dc.contributor.author | Yang, Jinlin | en_US |
dc.contributor.author | Liu, Shibo | en_US |
dc.contributor.author | Chai, Shuangming | en_US |
dc.contributor.author | Liu, Ligang | en_US |
dc.contributor.author | Fu, Xiao-Ming | en_US |
dc.contributor.editor | Campen, Marcel | en_US |
dc.contributor.editor | Spagnuolo, Michela | en_US |
dc.date.accessioned | 2022-06-27T16:19:53Z | |
dc.date.available | 2022-06-27T16:19:53Z | |
dc.date.issued | 2022 | |
dc.identifier.issn | 1467-8659 | |
dc.identifier.uri | https://doi.org/10.1111/cgf.14604 | |
dc.identifier.uri | https://diglib.eg.org:443/handle/10.1111/cgf14604 | |
dc.description.abstract | We propose a novel method to generate a high-order triangular mesh for an input 2D domain with two key characteristics: (1) the mesh precisely conforms to a set of input piecewise rational domain curves, and (2) the geometric map on each curved triangle is injective. Central to the algorithm is a new sufficient condition for placing control points of a rational Bézier triangle to guarantee that the conformance and injectivity constraints are theoretically satisfied. Taking advantage of this condition, we provide an explicit construct that robustly creates higher-order 2D meshes satisfying the two characteristics. We demonstrate the robustness and effectiveness of our algorithm over a data set containing 2200 examples. | en_US |
dc.publisher | The Eurographics Association and John Wiley & Sons Ltd. | en_US |
dc.subject | CCS Concepts: Computing methodologies --> Shape modeling | |
dc.subject | Computing methodologies | |
dc.subject | Shape modeling | |
dc.title | Precise High-order Meshing of 2D Domains with Rational Bézier Curves | en_US |
dc.description.seriesinformation | Computer Graphics Forum | |
dc.description.sectionheaders | Meshes and Partitions | |
dc.description.volume | 41 | |
dc.description.number | 5 | |
dc.identifier.doi | 10.1111/cgf.14604 | |
dc.identifier.pages | 79-88 | |
dc.identifier.pages | 10 pages | |