor.authorHofmann, Lutzen_US
dc.contributor.authorSadlo, Filipen_US
dc.contributor.editorGleicher, Michael and Viola, Ivan and Leitte, Heikeen_US
dc.date.accessioned2019-06-02T18:27:41Z
dc.date.available2019-06-02T18:27:41Z
dc.date.issued2019
dc.identifier.issn1467-8659
dc.identifier.urihttps://doi.org/10.1111/cgf.13687
dc.identifier.urihttps://diglib.eg.org:443/handle/10.1111/cgf13687
dc.description.abstractIn this paper, we generalize the parallel vectors operator due to Peikert and Roth to arbitrary dimension, i.e., to four-dimensional fields and beyond. Whereas the original operator tested for parallelism of two (derived) 2D or 3D vector fields, we reformulate the concept in terms of linear dependency of sets of vector fields, and propose a generic technique to extract and filter the solution manifolds.We exemplify our approach for vortex cores, bifurcations, and ridges as well as valleys in higher dimensions.en_US
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.subjectHuman
dc.subjectcentered computing → Visualization techniques
dc.subjectApplied computing → Mathematics and statistics
dc.titleThe Dependent Vectors Operatoren_US
dc.description.seriesinformationComputer Graphics Forum
dc.description.sectionheadersVectors and Features
dc.description.volume38
dc.description.number3
dc.identifier.doi10.1111/cgf.13687
dc.identifier.pages261-272


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

  • 38-Issue 3
    EuroVis 2019 - Conference Proceedings

Show simple item record