Show simple item record

dc.contributor.advisor
dc.contributor.authorSondag, Maxen_US
dc.contributor.authorTurkay, Cagatayen_US
dc.contributor.authorXu, Kaien_US
dc.contributor.authorMatthews, Louiseen_US
dc.contributor.authorMohr, Sibylleen_US
dc.contributor.authorArchambault, Danielen_US
dc.contributor.editorBorgo, Ritaen_US
dc.contributor.editorMarai, G. Elisabetaen_US
dc.contributor.editorSchreck, Tobiasen_US
dc.date.accessioned2022-06-03T06:05:41Z
dc.date.available2022-06-03T06:05:41Z
dc.date.issued2022
dc.identifier.issn1467-8659
dc.identifier.urihttps://doi.org/10.1111/cgf.14520
dc.identifier.urihttps://diglib.eg.org:443/handle/10.1111/cgf14520
dc.description.abstractEpidemiologists use individual-based models to (a) simulate disease spread over dynamic contact networks and (b) to investigate strategies to control the outbreak. These model simulations generate complex 'infection maps' of time-varying transmission trees and patterns of spread. Conventional statistical analysis of outputs offers only limited interpretation. This paper presents a novel visual analytics approach for the inspection of infection maps along with their associated metadata, developed collaboratively over 16 months in an evolving emergency response situation. We introduce the concept of representative trees that summarize the many components of a time-varying infection map while preserving the epidemiological characteristics of each individual transmission tree. We also present interactive visualization techniques for the quick assessment of different control policies. Through a series of case studies and a qualitative evaluation by epidemiologists, we demonstrate how our visualizations can help improve the development of epidemiological models and help interpret complex transmission patterns.en_US
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Applied computing --> Health informatics; Human-centered computing --> Visualization design and evaluation methods; Visual analytics
dc.subjectApplied computing
dc.subjectHealth informatics
dc.subjectHuman centered computing
dc.subjectVisualization design and evaluation methods
dc.subjectVisual analytics
dc.titleVisual Analytics of Contact Tracing Policy Simulations During an Emergency Responseen_US
dc.description.seriesinformationComputer Graphics Forum
dc.description.sectionheadersPapers Awards Session
dc.description.volume41
dc.description.number3
dc.identifier.doi10.1111/cgf.14520
dc.identifier.pages29-41
dc.identifier.pages13 pages


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

  • 41-Issue 3
    EuroVis 2022 - Conference Proceedings

Show simple item record

Attribution 4.0 International License
Except where otherwise noted, this item's license is described as Attribution 4.0 International License