Show simple item record

dc.contributor.authorFarenzena, M.en_US
dc.contributor.authorCristani, M.en_US
dc.contributor.authorCastellani, U.en_US
dc.contributor.authorFusiello, A.en_US
dc.contributor.editorRaffaele De Amicis and Giuseppe Contien_US
dc.date.accessioned2014-01-27T16:25:48Z
dc.date.available2014-01-27T16:25:48Z
dc.date.issued2007en_US
dc.identifier.isbn978-3905673-62-3en_US
dc.identifier.urihttp://dx.doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2007/039-043en_US
dc.description.abstractIn this paper, a novel approach to face clustering is proposed. The aim is the completely unsupervised extraction of planes in a polygonal a mesh, obtained from a 3D reconstruction process. In this context, 3D coordinates points are inevitably affected by error, therefore resiliency is a primal concern in the analysis. The method is based on the Mean Shift clustering paradigm, devoted to separating modes of a multimodal non-parametric density, by using a kernel-based technique. A critical parameter, the kernel bandwidth size, is here automatically detected by following a well-accepted partition stability criterion. Experimental and comparative results on synthetic and real data validate the approach.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectCategories and Subject Descriptors (according to ACM CCS): I.3.5 [Computational Geometry and Object Modeling]:en_US
dc.title3D Objects Face Clustering using Unsupervised Mean Shiften_US
dc.description.seriesinformationEurographics Italian Chapter Conferenceen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record