Virtual Reality in Assembly Simulation - Collision Detection, Simulation Algorithms, and Interaction Techniques
View/ Open
Date
July 2000
Item/paper (currently) not available via TIB Hannover.
Metadata
Show full item recordAbstract
In 1995, only a few VR systems were commercially available and a few more in the academic domain. None of these was mature at the time, nor had any of them been deployed in the field for everyday work. Some commercial and most academic systems were not so much a self-contained VR system, but rather a set of libraries which application programmers could build upon. In particular, VR was not ready for use for industry application. Problems persisted in the following areas (among others): electro-magnetic tracking, high-level specification of virtual environments, efficient interaction metaphors and frameworks, and real-time collision detection and response. This thesis has made contributions, to all of these areas. Almost all of the algorithms, applications, and frameworks presented in this thesis have been integrated into the VR system Virtual Design II, which has been developed by the department I am with, and which is now commercially available through the spin-off VRCom.