Show simple item record

dc.contributor.authorEndo, Yukien_US
dc.contributor.editorUmetani, Nobuyukien_US
dc.contributor.editorWojtan, Chrisen_US
dc.contributor.editorVouga, Etienneen_US
dc.date.accessioned2022-10-04T06:41:26Z
dc.date.available2022-10-04T06:41:26Z
dc.date.issued2022
dc.identifier.issn1467-8659
dc.identifier.urihttps://doi.org/10.1111/cgf.14686
dc.identifier.urihttps://diglib.eg.org:443/handle/10.1111/cgf14686
dc.description.abstractLatent space exploration is a technique that discovers interpretable latent directions and manipulates latent codes to edit various attributes in images generated by generative adversarial networks (GANs). However, in previous work, spatial control is limited to simple transformations (e.g., translation and rotation), and it is laborious to identify appropriate latent directions and adjust their parameters. In this paper, we tackle the problem of editing the StyleGAN image layout by annotating the image directly. To do so, we propose an interactive framework for manipulating latent codes in accordance with the user inputs. In our framework, the user annotates a StyleGAN image with locations they want to move or not and specifies a movement direction by mouse dragging. From these user inputs and initial latent codes, our latent transformer based on a transformer encoderdecoder architecture estimates the output latent codes, which are fed to the StyleGAN generator to obtain a result image. To train our latent transformer, we utilize synthetic data and pseudo-user inputs generated by off-the-shelf StyleGAN and optical flow models, without manual supervision. Quantitative and qualitative evaluations demonstrate the effectiveness of our method over existing methods.en_US
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.subjectCCS Concepts: Computing methodologies --> Artificial intelligence; Image manipulation
dc.subjectComputing methodologies
dc.subjectArtificial intelligence
dc.subjectImage manipulation
dc.titleUser-Controllable Latent Transformer for StyleGAN Image Layout Editingen_US
dc.description.seriesinformationComputer Graphics Forum
dc.description.sectionheadersImage Synthesis
dc.description.volume41
dc.description.number7
dc.identifier.doi10.1111/cgf.14686
dc.identifier.pages395-406
dc.identifier.pages12 pages


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

  • 41-Issue 7
    Pacific Graphics 2022 - Symposium Proceedings

Show simple item record