Rational Bézier Guarding
dc.contributor.author | Khanteimouri, Payam | en_US |
dc.contributor.author | Mandad, Manish | en_US |
dc.contributor.author | Campen, Marcel | en_US |
dc.contributor.editor | Campen, Marcel | en_US |
dc.contributor.editor | Spagnuolo, Michela | en_US |
dc.date.accessioned | 2022-06-27T16:19:53Z | |
dc.date.available | 2022-06-27T16:19:53Z | |
dc.date.issued | 2022 | |
dc.identifier.issn | 1467-8659 | |
dc.identifier.uri | https://doi.org/10.1111/cgf.14605 | |
dc.identifier.uri | https://diglib.eg.org:443/handle/10.1111/cgf14605 | |
dc.description.abstract | We present a reliable method to generate planar meshes of nonlinear rational triangular elements. The elements are guaranteed to be valid, i.e. defined by injective rational functions. The mesh is guaranteed to conform exactly, without geometric error, to arbitrary rational domain boundary and feature curves. The method generalizes the recent Bézier Guarding technique, which is applicable only to polynomial curves and elements. This generalization enables the accurate handling of practically important cases involving, for instance, circular or elliptic arcs and NURBS curves, which cannot be matched by polynomial elements. Furthermore, although many practical scenarios are concerned with rational functions of quadratic and cubic degree only, our method is fully general and supports arbitrary degree. We demonstrate the method on a variety of test cases. | en_US |
dc.publisher | The Eurographics Association and John Wiley & Sons Ltd. | en_US |
dc.subject | CCS Concepts: Computing methodologies --> Computer graphics; Mesh models; Mesh geometry models; Shape modeling; Applied computing --> Computer-aided design; Mathematics of computing --> Mesh generation | |
dc.subject | Computing methodologies | |
dc.subject | Computer graphics | |
dc.subject | Mesh models | |
dc.subject | Mesh geometry models | |
dc.subject | Shape modeling | |
dc.subject | Applied computing | |
dc.subject | Computer | |
dc.subject | aided design | |
dc.subject | Mathematics of computing | |
dc.subject | Mesh generation | |
dc.title | Rational Bézier Guarding | en_US |
dc.description.seriesinformation | Computer Graphics Forum | |
dc.description.sectionheaders | Meshes and Partitions | |
dc.description.volume | 41 | |
dc.description.number | 5 | |
dc.identifier.doi | 10.1111/cgf.14605 | |
dc.identifier.pages | 89-99 | |
dc.identifier.pages | 11 pages |
Files in this item
This item appears in the following Collection(s)
-
41-Issue 5
Geometry Processing 2022 - Symposium Proceedings