Show simple item record

dc.contributor.authorYang, Jinlinen_US
dc.contributor.authorLiu, Shiboen_US
dc.contributor.authorChai, Shuangmingen_US
dc.contributor.authorLiu, Ligangen_US
dc.contributor.authorFu, Xiao-Mingen_US
dc.contributor.editorCampen, Marcelen_US
dc.contributor.editorSpagnuolo, Michelaen_US
dc.date.accessioned2022-06-27T16:19:53Z
dc.date.available2022-06-27T16:19:53Z
dc.date.issued2022
dc.identifier.issn1467-8659
dc.identifier.urihttps://doi.org/10.1111/cgf.14604
dc.identifier.urihttps://diglib.eg.org:443/handle/10.1111/cgf14604
dc.description.abstractWe propose a novel method to generate a high-order triangular mesh for an input 2D domain with two key characteristics: (1) the mesh precisely conforms to a set of input piecewise rational domain curves, and (2) the geometric map on each curved triangle is injective. Central to the algorithm is a new sufficient condition for placing control points of a rational Bézier triangle to guarantee that the conformance and injectivity constraints are theoretically satisfied. Taking advantage of this condition, we provide an explicit construct that robustly creates higher-order 2D meshes satisfying the two characteristics. We demonstrate the robustness and effectiveness of our algorithm over a data set containing 2200 examples.en_US
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.subjectCCS Concepts: Computing methodologies --> Shape modeling
dc.subjectComputing methodologies
dc.subjectShape modeling
dc.titlePrecise High-order Meshing of 2D Domains with Rational Bézier Curvesen_US
dc.description.seriesinformationComputer Graphics Forum
dc.description.sectionheadersMeshes and Partitions
dc.description.volume41
dc.description.number5
dc.identifier.doi10.1111/cgf.14604
dc.identifier.pages79-88
dc.identifier.pages10 pages


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

  • 41-Issue 5
    Geometry Processing 2022 - Symposium Proceedings

Show simple item record