Show simple item record

dc.contributor.authorBeaufort, Pierre-Alexandreen_US
dc.contributor.authorReberol, Maxenceen_US
dc.contributor.authorKalmykov, Denisen_US
dc.contributor.authorLiu, Hengen_US
dc.contributor.authorLedoux, Francken_US
dc.contributor.authorBommes, Daviden_US
dc.contributor.editorCampen, Marcelen_US
dc.contributor.editorSpagnuolo, Michelaen_US
dc.date.accessioned2022-06-27T16:19:54Z
dc.date.available2022-06-27T16:19:54Z
dc.date.issued2022
dc.identifier.issn1467-8659
dc.identifier.urihttps://doi.org/10.1111/cgf.14608
dc.identifier.urihttps://diglib.eg.org:443/handle/10.1111/cgf14608
dc.description.abstractHexMe consists of 189 tetrahedral meshes with tagged features and a workflow to generate them. The primary purpose of HexMe meshes is to enable consistent and practically meaningful evaluation of hexahedral meshing algorithms and related techniques, specifically regarding the correct meshing of specified feature points, curves, and surfaces. The tetrahedral meshes have been generated with Gmsh, starting from 63 computer-aided design (CAD) models from various databases. To highlight and label the diverse and challenging aspects of hexahedral mesh generation, the CAD models are classified into three categories: simple, nasty, and industrial. For each CAD model, we provide three kinds of tetrahedral meshes (uniform, curvature-adapted, and box-embedded). The mesh generation pipeline is defined with the help of Snakemake, a modern workflow management system, which allows us to specify a fully automated, extensible, and sustainable workflow. It is possible to download the whole dataset or select individual meshes by browsing the online catalog. The HexMe dataset is built with evolution in mind and prepared for future developments. A public GitHub repository hosts the HexMe workflow, where external contributions and future releases are possible and encouraged. We demonstrate the value of HexMe by exploring the robustness limitations of state-of-the-art frame-field-based hexahedral meshing algorithm. Only for 19 of 189 tagged tetrahedral inputs all feature entities are meshed correctly, while the average success rates are 70.9% / 48.5% / 34.6% for feature points/curves/surfaces.en_US
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.subjectCCS Concepts: General and reference --> Evaluation; Computing methodologies --> Mesh geometry models; Information systems --> Test collections
dc.subjectGeneral and reference
dc.subjectEvaluation
dc.subjectComputing methodologies
dc.subjectMesh geometry models
dc.subjectInformation systems
dc.subjectTest collections
dc.titleHex Me If You Canen_US
dc.description.seriesinformationComputer Graphics Forum
dc.description.sectionheadersTools and Data
dc.description.volume41
dc.description.number5
dc.identifier.doi10.1111/cgf.14608
dc.identifier.pages125-134
dc.identifier.pages10 pages


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

  • 41-Issue 5
    Geometry Processing 2022 - Symposium Proceedings

Show simple item record