Show simple item record

dc.contributor.authorZhang, Dien_US
dc.contributor.authorZhai, Xiaoyaen_US
dc.contributor.authorFu, Xiao-Mingen_US
dc.contributor.authorWang, Hemingen_US
dc.contributor.authorLiu, Ligangen_US
dc.contributor.editorUmetani, Nobuyukien_US
dc.contributor.editorWojtan, Chrisen_US
dc.contributor.editorVouga, Etienneen_US
dc.date.accessioned2022-10-04T06:41:46Z
dc.date.available2022-10-04T06:41:46Z
dc.date.issued2022
dc.identifier.issn1467-8659
dc.identifier.urihttps://doi.org/10.1111/cgf.14698
dc.identifier.urihttps://diglib.eg.org:443/handle/10.1111/cgf14698
dc.description.abstractWe propose a novel topology optimization method to efficiently minimize the maximum compliance for a high-resolution model bearing uncertain external loads. Central to this approach is a modified power method that can quickly compute the maximum eigenvalue to evaluate the worst-case compliance, enabling our method to be suitable for large-scale topology optimization. After obtaining the worst-case compliance, we use the adjoint variable method to perform the sensitivity analysis for updating the density variables. By iteratively computing the worst-case compliance, performing the sensitivity analysis, and updating the density variables, our algorithm achieves the optimized models with high efficiency. The capability and feasibility of our approach are demonstrated over various large-scale models. Typically, for a model of size 512×170×170 and 69934 loading nodes, our method took about 50 minutes on a desktop computer with an NVIDIA GTX 1080Ti graphics card with 11 GB memory.en_US
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.subjectKeywords: Worst-case topology optimization, Displacement-oriented problem, Modified inverse power method
dc.subjectWorst
dc.subjectcase topology optimization
dc.subjectDisplacement
dc.subjectoriented problem
dc.subjectModified inverse power method
dc.titleLarge-Scale Worst-Case Topology Optimizationen_US
dc.description.seriesinformationComputer Graphics Forum
dc.description.sectionheadersPhysics Simulation and Optimization
dc.description.volume41
dc.description.number7
dc.identifier.doi10.1111/cgf.14698
dc.identifier.pages529-540
dc.identifier.pages12 pages


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

  • 41-Issue 7
    Pacific Graphics 2022 - Symposium Proceedings

Show simple item record